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Abstract
Given a strongly local Dirichlet space and λ ≥ 0, we introduce a new notion of λ-
subharmonicity for L1

loc-functions, which we call local λ-shift defectivity, and which
turns out to be equivalent to distributional λ-subharmonicity in the Riemannian case.
We study the regularity of these functions on a new class of strongly local Dirichlet,
so called locally smoothing spaces, which includes Riemannian manifolds (without
any curvature assumptions), finite dimensional RCD spaces, Carnot groups, and Sier-
pinski gaskets. As a byproduct of this regularity theory, we obtain in this general
framework a proof of a conjecture by Braverman, Milatovic, Shubin on the positivity
of distributional Lq -solutions of � f ≤ f for complete Riemannian manifolds.

1 Introduction

Given q ∈ [1,∞] one says that a connected Riemannian manifold X is Lq-positivity
preserving, if for every f ∈ Lq(X) the following implication holds true:

� f ≤ f in the sense of distributions ⇒ f is nonnegative. (1.1)

Here� =∑
i j g

i j∂i∂ j is the negative-definite Laplace–Beltrami operator. The impor-
tance and subtlety of this property is reflected at least by the following observations:

• if X is L2-positivity preserving, then −� (defined on C∞c (X)) is essentially self-
adjoint (in L2(X)) [11],

• X is stochastically complete, if and only if X is L∞-positivity preserving [7],
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• there exist complete X ’s which are not L1-positivity preserving [7],
• a conjecture by Braverman–Milatovic–Shubin (BMS) from 2002 [11] states that
if X is complete, then X is L2-positivity preserving.

The BMS-conjecture was formulated in an L2-setting as the authors were interested
in essential self-adjointness problems and was based on the classical fact that −�

is essentially self-adjoint, if X is complete. More generally, one can ask, whether
completeness implies Lq -positivity preservation for all q ∈ (1,∞).

Let us point out that the main technical problem in proving such a conjecture is the
possible lack of regularity of f above. For if f was inW 1,2

loc (X), then one can integrate
by parts once to see that the inequality in (1.1) is equivalent to

∫

X
(∇ f ,∇φ)+

∫

X
f φ ≥ 0 for all 0 ≤ φ ∈ W 1,2

c (X), (1.2)

in other words, f is weakly 1-superharmonic. If f was even inW 1,2
0 (X), then it would

be easy to show that (1.2) implies f ≥ 0 using first order cut-off functions in the sense
of [31], the existence of which is equivalent to the completeness of X .

On another note, it is straightforward to see that, if X admits a sequence of Laplacian
cut-off functions in the sense of [31], then X is Lq -positivity preserving for all q ∈
(1,∞). However, in general, this procedure (which relies on two integrations by
parts [31, 32]) requires [6] a lower control of the Ricci curvature in addition to the
completeness of X .

It is well-known that a convenient abstract setting to formulate an inequality of the
form (1.2) is provided by a (regular and symmetric) Dirichlet space (X ,m,E ,F (X))

[14, 28, 29, 45]. Indeed, given a nonnegative real number λ, one has a natural notion
of weakly λ-subharmonic and weakly λ-superharmonic functions at hand [58], where
the role of W 1,2

loc (X) and W 1,2
c (X) is, respectively, played by Floc(X) and Fc(X),

withF (X) the domain of definition of the underlying quadratic form E . Note that in
the Riemannian case, one has

F (X) = W 1,2
0 (X), E ( f , g) =

∫

X
(∇ f ,∇g),

the usual energy form.
In this paper, we will focus on strongly local Dirichlet spaces. The purpose of this

paper is to address the following questions:

• How can one define λ-subharmonicity (resp. λ-superharmonicity) for L1
loc-

functions on such spaces, in a way that the definition is consistent with the
distrubutional one in the Riemannian case? Note that this will lead naturally to the
notion of an Lq -positivity preserving strongly local Dirichlet space.

