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A NEW NOTION OF SUBHARMONICITY ON LOCALLY SMOOTHING

SPACES, AND A CONJECTURE BY BRAVERMAN, MILATOVIC, SHUBIN

BATU GÜNEYSU, STEFANO PIGOLA, PETER STOLLMANN, AND GIONA VERONELLI

Abstract. Given a strongly local Dirichlet space and λ ě 0, we introduce a new notion of
λ–subharmonicity for L1

loc
–functions, which we call local λ–shift defectivity, and which turns

out to be equivalent to distributional λ–subharmonicity in the Riemannian case. We study
the regularity of these functions on a new class of strongly local Dirichlet, so called locally
smoothing spaces, which includes Riemannian manifolds (without any curvature assumptions),
finite dimensional RCD spaces, Carnot groups, and Sierpinski gaskets. As a byproduct of this
regularity theory, we obtain in this general framework a proof of a conjecture by Braverman,
Milatovic, Shubin on the positivity of distributional Lq-solutions of ∆f ď f for complete
Riemannian manifolds.

1. Introduction

Given q P r1,8s one says that a connected Riemannian manifold X is Lq-positivity preserving,
if for every f P LqpXq the following implication holds true:

∆f ď f in the sense of distributions ñ f is nonnegative. (1.1)

Here ∆ “ ř
ij g

ijBiBj is the negative-definite Laplace-Beltrami operator. The importance and
subtlety of this property is reflected at least by the following observations:

‚ if X is L2-positivity preserving, then ´∆ (defined on C8
c pXq) is essentially self-adjoint

(in L2pXqq [12],
‚ X is stochastically complete, if and only if X is L8-positivity preserving [8],
‚ there exist complete X’s which are not L1-positivity preserving [8],
‚ a conjecture by Braverman-Milatovic-Shubin (BMS) from 2002 [12] states that if X is

complete, then X is L2-positivity preserving.

The BMS-conjecture was formulated in an L2-setting as the authors were interested in essential
self-adjointness problems and was based on the classical fact that ´∆ is essentially self-adjoint,
if X is complete. More generally, one can ask, whether completeness implies Lq-positivity
preservation for all q P p1,8q.
Let us point out that the main technical problem in proving such a conjecture is the possible
lack of regularity of f above. For if f was in W 1,2

loc
pXq, then one can integrate by parts once to

see that the inequality in (1.1) is equivalent to
ż

X

p∇f,∇φq `
ż

X

fφ ě 0 for all 0 ď φ P W 1,2
c pXq, (1.2)

in other words, f is weakly 1-superharmonic. If f was even in W 1,2
0

pXq, then it would be easy
to show that (1.2) implies f ě 0 using first order cut-off functions in the sense of [33], the
existence of which is equivalent to the completeness of X.

On another note, it is straightforward to see that, if X admits a sequence of Laplacian cut-off
functions in the sense of [33], then X is Lq-positivity preserving for all q P p1,8q. However, in
general, this procedure (which relies on two integrations by parts [34, 33]) requires [7] a lower
control of the Ricci curvature in addition to the completeness of X.
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It is well-known that a convenient abstract setting to formulate an inequality of the form (1.2)
is provided by a (regular and symmetric) Dirichlet space pX,m, E ,F pXqq [30, 49, 31, 15].
Indeed, given a nonnegative real number λ, one has a natural notion of weakly λ-subharmonic
and weakly λ-superharmonic functions at hand [62], where the role of W 1,2

loc
pXq and W 1,2

c pXq
is, respectively, played by FlocpXq and FcpXq, with F pXq the domain of definition of the
underlying quadratic form E . Note that in the Riemannian case, one has

F pXq “ W
1,2
0

pXq, E pf, gq “
ż

X

p∇f,∇gq,

the usual energy form.

In this paper, we will focus on strongly local Dirichlet spaces. The purpose of this paper is to
address the following questions:

‚ How can one define λ-subharmonicity (resp. λ-superharmonicity) for L1

loc
–functions on

such spaces, in a way that the definition is consistent with the distrubutional one in the
Riemannian case? Note that this will lead naturally to the notion of an Lq-positivity
preserving strongly local Dirichlet space.

‚ What is the regularity of λ-subharmonic L1

loc
–functions on strongly local Dirichlet

spaces?
‚ Which class of strongly local Dirichlet spaces is Lq-positivity preserving?

Addressing the first question, note first that on a general strongly local Dirichlet space there
is no natural substitute for test functions. To deal with this problem, for every open U Ă X

let PU
t denote the semigroup of pU,m, E ,F pUqq with Dirichlet type boundary conditions. We

define f P L1

loc
pX,mq to be locally λ-shift defective, if for all open relatively compact sets U Ă X

there exists a weakly λ-harmonic function g P CbpUq on U such that

e´tλPU
t pf |U ´ gq ě f |U ´ g for all t ą 0.

This new notion, which can be considered as a localized and unsigned variant of the clas-
sical concept of defective functions, turns out on Riemannian manifolds to be equivalent to
λ-subharmonicity in the distributional sense (cf. Proposition 4.3).

To proceed further with the theory, we introduce a new class of strongly local Dirichlet spaces,
which we call locally smoothing spaces. This assumption is entirely local, in the sense that all
Riemannian manifolds (without any curvature assumptions) are locally smoothing and all open
subsets of locally smoothing spaces again have this property. In addition, we show that all finite
dimensional RCD–spaces, all Carnot groups and the unbounded Sierpinski gasket belongs to
this category of spaces.

In order to establish a regularity theory for locally λ–shift defective functions, we assume
throughout that pX,m, E ,F pXqq is locally smoothing. A central technical step, more or less
intrinsic in the definition, is an approximation result, Lemma 4.7, which reveals that locally λ–
shift defective functions always have upper semicontinuous representatives. Furthermore, Theo-
rem 4.8 states that every locally λ–shift defective function in FlocpXq is weakly λ-subharmonic,
and conversely, that every weakly λ-subharmonic which is locally bounded above is locally λ–
shift defective (noting that on many spaces, every weakly λ-subharmonic is automatically locally
bounded above; cf. Remark 4.9). Our main regularity result, Theorem 5.4, states that for every

locally λ–shift defective function f one has pf ´ cqq{2
` P FlocpXq for all c ě 0, q P p1,8q, which

generalizes earlier results from [62]. The proof of this result is based on a Kato-Brezis type
result, Theorem 5.3, which states that the pointwise maximum of two locally λ-shift defective
functions has again this property. The proof of our Kato-Brezis theorem in turn relies on a
probabilistic characterization of locally λ–shift defective functions, Proposition 5.1, which is
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based on a probabilistic characterization of locally bounded weakly λ-subharmonic functions
from [17]. We also obtain a strong maximum principle, Theorem 6.1, which does not need
an FlocpXq or a continuity assumption. We note in passing that these results entail that if
f is a weakly λ-harmonic function on an RCD˚pK,Nq space with λf P L

q
loc

pX,mq for some
q ě maxpN, 4q, then the square |∇f |2˚ of the minimal relaxed slope of f admits on every open
relatively compact subset an upper semicontinuous representative which is subject to the strong
maximum principle (cf. Example 6.2). Note that such a result is rather delicate, as on Alexan-
drov spaces it may happen that |∇f |2˚ need not be continuous [53], which follows essentially
from the results obtained in [24, 51].

The regularity of harmonic and subharmonic functions is a central theme in analysis and beyond,
ever since Weyl’s seminal work [64]. We refer to [61] for a discussion of the latter paper and
its impact, and to the textbooks [28, 38] for a general PDE point of view. It is also a classic
fact that harmonicity properties come in semigroup resp. probabilistic flavors, see Kakutani’s
and Doob’s fundamental papers [40], [25] for the Euclidean space. It is no surprise that this
aspect is very well captured within the framework of Dirichlet spaces, as those are in a 1-1
correspondence with Hunt processes [30, 49, 31, 15]. An important point of the intrigue is that
different notions of (sub-)harmonicity require different a-priori regularity assumptions, while
the theory from this paper is based on only an L1

loc
–assumption. In this context, we note that

recently a distributional notion of λ-subharmonic functions for finite dimensional RCD–spaces
has been given in [53] (see in particular also [32] for very interesting equivalent characterizations
of this notion under additional local regularity assumptions). The theory from [53, 32] uses the
fact that a natural space of test functions is available on RCD-spaces. However, when applied
to a complete Riemannian manifold with Ricci curvature bounded from below, this class of test
functions is larger than smooth compactly supported functions, so that our definition of the
distributional inequality ∆f ď λf seems to be slightly more general even in this setting.

Finally, based on our notion of locally λ-shift excessive functions, we define Lq-positivity pre-
serving strongly local Dirichlet spaces, and prove the Lq–variant, q P p1,8q, of the BMS con-
jecture for irreducible and intrinsically complete locally smoothing spaces. Our proof combines
the Lq-Liouville property from [62] with our main regularity result, and in particular, does not
rely on Laplacian cut-off functions, which neither make sense nor are available in this generality
(note, however, that Laplacian cut-off functions exist in principle on finite dimensional RCD-
spaces; cf. Lemma 3.1 in [50]). We remark also that recently it has been shown in [54] that in
the Riemannian case, the Lq–variant of the BMS conjecture remains true, if one removes from
a complete Riemannian manifold a possibly singular set with Hausdorff co-dimension strictly
larger than 2q{pq ´ 1q, the threshold value 2q{pq ´ 1q being sharp.

The present paper is organized as follows: in Section 2 standard notions and notation concern-
ing local Dirichlet spaces, their associated operators and heat semigroups and the corresponding
diffusion processes is recorded. In Section 3 we introduce locally smoothing spaces and list a
number of classes of strongly local Dirichlet spaces that fall into this framework. In Section 4 we
first review some important auxiliary results on weakly λ-subharmonic and λ-defective (signed)
functions. We then give an equivalent characterization of distributionally λ-subharmonic func-
tions on Riemannian manifolds in terms of the local heat semigroups, which motivates our
notion of locally λ–shift defective functions, introduced next. We go on to prove that on locally
smoothing spaces, the concepts ‘weak λ-subharmonicity’ and ‘local λ-shift defectivity’ are con-
sistent under natural a priori regularity assumptions. Section 5 contains the aforementioned
probabilistic characterization of locally λ-shift defective functions, the Kato-Brezis theorem,
and the regularity Theorem 5.4. Section 6 is devoted to the maximum principle. Finally,
Section 7 contains a formulation and proof of the BMS-conjecture in our general framework.
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2. Strongly local Dirichlet spaces

In the sequel we understand our function spaces over R. We follow standard notation and
refer to [31, 49] for textbooks on Dirichlet forms and [23] for a recent article with an in depth
treatment of Dirichlet forms.

Definition 2.1. A strongly local Dirichlet space is a quadruple pX,m, E ,F pXqq where X is
a locally compact, separable, metrizable space, equipped with a Radon measure m having full
support, and E is a closed, symmetric, nonnegative bilinear form in L2pX,mq with dense domain
of definition F pXq Ă L2pX,mq, such that

‚ (Markovian property) for all contractions T : R Ñ R with T p0q “ 0 and all f P F pXq
one has T ˝ f P F pXq with

E pT ˝ f, T ˝ fq ď E pf, fq,
‚ (Regularity) The space F pXq X CcpXq is dense in CcpXq with respect to }‚}8 and in

F pXq with respect to the scalar product

E1pu, vq :“ E pu, vq ` xu, vy ,
where

xu, vy “
ż

X

uvdm,

the scalar product in L2pX,mq, a notation we will use, more generally, as long as uv P
L1pX,mq.

‚ (Strong locality) For all u, v P F pXq such that u is constant on the support of v:

E pu, vq “ 0.

We fix a strongly local Dirichlet space pX,m, E ,F pXqq.
For open subsets U, V Ă X we use the notation U Ť V to indicate that U is a compact subset
of X with U Ă V .

The regularity property implies [31] that F pXq X L8pX,mq is an algebra, and that for each
U1 Ť U2 Ť X there exists ψ P F pXq X CcpXq with ψ “ 1 on U1 and supppψq Ă U2. From
regularity it also follows that there is a Choquet capacity [31] Capp¨q on X such that for all
open U Ă X one has

CappUq “ inftE1pfq | f P F pXq, 1U ď fu.
One has m ! Cap on Borel sets, and properties that hold away from a set of zero capacity are
said to hold quasi everywhere (q.e). A function f : X Ñ R is called quasi-continuous, if for all
ǫ ą 0 there exists an open set Uǫ Ă X with CappUǫq ď ǫ such that f |XzUǫ

is continuous. Every
element of F pXq has a quasi-continuous representative and two such representatives agree q.e.,
[31]. Following [62], see [31] as well, let

FlocpXq :“
 
f P L2

loc
pX,mq

ˇ̌
for all U Ť X there exists h P F pXq with f “ h on U

(

“
 
f P L2

loc
pX,mq

ˇ̌
for all φ P F pXq X CcpXq one has φf P F pXq

(
,
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with the above equality easily checked by regularity. By what we mentioned earlier, one has
1 P FlocpXq. Note that there are different ways of introducing FlocpXq, see [45, 29] and the
discussion in [23]. We also note that thanks to locality, E has a canonical extension to a bilinear
map FlocpXqˆFcpXq Ñ R, where FcpXq denotes the elements of F with compact m-support,
given by E pf, φq :“ E ph, φq, where h P F pXq is such that h “ f in an open neighbourhood of
the m-support of φ.

Every element of FlocpXq has a quasi-uniquely determined quasi-continuous representative,
which we will always denote by the same symbol again.

Strong locality implies the formula of Beurling-Deny and Le Jan

E pf, gq “
ż

X

dΓpf, gq for all f, g P F pXq,

where the symmetric, nonnegative, bilinear map

Γ : F pXq ˆ F pXq ÝÑ tsigned finite Radon measures on Xu,
the so called energy measure of pX,m, E ,F pXqq, is defined through polarization by
ż

X

φ dΓpf, fq “ E pf, φfq ´ 1

2
E pf 2, φq for all f P F pXq X L8pX,mq, φ P F pXq X CcpXq.

Whenever it makes sense, we are going to use the standard notation E pfq :“ E pf, fq and
Γpfq :“ Γpf, fq. The energy measure has the following properties:

‚ Γ does not charge sets of zero capacity [62, 31],
‚ Γ is strongly local, in the sense that for all U Ă X open, all u P F pXq such that u is

constant on U , and all v P F pXq, one has 1UdΓpu, vq “ 0, cf. [62],
‚ Γ satisfies the Leibniz rule [62], in the sense that for all

dΓpuv, wq “ udΓpv, wq ` vdΓpu, wq for all u, v P F pXq X L8pX,mq, w P F pXq,
‚ Γ satisfies the chain rule [62], in the sense that

dΓpη ˝ u, vq “ pη1 ˝ uqdΓpu, vq for all u, v P F pXq,
where η is any function which is C1 with a bounded derivative, on an interval which
contains the m-essential image of u.

‚ Γ satisfies the truncation property [62], in the sense that

dΓpu ^ v, wq “ 1tuěvudΓpu, wq ` 1tuăvudΓpv, wq for all u, v, w P F pXq
‚ Γ satisfies the Cauchy-Schwarz inequality

ż

X

fgdΓpv, wq ď
dż

X

f 2dΓpvq
dż

X

g2dΓpwq for all v, w P F pXq, f, g P F pXq X L8pX,mq.

(2.1)

Again, using the locality of Γ, the energy measure extends to a nonnegative definite symmetric
bilinear form

Γ : FlocpXq ˆ FlocpXq ÝÑ tsigned Radon measures on Xu,
namely, given f1, f2 P FlocpXq and U Ť X one sets

1UdΓpf1, f2q :“ 1UdΓph1, h2q,
where h1, h2 P F pXq are chosen such that fj “ hj on U . All the above listed properties of
the energy measure remain to hold, if one replaces F pXq with FlocpXq and L8pX,mq with
L8
loc

pX,mq accordingly in the statements.
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For future reference, we also note:

Lemma 2.2. Let 0 ď w P L8
loc

pX,mq and assume there exists a sequence pwkqkPN in FlocpXq
such that wk Ñ w in L2

loc
pX,mq and

sup
k

ż

X

dΓpwkq ă 8.

Then w P FlocpXq.
Proof. It follows easily from the Markovian property that 0 ď v P L8

loc
pX,mq is in FlocpXq,

if and only if for all φ P CcpXq X F pXq one has φ ^ v P F pXq. Thus, fixing an arbitrary
φ P CcpXq X F pXq, we have φ ^ wk P F pXq for all k, and it remains to show φ ^ w P F pXq.
To this end, we note φ ^ wk Ñ φ ^ w in L2pX,mq. Moreover, by the truncation property,

E pwk ^ φq “
ż

tφăwku

dΓpφq `
ż

tφěwku

dΓpwkq ď E pφq ` sup
k

ż

X

dΓpwkq.

It follows that pφ ^ wkqkPN is bounded in the Hilbert space pF pXq, E1q. Weak compactness
implies that it has a weakly convergent subsequence. The limit must agree with φ ^ w, giving
φ ^ w P F pXq. �

We use the notation

Eλpu, vq :“ E pu, vq ` λ xu, vy ,
whenever it makes sense, and recall that a function f P FlocpXq is called

‚ weakly λ–subharmonic, if

Eλpf, φq ď 0 for all 0 ď φ P FcpXq. (2.2)

‚ weakly λ–superharmonic, if ´f is weakly λ–subharmonic,
‚ weakly λ–harmonic, if f is weakly λ–subharmonic and weakly λ–superharmonic.

If λ “ 0, one simply talks about weak (sub-/super-) harmonicity.

Lemma 2.3. Assume λ ě 0 and that f1, f2 P FlocpXq are weakly λ-subharmonic. Then f1 _f2
is weakly λ-subharmonic.

Proof. In view of f1 _ f2 P FlocpXq, this statement follows from Theorem 6.4 (iii) in [46]. �

Let H ě 0 denote the nonnegative self-adjoint operator in L2pX,mq induced by E , [42, 31],
and let Pt :“ e´tH for t ě 0 (defined by the functional calculus). We call P “ pPt; t ě 0q
the associated (self-adjoint) heat semigroup in L2pX,mq. The heat semigroup extends to a
positivity preserving Markovian contraction semigroup in LqpXq for all q P r1,8s, which is
consistent in q (therefore we use the same symbol for the formally different semigroups on the
different spaces), strongly continuous for q ă 8 and weak-˚-continuous for q “ 8.
Let BpXq and BpX,mq denote, respectively, the space of Borel functions on X and the space
of m-equivalences of Borel functions on X. We stretch the notation further by setting

Ptfpxq :“ lim
nÑ8

Ptpf _ p´nqqpxq P r´8, 0s for every 0 ě f P BpX,mq,

and

Ptfpxq :“ lim
nÑ8

Ptpf ^ nqpxq P r0,8s for every 0 ď f P BpX,mq.

Let 8X R X be a cemetery point. We equip the space W pXq of continuous paths

r0,8q ÝÑ X̂ :“ X Y t8Xu
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taking values in the Alexandrov compactification X̂ of X with the σ-algebra and the filtration
which is induced by the coordinate process

X : r0,8q ˆ W pXq ÝÑ X̂,

with the usual notation Xs :“ Xps, ‚q. Let

θs : W pXq ÝÑ W pXq, γ ÞÝÑ γps ` ‚q
denote the shift operator, and, given an open subset V Ă X, let

τV : W pXq ÝÑ r0,8s, τV pγq :“ infts ě 0 : Xspγq P XzV u.
It follows from a by now classical result of Fukushima [30] that there exists a family pPxqxPX of
diffusion measures on W pXq such that for every f P BpXq X L2pX,mq one has

Ptfpxq “ E
xrfpXtqs :“

ż
fpXtqdPx for all t ą 0, m-a.e. x P X, (2.3)

where fp8Xq :“ 0. See also [49] for the quasi-regular case.

Let U Ă X be an open subset. Whenever convenient, we identify functions (and m´equivalence
classes) that vanish outside U with their restriction to U . We get the strongly local Dirichlet
space pU,m, E ,F pUqq by setting

F pUq “ CcpUq X F pXqE1 “
 
f P F pXq

ˇ̌
f “ 0 q.e in XzU

(
.

The induced operator, semigroup and diffusion measures are denoted by HU , PU , pPx
UqxPX ,

respectively. It is well-known that for all open U Ă V Ă X one has

PU
t f ď P V

t f for all t ą 0, 0 ď f P BpX,mq.
Moreover, from monotone convergence theorems for forms, [42, 58], it easily follows that

PUn
t f Ò P V

t f as n Ñ 8, for all t ą 0, 0 ď f P BpX,mq,
whenever pUnqnPN is a sequence of open subsets of V with Un Ò V .

3. Locally smoothing spaces

We collect some classical notions, slightly adjusted to our situation, in:

Definition 3.1. We say that [the semigroup of] pX,m, E ,F pXqq is

‚ ultracontractive, if

Pt : L
1pX,mq ÝÑ L8pX,mq for all t ą 0, (3.1)

by which we mean that PtpL1pX,mqq Ă L8pX,mq (which in turn gives continuity of the
induced operator by the closed graph theorem),

‚ doubly Feller, if one has the mapping properties

Pt : C0pXq ÝÑ C0pXq, for all t ě 0, (3.2)

and
Pt : L

8pX,mq ÝÑ CpXq for all t ą 0,

and in addition

lim
tÑ0`

Ptfpxq “ fpxq for all f P C0pXq, x P X. (3.3)

Here C0pXq denotes the family of continuous functions vanishing at infinity.
‚ irreducible, if every f P FlocpXq with E pfq “ 0 (which is equivalent to Γpfq “ 0) is

constant.
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We say that [the generator of] pX,m, E ,F pXqq
‚ has a spectral gap, if H ą 0, i.e., infpσpHqq ą 0.

‚ has purely discrete spectrum, if the spectrum σpHq of H is purely discrete, that is,
consists of isolated eigenvalues having a finite multiplicity.

A few simple remarks are in order:

Remark 3.2. 1. Assume (3.2) and (3.3). Then, by Exercise I-(9.13), p. 51 in [9] or Lemma
1.4 in [10], one gets that Pt : C0pXq Ñ C0pXq, t ą 0, is strongly continuous. In particular,
then one also has the mapping property

pH ` λq´1 : C0pXq ÝÑ C0pXq, for all λ ą 0,

which follows from the representation

pH ` λq´1f “
ż 8

0

e´λtPtfdt, f P C0pXq, (3.4)

where the improper Riemannian integral converges in the uniform norm.

2. If pX,m, E ,F pXqq has purely discrete spectrum, then pX,m, E ,F pXqq has a spectral gap,
if and only if KerpHq “ t0u.
3. The space pX,m, E ,F pXqq is irreducible [62], if and only if for every Borel set Y Ă X with
Ptp1Y fq “ 1Y Ptf for all t ą 0, f P L2pX,mq one has either mpY q “ 0 or mpXzY q “ 0. This is
equivalent to the following positivity improving property: for all t ą 0, 0 ď f P L2pX,mqzt0u
one has Ptf ą 0.

4. If pX,m, E ,F pXqq is irreducible, then for all 0 ď f P L2pX,mqzt0u, λ ą 0 one has
pH ` λq´1f ą 0. This follows from the previous remark and formula (3.4), which converges for
f P L2pX,mq in the L2–Bochner sense.

5. By self-adjointness, (3.1) is equivalent to

Pt : L
1pX,mq ÝÑ L2pX,mq for all t ą 0,

in particular, by the spectral theorem and the semigroup property one then has

Pt : L
1pX,mq ÝÑ

č

nPN

DompHnq for all t ą 0.

We record that in the doubly Feller case, the underlying diffusion is pointwise determined by
the semigroup:

Lemma 3.3. Assume that pX,m, E ,F pXqq doubly Feller. Then there exists a uniquely de-
termined family of diffusion measures pPxqxPX on W pXq, such that for every bounded function
f : X Ñ R, every t ą 0, and every x P X, one has

Ptfpxq “ E
xrfpXtqs. (3.5)

Moreover, one has the absolute continuity condition

pXtq˚P
x ! m for all t ą 0, x P X,

in particular, for all q P r1,8s, f P LqpX,mq, t ą 0, the function Ptf has a pointwise well-
defined m´representative, given by the RHS of (3.5).

Proof. This result is standard, except possibly the fact that P
x is concentrated on continuous

paths for every x P X (noting that the standard theory of Feller processes only produces
measures that are concentrated on cadlag paths). This above pointwise concentration follows
from observing that the strong locality of E implies this property for m-a.e. x (in fact, q.e.
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x P X), and then the doubly Feller property together with Theorem 4.5.4(iii) in [31] allows to
conclude the pointwise result. �

Definition 3.4. pX,m, E ,F pXqq is called locally smoothing, if for all U Ť X it holds that

‚ pU,m, E ,F pUqq is ultracontractive,
‚ there exists U 1 Ă X open with U Ă U 1 and U 1zU ‰ H such that pU 1,m, E ,F pU 1qq is

doubly Feller and irreducible.

Note that if pX,m, E ,F pXqq is locally smoothing, then so is pU,m, E ,F pUqq for every open
U Ă X.

Locally smoothing spaces have the following self-improvement properties:

Proposition 3.5. Assume that pX,m, E ,F pXqq is locally smoothing, and let U Ť X.
a) For all t ą 0 one has

PU
t : L1pU,mq ÝÑ CbpUq. (3.6)

b) The generator of pU,m, E ,F pUqq has purely discrete spectrum and a spectral gap.

Proof. (a) This statement is well-known in various forms (cf. [16, 18]). We give a detailed proof
for the convenience of the reader: by the semigroup property, we only have to show that PU

t f is
continuous for all f P L8pU,mq. To see this, pick U Ă U 1 open with pU 1,m, E ,F pU 1qq doubly
Feller. We first record the standard fact that for all t ą 0, m-a.e. x P U one has

PU
t fpxq “ E

x
U 1r1ttăτU ufpXtqs,

and we consider the LHS to be defined pointwise by the RHS. It follows that for all 0 ă s ă t

one has, by a standard calculation that relies on the Markov property (cf. p. 18 in [56]),

PU
t fpxq ´

`
PU 1

s PU
t´sf

˘
pxq “ E

x
U 1

“
1tsěτU uθsp1tt´săτU ufpXt´sqq

‰
for all x P U.

Thus, ˇ̌
ˇPU

t fpxq ´
`
PU 1

s PU
t´sf

˘
pxq

ˇ̌
ˇ ď }f}8 P

x
U 1ps ě τU q.

Since PU 1

s PU
t´sf is continuous, it remains to show that Px

U 1ps ě τUq converges locally uniformly
in x to 0 as s Ñ 0. This, however, is a well-known consequence of the Feller property (3.2) of
pU 1,m, E ,F pU 1qq (cf. Lemma 2.5 in [19]).

b) Pick U Ă U 1 open with U 1zU ‰ H such that pU 1,m, E ,F pU 1qq is irreducible. Since PU
t maps

to L8pU,mq and mpUq ă 8, PU
t is Hilbert-Schmidt for every t ą 0, see [22], 11.2, 11.16 and the

discussion in [59], p.418; thus HU has purely discrete spectrum. Assume ϕU P KerpHUq. We
are going to show ϕU “ 0. As we have ϕU P F pUq Ă F pU 1q with E pϕUq “ 0, it follows from
the irreducibility of pU 1,m, E ,F pU 1qq that ϕU is constant m-a.e. on U 1. On the other hand,
mpU 1zUq ą 0 and we have ϕU “ 0 m-a.e. in U 1zU , thus ϕU “ 0.

