Given a strongly local Dirichlet space and λ⩾0, we introduce a new notion of λ-subharmonicity for Lloc1-functions, which we call localλ-shift defectivity, and which turns out to be equivalent to distributional λ-subharmonicity in the Riemannian case. We study the regularity of these functions on a new class of strongly local Dirichlet, so called locally smoothing spaces, which includes Riemannian manifolds (without any curvature assumptions), finite dimensional RCD spaces, Carnot groups, and Sierpinski gaskets. As a byproduct of this regularity theory, we obtain in this general framework a proof of a conjecture by Braverman, Milatovic, Shubin on the positivity of distributional Lq-solutions of Δf⩽f for complete Riemannian manifolds.

Guneysu, B., Pigola, S., Stollmann, P., Veronelli, G. (2024). A new notion of subharmonicity on locally smoothing spaces, and a conjecture by Braverman, Milatovic, Shubin. MATHEMATISCHE ANNALEN, 390(3), 4209-4243 [10.1007/s00208-024-02855-3].

A new notion of subharmonicity on locally smoothing spaces, and a conjecture by Braverman, Milatovic, Shubin

Pigola S.;Veronelli G.
2024

Abstract

Given a strongly local Dirichlet space and λ⩾0, we introduce a new notion of λ-subharmonicity for Lloc1-functions, which we call localλ-shift defectivity, and which turns out to be equivalent to distributional λ-subharmonicity in the Riemannian case. We study the regularity of these functions on a new class of strongly local Dirichlet, so called locally smoothing spaces, which includes Riemannian manifolds (without any curvature assumptions), finite dimensional RCD spaces, Carnot groups, and Sierpinski gaskets. As a byproduct of this regularity theory, we obtain in this general framework a proof of a conjecture by Braverman, Milatovic, Shubin on the positivity of distributional Lq-solutions of Δf⩽f for complete Riemannian manifolds.
Articolo in rivista - Articolo scientifico
locally smoothing Dirichlet spaces, BMS conjecture, subharmonic functions
English
9-apr-2024
2024
390
3
4209
4243
open
Guneysu, B., Pigola, S., Stollmann, P., Veronelli, G. (2024). A new notion of subharmonicity on locally smoothing spaces, and a conjecture by Braverman, Milatovic, Shubin. MATHEMATISCHE ANNALEN, 390(3), 4209-4243 [10.1007/s00208-024-02855-3].
File in questo prodotto:
File Dimensione Formato  
Gueneysu-2024-Arxiv-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 390.58 kB
Formato Adobe PDF
390.58 kB Adobe PDF Visualizza/Apri
Gueneysu-2024-MathAnn-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 488.83 kB
Formato Adobe PDF
488.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/476101
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact