A key challenge in computer vision and deep learning is the definition of robust strategies for the detection of adversarial examples. In this work, we propose the adoption of ensemble approaches to leverage the effectiveness of multiple detectors in exploiting distinct properties of the input data. To this end, the ENsemble Adversarial Detector (ENAD) framework integrates scoring functions from state-of-the-art detectors based on Mahalanobis distance, Local Intrinsic Dimensionality, and One-Class Support Vector Machines, which process the hidden features of deep neural networks. ENAD is designed to ensure high standardization and reproducibility to the computational workflow. Extensive tests on benchmark datasets, models and adversarial attacks show that ENAD outperforms all competing methods in the large majority of settings. The improvement over the state-of-the-art and the intrinsic generality of the framework, which allows one to easily extend ENAD to include any set of detectors and integration strategies, set the foundations for the new area of ensemble adversarial detection.
Craighero, F., Angaroni, F., Stella, F., Damiani, C., Antoniotti, M., Graudenzi, A. (2023). Unity is strength: Improving the detection of adversarial examples with ensemble approaches. NEUROCOMPUTING, 554(14 October 2023) [10.1016/j.neucom.2023.126576].
Unity is strength: Improving the detection of adversarial examples with ensemble approaches
Craighero, FrancescoPrimo
;Stella, Fabio;Damiani, Chiara;Antoniotti, MarcoCo-ultimo
;Graudenzi, Alex
Co-ultimo
2023
Abstract
A key challenge in computer vision and deep learning is the definition of robust strategies for the detection of adversarial examples. In this work, we propose the adoption of ensemble approaches to leverage the effectiveness of multiple detectors in exploiting distinct properties of the input data. To this end, the ENsemble Adversarial Detector (ENAD) framework integrates scoring functions from state-of-the-art detectors based on Mahalanobis distance, Local Intrinsic Dimensionality, and One-Class Support Vector Machines, which process the hidden features of deep neural networks. ENAD is designed to ensure high standardization and reproducibility to the computational workflow. Extensive tests on benchmark datasets, models and adversarial attacks show that ENAD outperforms all competing methods in the large majority of settings. The improvement over the state-of-the-art and the intrinsic generality of the framework, which allows one to easily extend ENAD to include any set of detectors and integration strategies, set the foundations for the new area of ensemble adversarial detection.File | Dimensione | Formato | |
---|---|---|---|
Craighero-2023-Neurocomput-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.