�

Let us give some examples of spaces that are locally smoothing:

Example 3.6. Arbitrary Riemannian manifolds: Let X be a connected Riemannian man-
ifold with its Levi-Civita connection ∇ and its Riemannian volume measure m. Then with

E pf1, f2q :“
ż

X

p∇f1,∇f2qdm (3.7)

the usual energy form with domain of definition F pXq “ W
1,2
0

pXq, the triple pX,m, E ,F pXqq
is well-known to be a strongly local Dirichlet space. In this case one has FlocpXq “ W

1,2
loc

pXq,
and F pUq “ W

1,2
0

pUq for all open U Ă X, so that the restricted strongly local Dirichlet spaces
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correspond to Dirichlet boundary conditions. Moreover, pX,m, E ,F pXqq is locally smoothing:
indeed, given U Ť X, one has (3.1) since for the heat kernels one has

pUpt, x, yq ď ppt, x, yq,
and ppt, x, yq is jointly smooth in px, yq (in fact in pt, x, yq). Moreover, picking U 1 Ť X connected
and with smooth boundary such that U Ă U 1 and U 1zU ‰ H one has that pU 1,m, E ,F pU 1qq
is doubly Feller, because pU

1pt, x, yq is smooth, and PU 1

t f extends continously to zero on BU 1

because of Dirichlet boundary conditions (the strong continuity of PU 1

t : C0pU 1q Ñ C0pU 1q is
automatic in this case). Moreover, pU 1,m, E ,F pU 1qq is irreducible, because the connectedness
of U 1 implies that pU

1pt, x, yq ą 0.

Example 3.7. RCD˚–spaces: Consider a complete, locally compact, separable metric mea-
sure space pX, dq, and a Radon measure m on X with full support that gives a finite mass to
open balls; a function g P L2pX,mq is called a relaxed slope of f P L2pX,mq, if there exists
g̃ P L2pX,mq and a sequence of Lipschitz functions fn P L2pX,mq such that

‚ fn Ñ f in L2pX,mq and Lippfnq Ñ g̃ weakly in L2pX,mq
‚ g̃ ď g,

where

Lipphqpxq :“ lim sup
yÑx

|hpxq ´ hpyq|
dpx, yq

denotes the local Lipschitz constant of a local Lipschitz function h : X Ñ R. Such a g is called
the minimal relaxed slope of f , if its L2-norm is minimal amongst all relaxed slopes of f , and
then one sets |∇f |˚ :“ g. We refer the reader to [1] for equivalent definitions of |∇f |˚.
With

F pXq :“ tf P L2pX,mq : f has a relaxed slopeu,
the Cheeger form E is the densely defined functional on L2pX,mq given by

E pfq :“
ż

X

|∇f |2˚dm, f P F pXq,

and pX, d,mq is called infinitesimally Hilbertian, if E is a quadratic form. In this case, given
f, g P F pXq the limit

p∇f,∇gq :“ lim
ǫÑ0`

1

2ǫ

`
|∇pf ` ǫgq|2˚ ´ |∇f |2˚

˘

exists in L1pX,mq, and pX,m, E ,F pXqq becomes a strongly local Dirichlet space, with

dΓpf, gq “ p∇f,∇gqdm for all f, g P F pXq.
In the Hilbertian case, given N ě 1, K P R, one calls pX, d,mq an RCD˚pK,Nq-space (see [27]
and the references therein), if

‚ every f P F pXq with |∇f |˚ ď 1 has a 1-Lipschitz m-representative,
‚ one has ż

X

e´dpx0,xq2dmpxq ă 8 for all x0 P X, c ą 0,

‚ for all f P DompHq with Hf P F pXq and all 0 ď g P DompHq X L8pX,mq with
Hg P L8pX,mq one has the Bochner inequality

´1

2

ż

X

pHgq|∇f |2˚dm `
ż

X

g ¨ p∇pHfq,∇fqdm ě K

ż

X

g|∇f |2˚dm ` 1

N

ż

X

g ¨ pHfq2dm.
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Here H denotes the nonnegative self-adjoint operator in L2pX,mq associated with pE ,F pXqq.
If pX, d,mq is an RCD˚pK,Nq–space, then this space satisfies the local volume doubling as-
sumption [27, 63], and the heat kernel of Pt satisfies the two-sided local Li-Yau heat kernel
bounds [37]. It follows from Proposition A.1 in the appendix that then pX,m, E ,F pXqq is
locally smoothing.
Note that if pX, d,mq is induced from a complete connected Riemannian manifold X, then the
Cheeger form is equal to the energy form, and the RCD˚pK,Nq-assumption is equivalent to
dimpXq ď N and Ric ě K.

Example 3.8. Carnot groups: Assume G is a simply connected Lie group with Lie algebra
g, such that there exists N ě 1 and a stratification

g “ V1 ‘ ¨ ¨ ¨ ‘ VN

such that rVi,Vjs “ Vi`j (noting that such stratification is essentially unique [47]), where
Vk :“ t0u for k ą N . In this situation, G is nilpotent and called a Carnot group. Let m denote
the Haar measure on G, and let V1, . . . , Vd denote a basis of V1, considered as left invariant
vector fields on G. Then the closure pE ,F pGqq in L2pG,mq of the symmetric bilinear form

C8
c pGq ˆ C8

c pGq Q pf, gq ÞÝÑ
ż

G

dÿ

i,j“1

pVifqpVjgqdm P R

turns pX,m, E ,F pXqq into a strongly local Dirichlet space with

dΓpf, gq “
dÿ

i,j“1

pVifqpVjgqdm for all f, g P F pGq.

The Carnot-Caratheodory distance d on G is complete and induces the original topology on G
[26], and the metric measure space pG, d,mq becomes doubling and Ahlfors regular, mpBpx, rqq „
rQ, where

Q :“
Nÿ

i“1

i dimpViq

denotes the homogeneous dimension. Furthermore, the heat kernel of Pt satisfies the two-sided
Gaussian estimate, as shown in [11]: there exist c1, c2, c3, c4 ą 0 such that for all t ą 0, x, y P G
one has

c1t
´Q{2e´c2

dpx,yq2

t ď ppt, x, yq ď c3t
´Q{2e´c4

dpx,yq2

t .

It follows from Proposition A.1 in the appendix that pG,m, E ,F pGqq is locally smoothing.
Note that in general pG, d,mq is not an RCD˚-space. In fact, it has been shown in [39] that for
the Heisenberg group H2m`1 there exists no pair pN,Kq such that pH2m`1, d,mq becomes an
RCD˚pK,Nq space.

Example 3.9. Unbounded Sierpinski gasket: Let X Ă R
2 be the unbounded Sierpinski

gasket, with its usual graph approximation pXnq Ă X. Then with α :“ logp3q{ logp2q the
Hausdorff dimension of X and m the α-dimensional Hausdorff measure on X, the symmetric
bilinear form

E pf, gq :“ lim
nÑ8

ˆ
5

3

˙n ÿ

x,yPXn,x„y

pfpxq ´ fpyqq2, F pXq :“ tf P L2pX,mq : E pfq ă 8u,

turns pX,m, E ,F pXqq into a strongly local Dirichlet space. This follows from combining the
results in [4] with Proposition A.2.
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4. A new notion of subharmonic functions

We start this section with the following classical definition, see [31, 49]:

Definition 4.1. Given λ ě 0, h P L1

loc
pX,mq is called

(i) λ–defective, if h ď 0 and e´λtPth ě h for all t ą 0,
(ii) λ–excessive, if ´h is λ–defective.

The following characterization of subharmonic functions of fixed sign is well-known, if one
considers functions in FlocpXq, see [31], Theorem 2.2.1, [49], Proposition III.1.2. The main
point of the result below is that we can drop this local regularity assumption. For λ “ 0, it
has already been recorded by Sturm in [62], Lemma 3, that this is possible. Note, however,
that the methods from therein do not generalize directly to the λ ą 0 case, roughly speaking,
as they rely on the strong locality of E (which fails for Eλ).

Theorem 4.2. Let h P L1

loc
pX,mq, and let λ ě 0.

(a) Assume h ď 0 and consider the following properties:
(i) h is weakly λ–subharmonic.
(ii) For all f P FcpXq one has h_ f P F pXq and Eλph_ f, f ´ h_ fq ě 0.

(iii) For all f P FcpXq one has h _ f P F pXq and Eλpf, f ´ h_ fq ě 0.

(iv) For all f P FcpXq one has h_ f P F pXq and Eλph_ fq ď Eλpfq.
(v) h is λ–defective.
Then the following implications hold: (i)ùñ(ii)ùñ[(iii) and (iv)]ðñ(v).
(b) Assume h is λ–defective. Then one has

h P FlocpXq ðñ Dh7 P FlocpXq : h ě h7

ðñ @V Ť X Dh7
V P FcpXq : h|V ě h

7
V .

In particular, if h P L8
loc

pX,mq, then h P FlocpXq.
(c) If h is λ–defective and h satisfies one of the equivalent conditions from (b), then h is weakly
λ–subharmonic.

Proof. We follow an approach which is in the spirit of [57], Section 2.4.
(a) (i)ùñ(ii): This is ‘algebraic’ in nature, we follow the proof of Lemma 2.50 in [57]. We let
f P FcpXq and consider V Ť X so that supppfq Ă V . Note that h P FlocpXq by assumption
and therefore, there is h5 P FcpXq such that

h “ h5 on V.

We can and will assume that h5 ď 0 and note that

h_ f “ h5 _ f P FcpV q.

Having seen this, we omit the superscript 5 for the rest of the calculation. Since

h_ f “ 1

2
ph` f ` |h ´ f |q ,
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it follows that

Eλph_ fq ´ Eλph_ f, fq “ Eλph _ f, h_ f ´ fq

“ 1

4
Eλ pf ` h ` |h´ f | , h` |h´ f | ´ fq

“ 1

4
tEλ ph ` |h´ f |q ´ Eλ pfqu

“ 1

4
tEλ phq ` Eλ p|h´ f |q ` 2Eλ ph, |h ´ f |q ´ Eλ pfqu

ď 1

4
tEλ phq ` Eλ ph ´ fq ` 2Eλ ph, |h´ f |q ´ Eλ pfqu

“ 1

4
t2Eλ phq ´ 2Eλ ph, fq ` 2Eλ ph, |h´ f |qu

“ 1

2
tEλ ph, h ´ f ` |h´ f |qu

“ Eλ ph, ph´ fq`q ď 0,

since h is weakly λ–subharmonic and

0 ď ph´ fq` “ h_ f ´ f P FcpXq.
From this chain of inequalities we get:

Eλph_ f, fq ě Eλph_ fq,
which is (ii); expanding f “ f ´ h_ f ` h_ f we get (iii), since

Eλpf, f ´ h_ fq ě Eλph_ f, f ´ h_ fq ě 0,

which in turn is obvious. From (ii) and (iii) we get (iv):

Eλpfq ´ Eλph_ fq “ Eλpf ` h_ f, f ´ h _ fq
“ Eλpf, f ´ h_ fq ` Eλpf _ h, f ´ h_ fq
ě 0

The equivalence [(iii) and (iv)]ðñ(v) is a consequence of the characterization of convex sets
that are invariant under the semigroup in terms of the corresponding quadratic form given in
[52]. Here are the details: For given h as in the assumption, the set

K :“ tv P L2pX,mq | v ě hu
is closed and convex in L2pX,mq and the projection π : L2pX,mq Ñ K is given by πf “ h_ f .
Clearly (v) implies that the semigroup associated with Eλ, given by St “ e´λtPt for t ě 0, leaves
K invariant. Denoting the following stronger versions of the properties in the Theorem by
(iii’) For all f P F pXq one has h_ f P F pXq and Eλpf, f ´ h_ fq ě 0.

(iv’) For all f P F pXq one has h_ f P F pXq and Eλph_ fq ď Eλpfq,
(iii’)ðñ(iv’)ðñ(v) follows from Theorem 2.1 and Corollary 2.4 in [52].
A standard approximation argument gives (iv) ñ (iv’) and so we get the implications:
(ii) ñ [(iii) and (iv)] ñ (iv’) ô (v) ô (iii’), which settles (a).

(b) For the two equivalences, it remains to show that the last property implies the first. The

other implications are evident. Let V Ť X and h7
V as asserted. Then (iii) implies that h_h

7
V P

F pXq and h_ h
7
V “ h on V , giving that h P FlocpXq. The ‘in particular’ follows, since locally

bounded functions can be locally minorized by (negative) equilibrium potentials, see below.
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(c) This is a standard semigroup argument plus some approximation argument. It suffices to
consider bounded h: in fact,

Eλph, fq “ lim
nÑ8

Eλph_ p´nq, fq

for any f P FcpXq and h _ p´nq is λ–defective, provided h is. By rescaling, we can and will
assume that h ě ´1. Let f P FcpXq, f ě 0 and pick V,W open, V Ť W Ť X such that
supppfq Ă V . Let eW be the λ–equilibrium potential of the set W , see [31], which is λ–excessive.
Therefore,

h5 :“ h _ p´eW q
is λ–defective, h “ h5 on W and h5 P F pXq, because ´h5 is λ–excessive and 0 ď ´h5 ď eW P
F pXq. It follows that

Eλph, fq “ Eλph5, fq

“ ´ lim
tŒ0

B
h5,

1

t

`
e´λtPtf ´ f

˘F

“ ´ lim
tŒ0

B
1

t

`
e´λtPth

5 ´ h5
˘
, f

F

ď 0,

completing the proof. �

The following characterization of λ-subharmonic functions in the distributional sense in the
Riemannian case served as the blueprint for our new notion of subharmonicity in Definition
4.4 below. Recall that a distribution g defined on an open set U of a Riemannian manifold
X with Laplace-Beltrami operator ∆ is called λ–harmonic, if p∆ ´ λqg “ 0 on U in the sense
of distributions. By local elliptic regularity, this is equivalent to g being a smooth classical
solution of the latter equation and thus also to the weak λ-harmonicity of g.

Proposition 4.3. Assume X is a connected Riemannian m-manifold (considered as a smooth-
ing strongly local Dirichlet space in the sense of Example 3.6) and let f P L1

loc
pX,mq, λ ě 0.

The following two properties are equivalent:

(i) p∆ ´ λqf ě 0 in the sense of distributions, that is, xf, p∆ ´ λqφy ě 0 for all 0 ď φ P
C8

c pXq,
(ii) For all U Ť X there exists a λ–harmonic function g P CbpUq on U such for all t ą 0

one has e´tλPU
t pf |U ´ gq ě f |U ´ g.

Proof. Note first that in the above situation, e´tλPU
t pf |U ´gq ě f |U ´g for all t ą 0 is equivalent

to
t ÞÑ e´tλPU

t pf |U ´ gq is increasing in t ą 0.

(i) ñ (ii): By Theorem D or Theorem 3.2 in [8] we can pick open and smooth neighbourhoods
U Ť U 1 Ť Ũ Ť X and a sequence pfkq P C8pŨq such that

‚ fk|U 1 Œ f |U 1,
‚ ∆fk ´ λfk ě 0 in Ũ ,
‚ supU 1 fk|U 1 ď supU 1 f |U 1 ` 1 for all k.

Note that the first property implies fk Ñ f |U 1 in L1pU 1q by dominated convergence and also
that f can be chosen upper semicontinuous. By the latter fact we can pick c P R such that
f |U 1 ď c{2 and fk|U 1 ď c. Let g̃ be a solution to

#
p∆ ´ λqg̃ “ 0 on U 1

g̃|BU 1 “ c



SUBHARMONICITY ON LOCALLY SMOOTHING SPACES 15

and set h :“ f |U 1 ´ g̃. We have that hk :“ fk|U 1 ´ g̃ is λ–subharmonic on U 1 and hk ď 0 on
BU 1. Thus h “ limkÑ8 hk ď 0 on U 1 by the (weak) maximum principle. Moreover, hk Ñ h in
L1pU 1q. Let 0 ď φ P C8

c pU 1q. For all t ą 0 one has

pd{dtq
A
e´λtPU 1

t h, φ
E

“
A

p∆ ´ λqe´λtPU 1

t h, φ
E

“
A
e´λtPU 1

t h, p∆ ´ λqφ
E

“
A
h, e´λtPU 1

t p∆φ ´ λφq
E

“
A
h, p∆ ´ λqe´λtPU 1

t φ
E
.

Since ∆e´λtPU 1

t φ “ e´λtPU 1

t ∆φ is bounded, the latter is

“ lim
k

A
hk,∆e

´λtPU 1

t φ ´ λe´λtPU 1

t φ
E
.

Next we show A
hk,∆e

´λtPU 1

t φ ´ λe´λtPU 1

t φ
E

ě 0 for all k.

To this end, we compute
A
hk,∆e

´λtPU 1

t φ ´ λe´λtPU 1

t φ
E

“
ż

BU 1

hkBν

´
e´λtPU 1

t φ
¯
dσ ´

ż

U 1

p∇hk,∇e´λtPU 1

t φqdm

´
ż

U 1

λhke
´λtPU 1

t φdm

ě ´
ż

U 1

p∇hk,∇e´λtPU 1

t φqdm ´
ż

U 1

λhke
´λtPU 1

t φdm

“
ż

U 1

p∆hk ´ λhkqe´λtPU 1

t φdm ´
ż

BU 1

pe´λtPU 1

t φqBνhkdσ

ě 0,

where we have used hk ď 0 and Bνe
´λtPU 1

t φ ď 0 (because e´λtPU 1

t φ ě 0) in the first inequality,
and e´λtPU 1

t φ “ 0 on BU 1 together with p∆ ´ λqhk ě 0 and PU 1

t φ ě 0 on U 1 for the last
inequality. We have thus shown e´λtPU 1

t pf |U 1 ´ g̃q ě f |U 1 ´ g̃ for all t ą 0. Since PU 1

t Ñ 0 as
t Ñ 8 strongly in L1pU,mq (cf. the proof of Lemma 4.6(b) below for a detailed argument), we
have f |U 1 ´ g̃ ď 0. Thus,

e´λtPU
t pf |U ´ g̃|Uq ě e´λtPU 1

t pf |U 1 ´ g̃q on V ,

and the claim follows from setting g :“ g̃|U .

(i) ð (ii): Let U Ť X be arbitrary and pick a λ–harmonic function g on U as in the assumption.
We have e´λtPU

t pf |U ´ gq Ñ f |U ´ g in L1pU,mq, and so e´λtPU
t pf |U ´ gq Ñ f |U ´ g as t Ñ 0`

as distributions. Since

p∆ ´ λqe´λtPU
t pf |U ´ gq “ Bte

´λtPU
t pf |U ´ gq ě 0,

as e´λtPU
t pf |U ´ gq is increasing in t, we get for all 0 ď φ P C8

c pUq,
ż

U

fp∆φ ´ λφqdm “
ż

U

pf ´ gqp∆φ´ λφqdm “ lim
tÑ0`

@
e´λtPU

t pf |U ´ gq,∆φ´ λφ
D

“ lim
tÑ0`

@
p∆ ´ λqe´λtPU

t pf |U ´ gq, φ
D

ě 0,

and the proof is complete. �

The previous result motivates:

Definition 4.4. Let f P L1

loc
pX,mq, λ ě 0. We say that f is



16 BATU GÜNEYSU, STEFANO PIGOLA, PETER STOLLMANN, AND GIONA VERONELLI

‚ locally λ–shift defective, if for all U Ť X there exists a weakly λ–harmonic function
g P CbpUq such that

e´tλPU
t pf |U ´ gq ě f |U ´ g for all t ą 0, (4.1)

‚ locally λ–shift excessive, if ´f is locally λ–shift defective.

