Sfoglia per Autore
Electronic Properties of Perfect Dislocations in Germanium: A First-Principles Study
2025 Regazzoni, V; Rovaris, F; Marzegalli, A; Montalenti, F; Scalise, E
Deep learning for simulating the evolution of condensed matter systems at the continuum scale: methods and applications
2025 Lanzoni, D; Montalenti, F; Bergamaschini, R
Towards Hexagonal Germanium via Nanoindentation
2025 Marzegalli, A; Scalise, E; Bikerouin, M; Rovaris, F; Fantasia, A; Montalenti, F; Miglio, L; Mio, A; Bongiorno, C; Zaghloul, M; Maier-Kiener, V; Schaffar, G; Spirito, J; Corley-Wiciak, A; Capellini, G
Pressure-dependent kinetics of phase transitions in Si and Ge using machine learning interatomic potentials
2025 Rovaris, F; Fantasia, A; Lanzoni, D; Marzegalli, A; Montalenti, F; Scalise, E
Unraveling Atomistic Mechanisms of Pressure-Induced Phase Transitions in Silicon and Germanium
2025 Rovaris, F; Fantasia, A; Marzegalli, A; Montalenti, F; Scalise, E
Origin and Evolution of I3 defects in Hexagonal Silicon and Germanium
2025 Rovaris, F; Dellevoet, J; Marzegalli, A; Schouten, M; Fantasia, A; Tse, O; Baumeier, B; Verheijen, M; Montalenti, F; Miglio, L; Bakkers, E; Scalise, E
Electronic Properties of Extended Defects in Germanium: A First-Principles Study
2025 Regazzoni, V; Scalise, E; Marzegalli, A; Montalenti, F
Electronic Properties of Extended Defects in Germanium: A First-Principles Study
2025 Regazzoni, V; Scalise, E; Marzegalli, A; Rovaris, F; Montalenti, F
ML-enabled boosting of growth simulations
2025 Lanzoni, D; Fantasia, A; Rovaris, F; Bergamaschini, R; Montalenti, F
A Neural-Network surrogate for microstructure dynamics and crystal growth
2025 Lanzoni, D; Fantasia, A; Rigoni, M; Montalenti, F; Bergamaschini, R
Progressing strained layer growth by deep learning
2025 Lanzoni, D; Fantasia, A; Rovaris, F; Bergamaschini, R; Montalenti, F
Quantitative analysis of the prediction performance of a Convolutional Neural Network evaluating the surface elastic energy of a strained film
2025 Martín-Encinar, L; Lanzoni, D; Fantasia, A; Rovaris, F; Bergamaschini, R; Montalenti, F
Unraveling the atomic-scale pathways driving pressure-induced phase transitions in silicon
2025 Rovaris, F; Marzegalli, A; Montalenti, F; Scalise, E
Accelerating Crystal Growth Simulations by Convolutional Neural Networks
2024 Lanzoni, D; Martín-Encinar, L; Rovaris, F; Fantasia, A; Montalenti, F; Bergamaschini, R
Convolutional Recurrent Neural Networks for tackling materials dynamics at the mesoscale
2024 Lanzoni, D; Bergamaschini, R; Fantasia, A; Montalenti, F
The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
2024 Corley-Wiciak, C; Zöllner, M; Corley-Wiciak, A; Rovaris, F; Sfruncia, G; Nicotra, G; Zaitsev, I; Manganelli, C; Zatterin, E; Spirito, D; Marzegalli, A; Schulli, T; Von Den Driesch, N; Buca, D; Montalenti, F; Richter, C; Capellini, G
Unravelling Atomistic Mechanisms of Pressure-Induced Phase Transitions in Silicon Nanoindentation
2024 Rovaris, F; Marzegalli, A; Lanzoni, D; Fantasia, A; Ge, G; Montalenti, F; Scalise, E
Simulating morphological evolutions by Convolutional Neural Networks
2024 Lanzoni, D; Rovaris, F; Fantasia, A; Martı́n-Encinar, L; Montalenti, F; Bergamaschini, R
Accelerating simulations of strained-film growth by deep learning: Finite element method accuracy over long time scales
2024 Lanzoni, D; Rovaris, F; Martín-Encinar, L; Fantasia, A; Bergamaschini, R; Montalenti, F
Simulations of strained films evolution: extending accessible timescales through Convolutional Neural Networks
2024 Lanzoni, D; Rovaris, F; Martín-Encinar, L; Fantasia, A; Bergamaschini, R; Montalenti, F
Legenda icone
- file ad accesso aperto
- file disponibili sulla rete interna
- file disponibili agli utenti autorizzati
- file disponibili solo agli amministratori
- file sotto embargo
- nessun file disponibile