Climate and pollution can lead to materials weathering. In this study, an innovative method is employed to evaluate the hazard for heritage stone substrates induced by the synergic effect of particulate matter (PM) and climate. In this respect, two hazard indicators for stone materials were determined: the time of wetness and the number of dissolution and crystallization cycles. The two indicators were computed by coupling experimental measurements of the PM deliquescence and crystallization relative humidity with climatic data. For the first time, these indicators were estimated based on the PM hygroscopic properties, considering its whole hysteresis loop and its consequent hydration level. The proposed method was applied to PM samples collected in the polluted Po Valley (Milan): the experimental measurements of both PM deliquescence and crystallization relative humidity were performed in an environmental-controlled chamber using an electrical conductivity method. The time of wetness and the number of dissolution and crystallization cycles were then calculated by coupling the PM deliquescence and crystallization relative humidity with climatic data of Milan over the last decade (2003–2013). Results point out that, depending on the seasons, different hazards were identified. In winter, high time of wetness (89 ± 11%) and low number of cycles (3 ± 3 cycles/month) were found. Conversely, summer was characterized by low time of wetness (20 ± 13%) and high number of cycles (11 ± 5 cycles/month). Interestingly, spring and fall resulted the most dangerous seasons for outdoor-exposed stones, since they presented both high time of wetness and number of cycles. Since the two indicators are calculated considering PM properties and climatic data, their values are site-specific, while the method used for their determination is of general application and it can be used for an efficient hazard assessment in a heritage climatology perspective.

Casati, M., Rovelli, G., D'Angelo, L., Perrone, M., Sangiorgi, G., Bolzacchini, E., et al. (2015). Experimental measurements of particulate matter deliquescence and crystallization relative humidity: Application in heritage climatology. AEROSOL AND AIR QUALITY RESEARCH, 15(2), 399-409 [10.4209/aaqr.2014.11.0289].

Experimental measurements of particulate matter deliquescence and crystallization relative humidity: Application in heritage climatology

CASATI, MARCO
;
ROVELLI, GRAZIA
Secondo
;
D'ANGELO, LUCA;PERRONE, MARIA GRAZIA;SANGIORGI, GIORGIA MAURA LUISA;BOLZACCHINI, EZIO
Penultimo
;
FERRERO, LUCA
Ultimo
2015

Abstract

Climate and pollution can lead to materials weathering. In this study, an innovative method is employed to evaluate the hazard for heritage stone substrates induced by the synergic effect of particulate matter (PM) and climate. In this respect, two hazard indicators for stone materials were determined: the time of wetness and the number of dissolution and crystallization cycles. The two indicators were computed by coupling experimental measurements of the PM deliquescence and crystallization relative humidity with climatic data. For the first time, these indicators were estimated based on the PM hygroscopic properties, considering its whole hysteresis loop and its consequent hydration level. The proposed method was applied to PM samples collected in the polluted Po Valley (Milan): the experimental measurements of both PM deliquescence and crystallization relative humidity were performed in an environmental-controlled chamber using an electrical conductivity method. The time of wetness and the number of dissolution and crystallization cycles were then calculated by coupling the PM deliquescence and crystallization relative humidity with climatic data of Milan over the last decade (2003–2013). Results point out that, depending on the seasons, different hazards were identified. In winter, high time of wetness (89 ± 11%) and low number of cycles (3 ± 3 cycles/month) were found. Conversely, summer was characterized by low time of wetness (20 ± 13%) and high number of cycles (11 ± 5 cycles/month). Interestingly, spring and fall resulted the most dangerous seasons for outdoor-exposed stones, since they presented both high time of wetness and number of cycles. Since the two indicators are calculated considering PM properties and climatic data, their values are site-specific, while the method used for their determination is of general application and it can be used for an efficient hazard assessment in a heritage climatology perspective.
Articolo in rivista - Articolo scientifico
CRH; Cultural heritage; DRH; Hygroscopicity; Particulate matter; Time of wetness; Environmental Chemistry; Pollution
English
2015
15
2
399
409
open
Casati, M., Rovelli, G., D'Angelo, L., Perrone, M., Sangiorgi, G., Bolzacchini, E., et al. (2015). Experimental measurements of particulate matter deliquescence and crystallization relative humidity: Application in heritage climatology. AEROSOL AND AIR QUALITY RESEARCH, 15(2), 399-409 [10.4209/aaqr.2014.11.0289].
File in questo prodotto:
File Dimensione Formato  
AAQR-2015-Casati-DRH, CRH and Cultural Heritage.pdf

accesso aperto

Descrizione: Articolo principale
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/89598
Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
Social impact