If λ “ 0, then we will simply talk about ‘locally shift defective (excessive)’.

Remark 4.5. 1. We stress that no a priori regularity on f is needed in the above definition,
other than the somewhat minimal L1

loc
-assumption.

2. Note that in the definition of local λ–shift defectiveness we do not require explicitly that
f |U ´ g ď 0. The latter will however follow automatically in the locally smoothing case (cf.
the transfer principle below). In other words, in the locally smoothing case, f P L1

loc
pX,mq

is locally λ–shift defective, if and only if for all U Ť X there exists a λ–harmonic function
g P CbpUq such that f |U ´ g is λ–defective in U , hence f |U ´ g ď 0. This justifies the name
‘locally λ–shift defective’.

3. A function f P L1

loc
pX,mq is obviously locally λ–shift defective, if and only if f |U is locally

λ–shift defective for every U Ť X, that is, with respect to pU,m, E ,F pUqq. Moreover, the class
of locally λ–shift defective functions is stable under taking sums, multiplication by positive
constants, and shifting by negative constants.

For locally smoothing spaces we get the following result, which will allow us to transfer results
for signed functions to functions of varying sign:

Lemma 4.6. (Transfer principle) Let pX,m, E ,F pXqq be locally smoothing and λ ě 0.
(a) For every c P R, U Ť X there exists g P CbpUq weakly λ-harmonic on U , such that g ě c.
(b) If f P L1

loc
pX,mq is locally λ–shift defective, then with U , g as in Definition 4.4 one has

f |U ´ g ď 0.

Proof. (a) Pick an open set U 1 Ă X such that U Ť U 1 and U 1zU ‰ H, and such that
pU 1,m, E ,F pU 1qq is doubly Feller and irreducible. Pick 0 ď ψ P CcpU 1qzt0u with supppψq Ă
U 1zU .
Assume first λ ą 0. Then we can define

0 ă h :“ pHU 1 ` λq´1ψ P C0pU 1q X DompHU 1q.
Since h is continuous and the closure of U is a compact subset of U 1, we have inf h|U ą 0, and
so for some a ą 0 we have c ď g :“ a ¨ h|U P CbpUq X FlocpUq, and given φ P FcpUq we have

E pg, φq ` λ xg, φy “ aE ph, φq ` λa xh, φy “ axHU 1

h, φy ` aλ xh, φy “ a xψ, φy “ 0.

For λ “ 0, we can simply take a constant function.
(b) For all t ě 1 we have

e´tλPU
t´1
PU
1

pf |U ´ gq ě f |U ´ g,

where PU
1

pf |U ´ gq P L2pU,mq. By spectral calculus we have that PU
s converges as s Ñ 8

strongly in L2pU,mq to the projection onto KerpHUq, the latter space being equal to t0u, as
HU has a spectral gap. �

We continue with:

Lemma 4.7. (Approximation lemma) Assume pX,m, E ,F pXqq is locally smoothing and λ ě 0.
Let f be locally λ–shift defective.
Given U Ť X, pick a weakly λ–harmonic function g P CbpUq on U as in Definition 4.4. Then,
for every k P N,

fU
k :“ e´λ{kPU

1{kpf |U ´ gq ` g P FlocpUq X CbpUq
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is locally λ–shift defective and weakly λ–subharmonic, and one has fU
k Ó f |U m-a.e., and so

f ‚
U :“ infkPN f

U
k is an upper semicontinuous (u.s.c.) m-representative of f |U .

In particular, the function f has an u.s.c. m-representative.

Proof. Let V Ť U . We have

e´λtP V
t pfU

k |V ´ g|V q “ e´λtP V
t

´
e´λ{kpPU

1{kpf |U ´ gqq|V
¯

ě
´
e´λtPU

t pe´λ{kPU
1{kpf |U ´ gqq

¯
|V

“
´
e´λpt`1{kqPU

t`1{kpf |U ´ gq
¯

|V ě
´
e´λ{kPU

1{kpf |U ´ gq
¯

|V “ fU
k |V ´ g|V ,

where have used that f |U ´ g ď 0 for the first estimate (part (b) of transfer principle), and
that f is locally λ–shift defective. Thus fU

k is locally λ–shift defective. Since fU
k ´ g ď 0 is

continuous and λ–defective, it is weakly λ–subharmonic by Theorem 4.2 (c). This sequence
converges pointwise in a monotonically decreasing way on U , and the limit function is u.s.c.
and coincides m-a.e. with f |U .

The ’in particular’ follows with a partition of unity argument. �

Using the transfer principle, we can establish the following results analogous to those of Theorem
4.2, now for functions of varying sign:

Theorem 4.8. Let λ ě 0 and let pX,m, E ,F pXqq be locally smoothing.

(a) If f P L1

loc
pX,mq is locally λ–shift defective and in FlocpXq, then f is weakly λ–subharmonic.

In particular, if f P L8
loc

pX,mq is locally λ–shift defective, then f is weakly λ–subharmonic

(b) If f P FlocpXq is weakly λ–subharmonic and locally bounded above, then f is locally λ–shift
defective.

Proof. (a) Let U Ť X be arbitrary and pick g as in Definition 4.4. Then f |U ´ g P FlocpUq
is λ–defective on U by the transfer principle; applying Theorem 4.2(c) with h “ f |U ´ g on U

(instead of X) shows that this function is weakly λ–subharmonic on U , and so f |U “ f |U ´g`g
is weakly λ–subharmonic on U .

(b) Let U Ť X be arbitrary and pick c P R with f |U ď c and using the transfer principle pick
g P CbpUq weakly λ–harmonic on U with g ě c. Then f |U ´ g ď 0 is weakly λ–subharmonic on
U , and so applying Theorem 4.2 (a) to h “ f |U ´ g on U gives that

e´λtPU
t pf |U ´ gq ě f |U ´ g,

completing the proof. �

Remark 4.9. The local boundedness from above, required in (b) of the previous Theorem,
can be typically deduced from elliptic or parabolic subsolution estimates, which are valid under
some mild local assumptions on the space. For the most general result to this effect that
we are aware of, we can refer to Theorem 4.7 in [48]: under the assumption that the space
pX,m, E ,F pXqq has the property that on every U Ť X a volume doubling up to a finite scale
and a Poincare inequality up to a finite scale are satisfied, a parabolic subsolution estimate is
valid, which shows that every weakly λ-subharmonic function is automatically locally bounded
above. Indeed, if f is weakly λ-subharmonic, then so if f` by Lemma 2.3, and then applying
Theorem 4.7 in [48] to pt, xq ÞÑ e´tλf`pxq, we get that on such a space f` is automatically
locally bounded, and so f is locally bounded above. This applies to all examples of locally
smoothing spaces above.

5. Kato-Brezis theorem and regularity for λ-shift defective functions

The starting point of this section is the following probabilistic characterization of locally λ–shift
defective functions:
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Proposition 5.1. Assume that pX,m, E ,F pXqq is locally smoothing and that λ ě 0. A func-
tion f P L1

loc
pX,mq is locally λ–shift defective, if and only if for all U Ť X there exists a u.s.c

m-representative f ‚
U of f |U such that for all V Ť U with UzV ‰ H one has

E
x
U

“
e´λτV f ‚

UpXτV q
‰

ě f ‚
Upxq for q.e. x P V. (5.1)

The proof is based on the following technical result by Chen and Kuwae, which holds on any
strongly local Dirichlet space and which follows from applying Theorem 2.9 in [17] (see also
[14]) to the Dirichlet form which is shifted by λ, noting that the result therein holds for nonlocal
Dirichlet forms:

Lemma 5.2. A function h P L8
loc

pXq is weakly λ-subharmonic, if and only if for all V Ť X

with XzV ‰ H one has

E
x
“
e´λτV hpXτV q

‰
ě hpxq for q.e. x P V. (5.2)

Note that, if h P L8
loc

pXq is weakly λ-harmonic, one gets an equality in (5.2).

Proof of Proposition 5.1. ñ: Let U Ť X. Consider the functions g, fU
k , f ‚

U from the approx-
imation Lemma 4.7. For every k P N the function fU

k ´ g ď 0 is continuous and λ–defective
on U , in particular, weakly λ-subharmonic on U by Theorem 4.2(c). It follows from using the
previous lemma with h “ fU

k ´ g that

E
x
U

“
e´λτV pfU

k ´ gqpXτV q
‰

ě pfU
k ´ gqpxq for q.e. x P V.

For k Ñ 8 we arrive at

E
x
U

“
e´λτV pf ‚

U ´ gqpXτV q
‰

ě pf ‚
U ´ gqpxq for q.e. x P V,

which using the previous lemma with h “ g gives

E
x
U

“
e´λτV gpXτV q

‰
“ gpxq for q.e. x P V, (5.3)

proving (5.1).
ð: The function f ‚|U is bounded above for given U Ť X. As above, we can pick a weakly
λ–harmonic function g P CbpUq such that f ‚|U ´ g ď 0 on U . Given V Ť U with UzV ‰ H,
the assumption on f together with (5.3) implies

E
x
U

“
e´λτV pf ‚

U ´ gqpXτV q
‰

ě f ‚
Upxq ´ gpxq, for q.e. x P V.