• What is the regularity of λ-subharmonic L1
loc-functions on strongly local Dirichlet

spaces?
• Which class of strongly local Dirichlet spaces is Lq -positivity preserving?

Addressing the first question, note first that on a general strongly local Dirichlet
space there is no natural substitute for test functions. To deal with this problem, for
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every open U ⊂ X let PU
t denote the semigroup of (U ,m,E ,F (U )) with Dirichlet

type boundary conditions. We define f ∈ L1
loc(X ,m) to be locally λ-shift defective, if

for all open relatively compact setsU ⊂ X there exists a weakly λ-harmonic function
g ∈ Cb(U ) on U such that

e−tλPU
t ( f |U − g) ≥ f |U − g for all t > 0.

This new notion, which can be considered as a localized and unsigned variant of
the classical concept of defective functions, turns out on Riemannian manifolds to be
equivalent to λ-subharmonicity in the distributional sense (cf. Proposition 4.3).

To proceed further with the theory, we introduce a new class of strongly local
Dirichlet spaces, which we call locally smoothing spaces. This assumption is entirely
local, in the sense that all Riemannian manifolds (without any curvature assumptions)
are locally smoothing and all open subsets of locally smoothing spaces again have
this property. In addition, we show that all finite dimensional RCD-spaces, all Carnot
groups and the unbounded Sierpinski gasket belongs to this category of spaces.

In order to establish a regularity theory for locally λ-shift defective functions, we
assume throughout that (X ,m,E ,F (X)) is locally smoothing. A central technical
step, more or less intrinsic in the definition, is an approximation result, Lemma 4.7,
which reveals that locally λ-shift defective functions always have upper semicon-
tinuous representatives. Furthermore, Theorem 4.8 states that every locally λ-shift
defective function in Floc(X) is weakly λ-subharmonic, and conversely, that every
weakly λ-subharmonic which is locally bounded above is locally λ-shift defective
(noting that on many spaces, every weakly λ-subharmonic is automatically locally
bounded above; cf. Remark 4.9). Our main regularity result, Theorem 5.4, states that
for every locally λ-shift defective function f one has ( f − c)q/2

+ ∈ Floc(X) for all
c ≥ 0, q ∈ (1,∞), which generalizes earlier results from [58]. The proof of this result
is based on a Kato–Brezis type result, Theorem 5.3, which states that the pointwise
maximum of two locally λ-shift defective functions has again this property. The proof
of our Kato–Brezis theorem in turn relies on a probabilistic characterization of locally
λ-shift defective functions, Proposition 5.1, which is based on a probabilistic char-
acterization of locally bounded weakly λ-subharmonic functions from [16]. We also
obtain a strong maximum principle, Theorem 6.1, which does not need an Floc(X)

or a continuity assumption. We note in passing that these results entail that if f is
a weakly λ-harmonic function on an RCD∗(K , N ) space with λ f ∈ Lq

loc(X ,m) for
some q ≥ max(N , 4), then the square |∇ f |2∗ of the minimal relaxed slope of f admits
on every open relatively compact subset an upper semicontinuous representativewhich
is subject to the strong maximum principle (cf. Example 6.2). Note that such a result
is rather delicate, as on Alexandrov spaces it may happen that |∇ f |2∗ need not be
continuous [49], which follows essentially from the results obtained in [22, 47].

The regularity of harmonic and subharmonic functions is a central theme in analysis
and beyond, ever since Weyl’s seminal work [60]. We refer to [57] for a discussion
of the latter paper and its impact, and to the textbooks [26, 36] for a general PDE
point of view. It is also a classic fact that harmonicity properties come in semigroup
resp. probabilistic flavors, see Kakutani’s and Doob’s fundamental papers [23, 38]
for the Euclidean space. It is no surprise that this aspect is very well captured within
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the framework of Dirichlet spaces, as those are in a 1–1 correspondence with Hunt
processes [14, 28, 29, 45]. An important point of the intrigue is that different notions
of (sub-)harmonicity require different a-priori regularity assumptions, while the the-
ory from this paper is based on only an L1

loc-assumption. In this context, we note
that recently a distributional notion of λ-subharmonic functions for finite dimensional
RCD-spaces has been given in [49] (see in particular also [30] for very interesting
equivalent characterizations of this notion under additional local regularity assump-
tions). The theory from [30, 49] uses the fact that a natural space of test functions is
available on RCD-spaces. However, when applied to a complete Riemannian mani-
fold with Ricci curvature bounded from below, this class of test functions is larger
than smooth compactly supported functions, so that our definition of the distributional
inequality � f ≤ λ f seems to be slightly more general even in this setting.

Finally, based on our notion of locally λ-shift excessive functions, we define
Lq -positivity preserving strongly local Dirichlet spaces, and prove the Lq -variant,
q ∈ (1,∞), of the BMS conjecture for irreducible and intrinsically complete locally
smoothing spaces. Our proof combines the Lq -Liouville property from [58] with our
main regularity result, and in particular, does not rely on Laplacian cut-off functions,
which neither make sense nor are available in this generality (note, however, that
Laplacian cut-off functions exist in principle on finite dimensional RCD-spaces; cf.
Lemma 3.1 in [46]). We remark also that recently it has been shown in [50] that
in the Riemannian case, the Lq -variant of the BMS conjecture remains true, if one
removes from a complete Riemannian manifold a possibly singular set with Hausdorff
co-dimension strictly larger than 2q/(q − 1), the threshold value 2q/(q − 1) being
sharp.

The present paper is organized as follows: in Sect. 2 standard notions and notation
concerning local Dirichlet spaces, their associated operators and heat semigroups and
the corresponding diffusion processes is recorded. In Sect. 3 we introduce locally
smoothing spaces and list a number of classes of strongly local Dirichlet spaces that
fall into this framework. In Sect. 4 we first review some important auxiliary results on
weakly λ-subharmonic and λ-defective (signed) functions. We then give an equivalent
characterization of distributionally λ-subharmonic functions on Riemannian mani-
folds in terms of the local heat semigroups, which motivates our notion of locally
λ-shift defective functions, introduced next. We go on to prove that on locally smooth-
ing spaces, the concepts ‘weak λ-subharmonicity’ and ‘local λ-shift defectivity’ are
consistent under natural a priori regularity assumptions. Section 5 contains the afore-
mentioned probabilistic characterization of locally λ-shift defective functions, the
Kato–Brezis theorem, and the regularity Theorem 5.4. Section 6 is devoted to the
maximum principle. Finally, Sect. 7 contains a formulation and proof of the BMS-
conjecture in our general framework.

2 Strongly local Dirichlet spaces

In the sequel we understand our function spaces over R. We follow standard notation
and refer to [29, 45] for textbooks on Dirichlet forms and for a recent article with an
in depth treatment of Dirichlet forms.
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Definition 2.1 A strongly localDirichlet space is a quadruple (X ,m,E ,F (X))where
X is a locally compact, separable, metrizable space, equipped with a Radon measure
m having full support, and E is a closed, symmetric, nonnegative bilinear form in
L2(X ,m) with dense domain of definition F (X) ⊂ L2(X ,m), such that

• (Markovian property) for all contractions T : R → R with T (0) = 0 and all
f ∈ F (X) one has T ◦ f ∈ F (X) with

E (T ◦ f , T ◦ f ) ≤ E ( f , f ),

• (Regularity) The space F (X) ∩ Cc(X) is dense in Cc(X) with respect to ‖•‖∞
and inF (X) with respect to the scalar product

E1(u, v) := E (u, v)+ 〈u, v〉 ,

where

〈u, v〉 =
∫

X
uvdm,

the scalar product in L2(X ,m), a notation we will use, more generally, as long as
uv ∈ L1(X ,m).

• (Strong locality) For all u, v ∈ F (X) such that u is constant on the support of v:

E (u, v) = 0.

We fix a strongly local Dirichlet space (X ,m,E ,F (X)).
For open subsets U , V ⊂ X we use the notation U � V to indicate that U is a

compact subset of X with U ⊂ V .
The regularity property implies [29] thatF (X)∩ L∞(X ,m) is an algebra, and that

for each U1 � U2 � X there exists ψ ∈ F (X) ∩ Cc(X) with ψ = 1 on U1 and
supp(ψ) ⊂ U2. From regularity it also follows that there is a Choquet capacity [29]
Cap(·) on X such that for all open U ⊂ X one has

Cap(U ) = inf{E1( f ) | f ∈ F (X), 1U ≤ f }.

One has m � Cap on Borel sets, and properties that hold away from a set of zero
capacity are said to hold quasi everywhere (q.e).A function f : X → R is called quasi-
continuous, if for all ε > 0 there exists an open setUε ⊂ X withCap(Uε) ≤ ε such that
f |X\Uε is continuous. Every element of F (X) has a quasi-continuous representative
and two such representatives agree q.e., [29]. Following [58], see [29] as well, let

Floc(X) := {
f ∈ L2

loc(X ,m)
∣
∣ for allU � X there exists h ∈ F (X)with f = h on U

}

= {
f ∈ L2

loc(X ,m)
∣
∣ for allφ ∈ F (X) ∩ Cc(X) one has φ f ∈ F (X)

}
,

with the above equality easily checked by regularity. By what we mentioned earlier,
one has 1 ∈ Floc(X). Note that there are different ways of introducing Floc(X),
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see [27, 41] and the discussion in. We also note that thanks to locality, E has a
canonical extension to a bilinear mapFloc(X)×Fc(X) → R, whereFc(X) denotes
the elements of F with compact m-support, given by E ( f , φ) := E (h, φ), where
h ∈ F (X) is such that h = f in an open neighbourhood of the m-support of φ.

Every element of Floc(X) has a quasi-uniquely determined quasi-continuous rep-
resentative, which we will always denote by the same symbol again.

Strong locality implies the formula of Beurling-Deny and Le Jan

E ( f , g) =
∫

X
d�( f , g) for all f , g ∈ F (X),

where the symmetric, nonnegative, bilinear map

� : F (X)×F (X) −→ {signed finite Radon measures on X},

the so called energy measure of (X ,m,E ,F (X)), is defined through polarization by

∫

X
φ d�( f , f ) = E ( f , φ f )− 1

2
E ( f 2, φ) for all

f ∈ F (X) ∩ L∞(X ,m), φ ∈ F (X) ∩ Cc(X).

Whenever it makes sense, we are going to use the standard notation E ( f ) := E ( f , f )
and �( f ) := �( f , f ). The energy measure has the following properties:

• � does not charge sets of zero capacity [29, 58],
• � is strongly local, in the sense that for all U ⊂ X open, all u ∈ F (X) such that
u is constant on U , and all v ∈ F (X), one has 1Ud�(u, v) = 0, cf. [58],

• � satisfies the Leibniz rule [58], in the sense that for all

d�(uv,w) = ud�(v,w)+ vd�(u, w) for all u, v ∈ F (X) ∩ L∞(X ,m), w ∈ F (X),

• � satisfies the chain rule [58], in the sense that

d�(η ◦ u, v) = (η′ ◦ u)d�(u, v) for all u, v ∈ F (X),

where η is any function which is C1 with a bounded derivative, on an interval
which contains the m-essential image of u.

