BERGAMASCHINI, ROBERTO

BERGAMASCHINI, ROBERTO  

DIPARTIMENTO DI SCIENZA DEI MATERIALI  

Mostra records
Risultati 1 - 20 di 110 (tempo di esecuzione: 0.034 secondi).
Titolo Tipologia Data di pubblicazione Autori File
A Neural-Network surrogate for microstructure dynamics and crystal growth 02 - Intervento a convegno 2025 Lanzoni, DFantasia, AMontalenti, FBergamaschini, R +
Deep learning for simulating the evolution of condensed matter systems at the continuum scale: methods and applications 01 - Articolo su rivista 2025 Lanzoni D.Montalenti F.Bergamaschini R.
Interface energies of Ga2O3 phases with the sapphire substrate and the phase-locked epitaxy of metastable structures explained 01 - Articolo su rivista 2025 Bertoni I.Ugolotti A.Scalise E.Bergamaschini R.Miglio L.
Interpretation of the competition between beta and kappa phases with supersaturation in MOVPE growth of Ga2O3 on c-oriented sapphire 02 - Intervento a convegno 2025 Ugolotti, ABergamaschini, RBertoni, IMiglio, L +
ML-enabled boosting of growth simulations 02 - Intervento a convegno 2025 Lanzoni, DFantasia, ARovaris, FBergamaschini, RMontalenti, F
Phase-field modelling of anisotropic solid-state dewetting on patterned substrates 01 - Articolo su rivista 2025 Bergamaschini R. +
Progressing strained layer growth by deep learning 02 - Intervento a convegno 2025 Lanzoni, DFantasia, ARovaris, FBergamaschini, RMontalenti, F
Quantitative analysis of the prediction performance of a Convolutional Neural Network evaluating the surface elastic energy of a strained film 01 - Articolo su rivista 2025 Lanzoni, DanieleFantasia, AndreaRovaris, FabrizioBergamaschini, RobertoMontalenti, Francesco +
Supersaturation-Dependent Competition between β and κ Phases in the MOVPE Growth of Ga2O3on Al2O3(0001) and GaN (0001) Substrates 01 - Articolo su rivista 2025 Ugolotti, A.Bergamaschini, R.Bertoni, I.Miglio, L. +
Accelerating Crystal Growth Simulations by Convolutional Neural Networks 02 - Intervento a convegno 2024 Lanzoni,DRovaris, FFantasia, AMontalenti, FBergamaschini, R +
Accelerating simulations of strained-film growth by deep learning: Finite element method accuracy over long time scales 01 - Articolo su rivista 2024 Lanzoni, DanieleRovaris, FabrizioFantasia, AndreaBergamaschini, RobertoMontalenti, Francesco +
Convolutional Recurrent Neural Networks for tackling materials dynamics at the mesoscale 02 - Intervento a convegno 2024 Lanzoni, DBergamaschini, RFantasia, AMontalenti, F
Extreme time extrapolation capabilities and thermodynamic consistency of physics-inspired neural networks for the 3D microstructure evolution of materials via Cahn–Hilliard flow 01 - Articolo su rivista 2024 Lanzoni, DanieleFantasia, AndreaBergamaschini, RobertoMontalenti, Francesco +
Interplay of crystal faceting, wetting interactions and substrate geometry in solid-state dewetting and selective-area growth: a phase-field approach 02 - Intervento a convegno 2024 Radice, EMiglio, LMontalenti, FBergamaschini, R
Near-Infrared Light Trapping and Avalanche Multiplication in Silicon Epitaxial Microcrystals 01 - Articolo su rivista 2024 Bergamaschini R.Montalenti F.Miglio L. +
Simulating morphological evolutions by Convolutional Neural Networks 02 - Intervento a convegno 2024 Lanzoni, DRovaris, FFantasia, AMontalenti, FBergamaschini, R +
Simulations of strained films evolution: extending accessible timescales through Convolutional Neural Networks 02 - Intervento a convegno 2024 Lanzoni, DRovaris, FFantasia, ABergamaschini, RMontalenti, F +
Simulations of strained films evolution: extending accessible timescales through Convolutional Neural Networks 02 - Intervento a convegno 2024 Lanzoni, DRovaris, FBergamaschini, RFantasia, AMontalenti, F +
Ge and Si Microcrystal Photodetectors with Enhanced Infrared Responsivity 02 - Intervento a convegno 2023 Bergamaschini R. +
In-Plane Nanowire Growth of Topological Crystalline Insulator Pb₁₋ₓSnₓTe 01 - Articolo su rivista 2023 Bergamaschini R.Montalenti F.Miglio L. +