For arbitrary n P N, this implies

E
x
U

“
e´λτV ppf ‚

U ´ gq _ p´nqq pXτV q
‰

ě pf ‚
Upxq ´ gpxqq _ p´nq, for q.e. x P V.

and so the locally bounded function pf ‚
U ´ gq _ p´nq is weakly λ–subharmonic on U by the

previous lemma. From Theorem 4.2(a) we get that pf ‚
U ´ gq _ p´nq is λ–defective on U . Since

this is true for arbitrary n P N, we get that f ‚
U ´ g is λ–defective on U . �

As noted above, Lemma 5.2 is a consequence of Theorem 2.9 in [17]. The latter gives a prob-
abilistic characterization of weak λ-subharmonicity under the a priori assumption that the
function is in L8

loc
. This assumption is partially used in [17] to verify necessary measurability

proporties and to make the expectation on the LHS of (5.2) well-defined, noting that the proof
goes through an intermediate step, giving a characterization in terms of a submartingale prop-
erty.
Note that we do not make an L8

loc
–assumption in Proposition 5.1, replacing the weak λ–

subharmonicity assumption with a local λ–shift defectiveness assumption in one direction of the
equivalence of Lemma 5.2. The main reason for this is that we get a u.s.c. m-respresentative
from our local smoothing assumptions on the space. The main strength of Theorem 2.9 in [17],
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however, clearly lies in the very remarkable fact that this result applies to nonlocal forms (with
some mild additional regularity assumptions).

As an application of Proposition 5.1 we immediately get the following generalization of a conse-
quence of Kato’s celebrated inequality, Lemma A from [41], which states that for all f P L1

loc
pRnq

such that ∆f P L1

loc
pRnq, one has

∆|f | ě signpfq∆f (5.4)

in the sense of distributions. This readily gives

∆f` ě 1tfě0u∆f. (5.5)

This was later sharpened and generalized (see Ancona, [3] for a thorough discussion) to the case
that ∆f is a Radon measure in the article [13] by Brezis and Ponce. It is maybe superfluous to
add that some regularity assumption on ∆f is needed to ensure that the RHS of (5.4) and (5.5)
are well-defined distributions. An immediate consequence of the latter estimate is that ∆f` is a
positive distribution, in other words, f` is subharmonic in the distributional sense. Remarkably,
using the results we have obtained so far, we get a considerably strengthened variant of the
statement f P L1

loc
is subharmonic in the distributional sense ñ f` is subharmonic in the

distributional sense in our general setting, where neither test functions nor distributions are
available. Indeed, the the following result follows immediately from Proposition 5.1:

Theorem 5.3. (Kato-Brezis) Assume that pX,m, E ,F pXqq is locally smoothing and that λ ě
0. If f, g P L1

loc
pX,mq are locally λ–shift defective, then so is f _ g. If 0 ď f P L1

loc
pX,mq is

locally λ–shift defective, then f is locally shift defective.

The reader may find similar statements in [54] for Riemannian manifolds and in [20] for Carnot
groups.

As a first application of the above theorem, we are going to prove:

Theorem 5.4. (Regularity theorem) Let pX,m, E ,F pXqq be locally smoothing, let λ ě 0

and let f P L1

loc
pX,mq be locally λ-shift defective. Then for every c ě 0, q ą 1 one has

pf ´ cqq{2
` P FlocpXq, and for q ě 2 this function is weakly subharmonic.

Proof. The function f ´ c is locally λ-shift defective and so by Kato-Brezis pf ´ cq` is locally
λ-shift defective. Thus we can assume c “ 0 and f ě 0. Then, again by Kato-Brezis, f is
locally shift defective. As f has a u.s.c. m-representative, f is locally bounded above (and by
f ě 0 then locally bounded) and thus weakly subharmonic by Theorem 4.8 (a). It then follows
immediately from the chain rule that for q ě 2 the function f q{2 is weakly subharmonic as well
(cf. the calculation in the proof of Lemma 2 a) in [62]).
For arbitrary q ą 1 we proceed as follows to show that f q{2 P FlocpXq: let V Ť X be arbitrary
and pick U with V Ť U Ť X. We also pick 0 ď φ P CcpUq X F pUq such that 1V ď φ ď 1U ,
and a sequence

`
fU
k

˘
kPN

as in Lemma 4.7 and set 0 ď f |U ď fk :“ fU
k P FlocpUq X CbpUq for

notational convenience. Replacing fk with fk ` 1{k if necessary, we can assume fk ą 0 and still
get fk Ó f |U . We have f q´1

k P FlocpUq by the chain rule, so

0 ď ψk :“ φ2f
q´1

k P F pUq X CcpUq
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is a test function. Since fk is weakly subharmonic,

0 ě E pfk, ψkq “
ż

U

dΓpfk, φ2f
q´1

k q

“
ż

U

φ2dΓpfk, f q´1

k q `
ż

U

f
q´1

k dΓpfk, φ2q

“ pq ´ 1q
ż

U

φ2f
q´2

k dΓpfkq ` 2

ż

U

f
q´1

k φdΓpfk, φq,

where have used the chain rule. Using the Cauchy-Schwarz inequality (2.1) with

v “ fk, w “ φ, f “ φf
q{2´1

k , g “ f
q{2
k ,

on the second term we get, for ǫ ą 0:

2

ˇ̌
ˇ̌
ż

U

f
q´1

k φdΓpfk, φq
ˇ̌
ˇ̌ ď 2

ˆż

U

φ2f
q´2

k dΓpfkq
˙ 1

2

ˆż

U

f
q
kdΓpφq

˙ 1

2

ď ǫ

ż

U

φ2f
q´2

k dΓpfkq ` 1

ǫ

ż

U

f
q
kdΓpφq

For ǫ ą 0 small enough (depending only on q), we deduce that

0 ě pq ´ 1 ´ ǫq
ż

U

φ2f
q´2

k dΓpfkq ´ ǫ´1

ż

U

f
q
kdΓpφq,

Using the chain rule

dΓpf q{2
k q “ q2

4
f
q´2

k dΓpfkq,

we end up with the second estimate in
ż

V

dΓpf q{2
k q ď

ż

U

φ2dΓpf q{2
k q ď q2

4ǫpq ´ 1 ´ ǫq

ż

U

f
q
kdΓpφq ď q2

ǫpq ´ 1 ´ ǫq

ż

U

f
q
1
dΓpφq,

the latter expression being finite, as f q
1

P L8pU,mq. Finally, applying Lemma 2.2 with wk :“
f
q{2
k |V , we can conclude f q{2|V P FlocpV q, as clearly wk Ñ f q{2|V in L2

loc
pV,mq (in fact, in

L2pV,mq). �

6. Maximum principle

The main result of this section is:

Theorem 6.1 (Maximum principle). Let pX,m, E ,F pXqq be locally smoothing and let f P
L1

loc
pX,mq.

a) If f is locally shift defective, then for every V Ť X there exists a u.s.c m-representative f ‚
V

on V of f |V such that

sup
V

f ‚
V “ sup

BV
f ‚
V .

b) If λ ě 0 and if f is be locally λ–shift defective, then for every V Ť X there exists a u.s.c.
m-representative f ‚

`,V on V of f`|V such that

sup
V

f ‚
`,V “ sup

BV
f ‚

`,V .
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Note that part b) follows immediately from part a), as by the Kato-Brezis theorem, f` is locally
shift defective. Note also that it follows immediately from Proposition 5.1 that

f ‚
V ď sup

BV
f ‚
V q.e. in V .

In this sense, the main point of Theorem 6.1 is to show that one can guarantee a pointwise
inequality of this form.

Proof of Theorem 6.1 a). From the definition of local shift defectiveness, it is easy to see that it
is enough to prove that for every defective function h, which is defined in an open neighbourhood
U Ť X of V , there exists an m-representative h‚ of h such that

sup
BV

h‚ ě sup
V

h‚.

As PU
t hpxq is continuous in x and increasing in t, we define

h‚ :“ lim
nÑ8

PU
1{nh.

Assume, by contradiction, that there exists x̄ P V such that h‚px̄q ą supBV h
‚. We choose

δ1, δ2 P R such that

h‚px̄q ą δ1 ą δ2 ą sup
BV

h‚.

Since h‚ is u.s.c., we have that h‚ ă δ2 in some open neighborhood NBV of BV in V̄ and, up to
choosing a smaller set, we can always assume that

h‚ ď δ2 in ĚNBV .

We claim that, by a variation of the proof of Dini’s theorem, there exists t0 ą 0 small enough
such that, for all 0 ă t ă t0,

PU
t h ă δ1 in ĚNBV .

Indeed, let

Et :“ tx P V̄ : PU
t h ă δ1u.

Since h is defective, Et Ď Es for t ą s, and by pointwise convergence we get

ĚNBV Ă
ď

tą0

Et.

Hence Et0 Ą ĚNBV for some t0 small enough, and the claimed property follows.
On the other hand

PU
t hpx̄q ě h‚px̄q ą δ1.

Now, PU
t h is defective on U and in F pUq X CbpUq. Thus, Theorem 4.2 (c) implies that PU

t h,
and hence u :“ PU

t h´ δ1, is weakly subharmonic. Since u ď 0 in V̄ zY where Y :“ V̄ zNBV , the
weak maximum principle of [62, Lemma 4] gives that u ď 0 on V . In particular,

PU
t hpx̄q ď δ1.