• � satisfies the truncation property [58], in the sense that

d�(u ∧ v,w) = 1{u≥v}d�(u, w)+ 1{u<v}d�(v,w) for all u, v, w ∈ F (X)

• � satisfies the Cauchy-Schwarz inequality

∫

X
f gd�(v,w) ≤

√∫

X
f 2d�(v)
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√∫

X
g2d�(w) for all v,w ∈ F (X), f , g ∈ F (X) ∩ L∞(X ,m). (2.1)

Again, using the locality of �, the energy measure extends to a nonnegative definite
symmetric bilinear form

� : Floc(X)×Floc(X) −→ {signed Radon measures on X},

namely, given f1, f2 ∈ Floc(X) and U � X one sets

1Ud�( f1, f2) := 1Ud�(h1, h2),

where h1, h2 ∈ F (X) are chosen such that f j = h j on U . All the above listed
properties of the energy measure remain to hold, if one replacesF (X) withFloc(X)

and L∞(X ,m) with L∞loc(X ,m) accordingly in the statements.
For future reference, we also note:

Lemma 2.2 Let 0 ≤ w ∈ L∞loc(X ,m) and assume there exists a sequence (wk)k∈N in
Floc(X) such that wk → w in L2

loc(X ,m) and

sup
k

∫

X
d�(wk) <∞.

Then w ∈ Floc(X).

Proof It follows easily from the Markovian property that 0 ≤ v ∈ L∞loc(X ,m) is in
Floc(X), if and only if for all φ ∈ Cc(X) ∩ F (X) one has φ ∧ v ∈ F (X). Thus,
fixing an arbitrary φ ∈ Cc(X) ∩ F (X), we have φ ∧ wk ∈ F (X) for all k, and it
remains to show φ ∧w ∈ F (X). To this end, we note φ ∧wk → φ ∧w in L2(X ,m).
Moreover, by the truncation property,

E (wk ∧ φ) =
∫

{φ<wk }
d�(φ)+

∫

{φ≥wk }
d�(wk) ≤ E (φ)+ sup

k

∫

X
d�(wk).

It follows that (φ ∧ wk)k∈N is bounded in the Hilbert space (F (X),E1). Weak com-
pactness implies that it has a weakly convergent subsequence. The limit must agree
with φ ∧ w, giving φ ∧ w ∈ F (X). ��

We use the notation

Eλ(u, v) := E (u, v)+ λ 〈u, v〉 ,

whenever it makes sense, and recall that a function f ∈ Floc(X) is called

• weakly λ-subharmonic, if

Eλ( f , φ) ≤ 0 for all 0 ≤ φ ∈ Fc(X). (2.2)

123



B. Güneysu et al.

• weakly λ-superharmonic, if − f is weakly λ-subharmonic,
• weakly λ-harmonic, if f is weakly λ-subharmonic and weakly λ-superharmonic.

If λ = 0, one simply talks about weak (sub-/super-) harmonicity.

Lemma 2.3 Assume λ ≥ 0 and that f1, f2 ∈ Floc(X) are weakly λ-subharmonic.
Then f1 ∨ f2 is weakly λ-subharmonic.

Proof In view of f1 ∨ f2 ∈ Floc(X), this statement follows from Theorem 6.4 (iii) in
[42]. ��

Let H ≥ 0 denote the nonnegative self-adjoint operator in L2(X ,m) induced by
E , [29, 40], and let Pt := e−t H for t ≥ 0 (defined by the functional calculus). We
call P = (Pt ; t ≥ 0) the associated (self-adjoint) heat semigroup in L2(X ,m). The
heat semigroup extends to a positivity preservingMarkovian contraction semigroup in
Lq(X) for all q ∈ [1,∞], which is consistent in q (therefore we use the same symbol
for the formally different semigroups on the different spaces), strongly continuous for
q <∞ and weak-∗-continuous for q = ∞.

LetB(X) andB(X ,m) denote, respectively, the space of Borel functions on X and
the space of m-equivalences of Borel functions on X . We stretch the notation further
by setting

Pt f (x) := lim
n→∞ Pt ( f ∨ (−n))(x) ∈ [−∞, 0] for every 0 ≥ f ∈ B(X ,m),

and

Pt f (x) := lim
n→∞ Pt ( f ∧ n)(x) ∈ [0,∞] for every 0 ≤ f ∈ B(X ,m).

