FANTASIA, ANDREA

FANTASIA, ANDREA  

DIPARTIMENTO DI SCIENZA DEI MATERIALI  

Mostra records
Risultati 1 - 17 di 17 (tempo di esecuzione: 0.017 secondi).
Titolo Tipologia Data di pubblicazione Autori File
A Neural-Network surrogate for microstructure dynamics and crystal growth 02 - Intervento a convegno 2025 Lanzoni, DFantasia, AMontalenti, FBergamaschini, R +
ML-enabled boosting of growth simulations 02 - Intervento a convegno 2025 Lanzoni, DFantasia, ARovaris, FBergamaschini, RMontalenti, F
Origin and Evolution of I3 defects in Hexagonal Silicon and Germanium 02 - Intervento a convegno 2025 Rovaris, FMarzegalli, AFantasia, AMontalenti, FMiglio, LScalise, E +
Pressure-dependent kinetics of phase transitions in Si and Ge using machine learning interatomic potentials 02 - Intervento a convegno 2025 Rovaris, FFantasia, ALanzoni, DMarzegalli AMontalenti, FScalise, E
Progressing strained layer growth by deep learning 02 - Intervento a convegno 2025 Lanzoni, DFantasia, ARovaris, FBergamaschini, RMontalenti, F
Quantitative analysis of the prediction performance of a Convolutional Neural Network evaluating the surface elastic energy of a strained film 01 - Articolo su rivista 2025 Lanzoni, DanieleFantasia, AndreaRovaris, FabrizioBergamaschini, RobertoMontalenti, Francesco +
Towards Hexagonal Germanium via Nanoindentation 02 - Intervento a convegno 2025 Marzegalli, AScalise, EBikerouin, MRovaris, FFantasia, AMontalenti, FMiglio, L +
Unraveling Atomistic Mechanisms of Pressure-Induced Phase Transitions in Silicon and Germanium 02 - Intervento a convegno 2025 Rovaris, FFantasia, AMarzegalli, AMontalenti FScalise, E
Accelerating Crystal Growth Simulations by Convolutional Neural Networks 02 - Intervento a convegno 2024 Lanzoni,DRovaris, FFantasia, AMontalenti, FBergamaschini, R +
Accelerating simulations of strained-film growth by deep learning: Finite element method accuracy over long time scales 01 - Articolo su rivista 2024 Lanzoni, DanieleRovaris, FabrizioFantasia, AndreaBergamaschini, RobertoMontalenti, Francesco +
Convolutional Recurrent Neural Networks for tackling materials dynamics at the mesoscale 02 - Intervento a convegno 2024 Lanzoni, DBergamaschini, RFantasia, AMontalenti, F
Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium 01 - Articolo su rivista 2024 Fantasia A.Rovaris F.Abou El Kheir O.Marzegalli A.Lanzoni D.Scalise E.Montalenti F. +
Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired neural networks for the 3D microstructure evolution of materials via Cahn–Hilliard flow 01 - Articolo su rivista 2024 Lanzoni, DanieleFantasia, AndreaBergamaschini, RobertoMontalenti, Francesco +
Simulating morphological evolutions by Convolutional Neural Networks 02 - Intervento a convegno 2024 Lanzoni, DRovaris, FFantasia, AMontalenti, FBergamaschini, R +
Simulations of strained films evolution: extending accessible timescales through Convolutional Neural Networks 02 - Intervento a convegno 2024 Lanzoni, DRovaris, FFantasia, ABergamaschini, RMontalenti, F +
Simulations of strained films evolution: extending accessible timescales through Convolutional Neural Networks 02 - Intervento a convegno 2024 Lanzoni, DRovaris, FBergamaschini, RFantasia, AMontalenti, F +
Unravelling Atomistic Mechanisms of Pressure-Induced Phase Transitions in Silicon Nanoindentation 02 - Intervento a convegno 2024 Fabrizio RovarisAnna marzegalliDaniele LanzoniAndrea FantasiaFrancesco MontalentiEmilio Scalise +