The contradiction completes the proof.
�

Example 6.2. Assume that pX,m, E ,F pXqq stems from an RCD˚p0, Nq space for some N ě 1,
see Example 3.7 above. Since |∇ ¨ |˚ is local, one can define |∇f |˚ also for f P FlocpXq. Let
f be weakly λ-harmonic for some λ ě 0, with λf P L

q
loc

pX,mq for some q ě maxpN, 4q. It
then follows from the localized Bochner inequality (cf. [36]) that |∇f |2˚ is weakly subharmonic.
By Remark 4.9 this function is locally bounded (above), and so Theorem 4.8 (b) shows that
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this function is locally shift defective. We get that for every V Ť X there exists a u.s.c.
m–representative |∇f |2˚

‚
V of |∇f |2˚|V such that

sup
V

|∇f |2˚
‚

V “ sup
BV

|∇f |2˚
‚

V .

7. A proof of the BMS-conjecture on locally smoothing spaces

We still assume that pX,m, E ,F pXqq is a strongly local Dirichlet space. Then there exists a
possibly degenerate pseudo metric d

E on X (that is, it may happen that dE px, yq “ 8 for some
x, y P X, or that d

E px, yq “ 0 for some x, y P X with x ‰ y), called the intrinsic metric, given
by

d
E px, yq :“ suptfpxq ´ fpyq : f P FlocpXq X CpXq, dΓpfq ď dmu,

where the condition dΓpfq ď dm means that Γpfq is absolutely continuous with respect to m,
with a density ď 1.

Definition 7.1. We say that pX,m, E ,F pXqq is

‚ strictly local, if dE induces the original topology on X,
‚ intrinsically complete, if this space is strictly local and complete.

If pX,m, E ,F pXqq is strictly local, then intrinsic completeness is equivalent to properness. This
follows from the Hopf-Rinow theorem for locally compact length spaces, in combination with
the fact that strictly local Dirichlet spaces are lenght spaces [60].
In spirit of [62], we say that pX,m, E ,F pXqq has the Lq-Liouville property, for given q P r1,8s,
if every weakly subharmonic function 0 ď f P LqpX,mq is constant. One of the main results
from Sturm’s seminal paper [62] states:

Theorem 7.2. If pX,m, E ,F pXqq is intrinsically complete and irreducible, then it has the
Lq-Liouville property for every q P p1,8q.
The following definition is adapted from [33], where the setting of Riemannian manifolds has
been considered:

Definition 7.3. Given q P r1,8s, one says that pX,m, E ,F pXqq is Lq-positivity preserving, if
for every locally 1-shift-excessive function f P LqpX,mq one has f ě 0.

With this definition, we easily get:

Proposition 7.4. If pX,m, E ,F pXqq is locally smoothing with the Lq-Liouville property for
some q P p1,8q, then it is Lq-positivity preserving.

Proof. If f P LqpX,mq is locally 1-shift excessive, then ´f is locally 1-shift defective, so 0 ď
p´fq` P LqpX,mq is weakly subharmonic by the regularity Theorem 5.4; thus this function
must be constant by the Lq-Liouville property, and thus “ 0. �

Finally, as stated in the introduction, Theorem 7.2 in combination with Proposition 7.4 imme-
diately leads to a proof of a conjecture by Braverman, Milatovic and Shubin extended to our
general setting (see Conjecture P in Appendix B, p. 679, and also the discussion in [35]):

Theorem 7.5. (BMS-conjecture) If pX,m, E ,F pXqq is locally smoothing, intrinsically com-
plete and irreducible, then it is Lq-positivity preserving for all q P p1,8q.
Note that every connected and complete Riemannian manifold, every RCD˚–space, as well as
every Carnot group satisfies the assumptions of this theorem. Indeed, in the Riemannian case
the intrinsic completeness is well-known, in the RCD˚–case it is shown in [2], and for the Carnot
group in [26]. In all cases, the irreducibility follows from the strict positivity of the heat kernel.
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A. Appendix: A class of locally smoothing spaces

We assume in this section that pX,m, E ,F pXqq is a strongly local Dirichlet space, with pX, dq
a metric space such that for all open balls Bpx, rq one has

mpx, rq :“ mpBpx, rqq ă 8.

We assume furthermore that t ÞÑ Pt has a strictly positive Markovian heat kernel, by which we
mean that there exists a jointly continuous function

p : p0,8q ˆ X ˆ X ÝÑ p0,8q
withż

X

ppt, x, yqdmpyq “ 1, ppt ` s, x, yq “
ż

X

ppt, x, zqpps, z, yqdmpzq for all t, s ą 0, x, y P X,

such that for all t ą 0, 0 ď f P L2pX,mq one has

Ptfpxq “
ż

X

ppt, x, yqfpyqdmpyq for m-a.e. x P X.

The same formula then gives a pointwise well-defined representative of Ptf for all f P LqpX,mq,
q P r1,8s, or for nonnegative or nonpositive f P BpX,mq.
The main result of this section is:

Proposition A.1. Assume that in the above situation the following two assumptions are sat-
isfied:

‚ (Local volume doubling) There exists constants C ą 0, α ě 1, such that for all 0 ă r ă
R, x P X one has

mpx,Rq
mpx, rq ď CeCRpR{rqα.

‚ (Local upper Li-Yau heat kernel bound) There exist constants c1, c2, c3,ą 0, such that
for all t ą 0, x, y P X one has

ppt, x, yq ď c1mpx,
?
tq´1e´c2

dpx,yq2

t ec3t.

Then for all U Ť X the space pU,m, E ,F pUqq is ultracontractive, and pX,m, E ,F pXqq is
doubly Feller and irreducible. In particular, pX,m, E ,F pXqq is locally smoothing.

Proof. Let us first record the following consequences of local volume doubling: firstly, there
exists D ą 0 such that for all x, y P X, and all t ą 0 one has

mpx,
?
tq

mpy,
?
tq ď DeDte

dpx,yq2

t . (A.1)

This fact is wellknown (cf. Section 2 of [5] for the simple argument).
Secondly, there exist A,B ą 0 such that for all δ, t P r0, 1q, x P X, one has

ż

tdpx,yqěδu

e´ ´dpx,yq2

ct dmpyq ď mpx,
?
tqAe´ δ2

Bt . (A.2)

This is consequence of Lemma 5.2.13 in [55] and local volume doubling.

1. Let U Ť X. The space pU,m, E ,F pUqq is ultracontractive: indeed, given 0 ď f P L1pU,mq
one has

PU
t fpxq ď Ptfpxq “

ż

U

ppt, x, yqfpyqdmpyq ď
´

sup
x1,y1PU

ptpx1, y1q
¯ ż

U

fpyqdmpyq,

as px, yq ÞÑ ppt, x, yq is continuous.



24 BATU GÜNEYSU, STEFANO PIGOLA, PETER STOLLMANN, AND GIONA VERONELLI

2. The space pX,m, E ,F pXqq is doubly Feller: we first show that Pt : C0pXq Ñ C0pXq.
Clearly, it suffices to show that Ptf P C0pXq for all f P CcpXq. With K the support of f , the
local Li-Yau bound implies

|Ptfpxq| ď c1e
c3t sup

yPK
mpBpy,

?
tqq´1 }f}8

ż

K

e´c2
dpx,yq2

t dmpyq,

which tends to 0 as x Ñ 8 and we can see the continuity of x ÞÑ Ptfpxq by dominated
convergence. Note that

sup
yPK

mpBpy,
?
tqq´1 ă 8

is a consequence of (A.1) and that m has a full support.
Next, we show that Pt : L

8pX,mq Ñ CpXq: since Pt has a jointly continuous integral kernel,
Corollary 2.2 in [56] (which is formulated for R

n, but the proofs apply in our situation), show
that it suffices to prove that Pt : CbpXq Ñ CpXq. This again follows (cf. the remark prior to
Corollary 2.2 in [56]), from the fact that Pt1 is continuous, as

Pt1pxq “
ż

X

ppt, x, yqdmpyq “ 1,

and the fact that Ptf P CpXq for all f P CcpXq (which we have already shown above).
Next we show that

lim
tÑ0`

Ptf “ f uniformly in every compact K Ă X, for all f P C0pXq. (A.3)

To this end, given ǫ ą 0 we can pick δ ą 0 such that for all x P K, all y P Bpx, δq one has
|fpxq ´ fpyq| ď ǫ. For all t ą 0 we have

|Ptfpxq ´ fpxq| ď
ż

tdpx,yqăδu

ppt, x, yq|fpxq ´ fpyq|dmpyq `
ż

tdpx,yqěδu

ppt, x, yq|fpxq ´ fpyq|dmpyq.

The first summand is

ď ǫ

ż

X

ppt, x, yqdmpyq “ ǫ.

The second is estimated using the local Li-Yau bound according to

ď 2c1e
c3t }f}8 mpBpx,

?
tqq´1

ż

tdpx,yqěδu

e´c2
dpx,yq2

t dmpyq,

which by (A.2) for all 0 ă t ă 1 is

ď 2c1e
c3t }f}8 Ae

´ δ2

Bt .

This completes the proof of the doubly Feller property.

3. The space pX,m, E ,F pXqq is irreducible: indeed, given 0 ď f P L2pXqzt0u, this follows
from

Ptfpxq “
ż

X

ppt, x, yqfpyqdmpyq ą 0,

as px, yq ÞÑ ppt, x, yq ą 0 is continuous and m has a full support.
�

We record the following corollary to the proof of the above result:

Proposition A.2. Assume that in the above situation one has

‚ Pt : CbpXq Ñ CpXq for all t ą 0,
‚ Pt : CcpXq Ñ C0pXq for all t ą 0,
‚ limtÑ0` Ptfpxq “ fpxq for all f P C0pXq, x P X.
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Then for all U Ť X the space pU,m, E ,F pUqq is ultracontractive, and pX,m, E ,F pXqq is
doubly Feller and irreducible. In particular, pX,m, E ,F pXqq is locally smoothing.
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