Let∞X /∈ X be a cemetery point. We equip the space W (X) of continuous paths

[0,∞) −→ X̂ := X ∪ {∞X }

taking values in the Alexandrov compactification X̂ of X with the σ -algebra and the
filtration which is induced by the coordinate process

X : [0,∞)×W (X) −→ X̂ ,

with the usual notation Xs := X(s, •). Let

θs : W (X) −→ W (X), γ �−→ γ (s + •)

denote the shift operator, and, given an open subset V ⊂ X , let

τV : W (X) −→ [0,∞], τV (γ ) := inf{s ≥ 0 : Xs(γ ) ∈ X \ V }.
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It follows from a by now classical result of Fukushima [28] that there exists a family
(Px )x∈X of diffusion measures on W (X) such that for every f ∈ B(X) ∩ L2(X ,m)

one has

Pt f (x) = E
x [ f (Xt )] :=

∫

f (Xt )dP
x for all t > 0,m-a.e. x ∈ X , (2.3)

where f (∞X ) := 0. See also [45] for the quasi-regular case.
Let U ⊂ X be an open subset. Whenever convenient, we identify functions (and

m−equivalence classes) that vanish outside U with their restriction to U . We get the
strongly local Dirichlet space (U ,m,E ,F (U )) by setting

F (U ) = Cc(U ) ∩F (X)
E1 = {

f ∈ F (X)
∣
∣ f = 0 q.e in X \U}

.

The induced operator, semigroup and diffusion measures are denoted by HU , PU ,
(Px

U )x∈X , respectively. It is well-known that for all open U ⊂ V ⊂ X one has

PU
t f ≤ PV

t f for all t > 0, 0 ≤ f ∈ B(X ,m).

Moreover, from monotone convergence theorems for forms, [40, 54], it easily follows
that

PUn
t f ↑ PV

t f as n →∞, for all t > 0, 0 ≤ f ∈ B(X ,m),

whenever (Un)n∈N is a sequence of open subsets of V with Un ↑ V .

3 Locally smoothing spaces

We collect some classical notions, slightly adjusted to our situation, in:

Definition 3.1 We say that [the semigroup of] (X ,m,E ,F (X)) is

• ultracontractive, if

Pt : L1(X ,m) −→ L∞(X ,m) for all t > 0, (3.1)

bywhichwemean that Pt (L1(X ,m)) ⊂ L∞(X ,m) (which in turn gives continuity
of the induced operator by the closed graph theorem),

• doubly Feller, if one has the mapping properties

Pt : C0(X) −→ C0(X), for all t ≥ 0, (3.2)

and

Pt : L∞(X ,m) −→ C(X) for all t > 0,
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and in addition

lim
t→0+ Pt f (x) = f (x) for all f ∈ C0(X), x ∈ X . (3.3)

Here C0(X) denotes the family of continuous functions vanishing at infinity.
• irreducible, if every f ∈ Floc(X) with E ( f ) = 0 (which is equivalent to �( f ) =
0) is constant.

We say that [the generator of] (X ,m,E ,F (X))

• has a spectral gap, if H > 0, i.e., inf(σ (H)) > 0.
• has purely discrete spectrum, if the spectrum σ(H) of H is purely discrete, that
is, consists of isolated eigenvalues having a finite multiplicity.

A few simple remarks are in order:

Remark 3.2 1. Assume (3.2) and (3.3). Then, by Exercise I-(9.13), p. 51 in [8] or
Lemma 1.4 in [9], one gets that Pt : C0(X) → C0(X), t > 0, is strongly continu-
ous. In particular, then one also has the mapping property

(H + λ)−1 : C0(X) −→ C0(X), for all λ > 0,

which follows from the representation

(H + λ)−1 f =
∫ ∞

0
e−λt Pt f dt, f ∈ C0(X), (3.4)

where the improper Riemannian integral converges in the uniform norm.
2. If (X ,m,E ,F (X)) has purely discrete spectrum, then (X ,m,E ,F (X)) has a

spectral gap, if and only if Ker(H) = {0}.
3. The space (X ,m,E ,F (X)) is irreducible [58], if and only if for every Borel

set Y ⊂ X with Pt (1Y f ) = 1Y Pt f for all t > 0, f ∈ L2(X ,m) one has either
m(Y ) = 0 orm(X\Y ) = 0. This is equivalent to the following positivity improving
property: for all t > 0, 0 ≤ f ∈ L2(X ,m)\{0} one has Pt f > 0.

