High dielectric constant (high-κ) oxides are foreseen replacement materials in innovative metal-oxide-semiconductor devices and memory capacitors. In particular, when considering nonvolatile memories, the charge-trapping concept appears to be a promising solution for flash-type floating gate replacement. Among the high-κ oxide properties to be considered, it is essential to study the compatibility towards the integration of these materials in a complementary metal-oxide-semiconductor process, in particular to control the stack integrity and any onset of diffusion phenomena upon thermal treatments at temperatures higher than 1000 °C. Here, we report on the results obtained from time-of-flight secondary ion mass spectrometry depth profiling of stacks on the basis of high-κ/SiO2/Si, integrating HfO 2, ZrO2, or DyScOx as charge-trapping layer or high-κ/SixNy/SiO2/Si integrating DyScOx as control (blocking) oxide. The high-κ oxides are all grown by atomic layer deposition. We will discuss the role of the different substrate/oxide coupling in preserving the stack and propose the better combinations in terms of thermal stability. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.
Lamperti, A., Cianci, E., Salicio, O., Lamagna, L., Spiga, S., Fanciulli, M. (2013). Thermal stability of high-kappa oxides on SiO2/Si or SixNy/SiO2/Si for charge-trapping nonvolatile memories. SURFACE AND INTERFACE ANALYSIS, 45(1), 390-393 [10.1002/sia.5053].
Thermal stability of high-kappa oxides on SiO2/Si or SixNy/SiO2/Si for charge-trapping nonvolatile memories
LAMAGNA, LUCA;FANCIULLI, MARCO
2013
Abstract
High dielectric constant (high-κ) oxides are foreseen replacement materials in innovative metal-oxide-semiconductor devices and memory capacitors. In particular, when considering nonvolatile memories, the charge-trapping concept appears to be a promising solution for flash-type floating gate replacement. Among the high-κ oxide properties to be considered, it is essential to study the compatibility towards the integration of these materials in a complementary metal-oxide-semiconductor process, in particular to control the stack integrity and any onset of diffusion phenomena upon thermal treatments at temperatures higher than 1000 °C. Here, we report on the results obtained from time-of-flight secondary ion mass spectrometry depth profiling of stacks on the basis of high-κ/SiO2/Si, integrating HfO 2, ZrO2, or DyScOx as charge-trapping layer or high-κ/SixNy/SiO2/Si integrating DyScOx as control (blocking) oxide. The high-κ oxides are all grown by atomic layer deposition. We will discuss the role of the different substrate/oxide coupling in preserving the stack and propose the better combinations in terms of thermal stability. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.