4. If (X ,m,E ,F (X)) is irreducible, then for all 0 ≤ f ∈ L2(X ,m)\{0}, λ > 0 one
has (H + λ)−1 f > 0. This follows from the previous remark and formula (3.4),
which converges for f ∈ L2(X ,m) in the L2-Bochner sense.

5. By self-adjointness, (3.1) is equivalent to

Pt : L1(X ,m) −→ L2(X ,m) for all t > 0,

in particular, by the spectral theorem and the semigroup property one then has

Pt : L1(X ,m) −→
⋂

n∈N
Dom(Hn) for all t > 0.

We record that in the doubly Feller case, the underlying diffusion is pointwise
determined by the semigroup:
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Lemma 3.3 Assume that (X ,m,E ,F (X)) doubly Feller. Then there exists a uniquely
determined family of diffusion measures (Px )x∈X on W (X), such that for every
bounded function f : X → R, every t > 0, and every x ∈ X, one has

Pt f (x) = E
x [ f (Xt )]. (3.5)

Moreover, one has the absolute continuity condition

(Xt )∗Px � m for all t > 0, x ∈ X ,

in particular, for all q ∈ [1,∞], f ∈ Lq(X ,m), t > 0, the function Pt f has a
pointwise well-defined m−representative, given by the RHS of (3.5).

Proof This result is standard, except possibly the fact that Px is concentrated on con-
tinuous paths for every x ∈ X (noting that the standard theory of Feller processes only
produces measures that are concentrated on cadlag paths). This above pointwise con-
centration follows from observing that the strong locality of E implies this property
for m-a.e. x (in fact, q.e. x ∈ X ), and then the doubly Feller property together with
Theorem 4.5.4(iii) in [29] allows to conclude the pointwise result. ��
Definition 3.4 (X ,m,E ,F (X)) is called locally smoothing, if for allU � X it holds
that

• (U ,m,E ,F (U )) is ultracontractive,
• there exists U ′ ⊂ X open with U ⊂ U ′ and U ′ \ U �= ∅ such that

(U ′,m,E ,F (U ′)) is doubly Feller and irreducible.

Note that if (X ,m,E ,F (X)) is locally smoothing, then so is (U ,m,E ,F (U ))

for every open U ⊂ X .
Locally smoothing spaces have the following self-improvement properties:

Proposition 3.5 Assume that (X ,m,E ,F (X)) is locally smoothing, and let U � X.

(a) For all t > 0 one has

PU
t : L1(U ,m) −→ Cb(U ). (3.6)

(b) The generator of (U ,m,E ,F (U )) has purely discrete spectrum and a spectral
gap.

Proof (a) This statement is well-known in various forms (cf. [15, 17]). We give a
detailed proof for the convenience of the reader: by the semigroup property, we
only have to show that PU

t f is continuous for all f ∈ L∞(U ,m). To see this, pick
U ⊂ U ′ open with (U ′,m,E ,F (U ′)) doubly Feller. We first record the standard
fact that for all t > 0, m-a.e. x ∈ U one has

PU
t f (x) = E

x
U ′ [1{t<τU } f (Xt )],
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and we consider the LHS to be defined pointwise by the RHS. It follows that for
all 0 < s < t one has, by a standard calculation that relies on the Markov property
(cf. p. 18 in [52]),

PU
t f (x)− (

PU ′
s PU

t−s f
)
(x) = E

x
U ′

[
1{s≥τU }θs(1{t−s<τU } f (Xt−s))

]
for all x ∈ U .

Thus,

∣
∣
∣PU

t f (x)− (
PU ′
s PU

t−s f
)
(x)

∣
∣
∣ ≤ ‖ f ‖∞ P

x
U ′(s ≥ τU ).

Since PU ′
s PU

t−s f is continuous, it remains to show that Px
U ′(s ≥ τU ) converges

locally uniformly in x to 0 as s → 0. This, however, is a well-known consequence
of the Feller property (3.2) of (U ′,m,E ,F (U ′)) (cf. Lemma 2.5 in [18]).

(b) Pick U ⊂ U ′ open with U ′\U �= ∅ such that (U ′,m,E ,F (U ′)) is irreducible.
Since PU

t maps to L∞(U ,m) and m(U ) < ∞, PU
t is Hilbert-Schmidt for every

t > 0, see [21], 11.2, 11.16 and the discussion in [55], p.418; thus HU has
purely discrete spectrum. Assume ϕU ∈ Ker(HU ). We are going to show ϕU =
0. As we have ϕU ∈ F (U ) ⊂ F (U ′) with E (ϕU ) = 0, it follows from the
irreducibility of (U ′,m,E ,F (U ′)) that ϕU is constantm-a.e. onU ′. On the other
hand, m(U ′ \U ) > 0 and we have ϕU = 0 m-a.e. in U ′ \U , thus ϕU = 0. ��
Let us give some examples of spaces that are locally smoothing:

Example 3.6 Arbitrary Riemannian manifolds Let X be a connected Riemannian man-
ifold with its Levi-Civita connection ∇ and its Riemannian volume measure m. Then
with

E ( f1, f2) :=
∫

X
(∇ f1,∇ f2)dm (3.7)

the usual energy form with domain of definition F (X) = W 1,2
0 (X), the triple

(X ,m,E ,F (X)) is well-known to be a strongly local Dirichlet space. In this case
one hasFloc(X) = W 1,2

loc (X), andF (U ) = W 1,2
0 (U ) for all open U ⊂ X , so that the

restricted strongly local Dirichlet spaces correspond to Dirichlet boundary conditions.
Moreover, (X ,m,E ,F (X)) is locally smoothing: indeed, givenU � X , one has (3.1)
since for the heat kernels one has

pU (t, x, y) ≤ p(t, x, y),

and p(t, x, y) is jointly smooth in (x, y) (in fact in (t, x, y)). Moreover, picking
U ′ � X connected and with smooth boundary such that U ⊂ U ′ and U ′ \ U �= ∅
one has that (U ′,m,E ,F (U ′)) is doubly Feller, because pU

′
(t, x, y) is smooth, and

PU ′
t f extends continously to zero on ∂U ′ because of Dirichlet boundary conditions

(the strong continuity of PU ′
t : C0(U ′) → C0(U ′) is automatic in this case). More-

over, (U ′,m,E ,F (U ′)) is irreducible, because the connectedness of U ′ implies that
pU

′
(t, x, y) > 0.
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Example 3.7 RCD∗-spaces Consider a complete, locally compact, separable metric
measure space (X ,d), and a Radon measure m on X with full support that gives
a finite mass to open balls; a function g ∈ L2(X ,m) is called a relaxed slope of
f ∈ L2(X ,m), if there exists g̃ ∈ L2(X ,m) and a sequence of Lipschitz functions
fn ∈ L2(X ,m) such that

• fn → f in L2(X ,m) and Lip( fn)→ g̃ weakly in L2(X ,m)

• g̃ ≤ g,

where

Lip(h)(x) := lim sup
y→x

|h(x)− h(y)|
d(x, y)

denotes the local Lipschitz constant of a local Lipschitz function h : X → R. Such a g
is called theminimal relaxed slope of f , if its L2-norm is minimal amongst all relaxed
slopes of f , and then one sets |∇ f |∗ := g. We refer the reader to [1] for equivalent
definitions of |∇ f |∗.

With

F (X) := { f ∈ L2(X ,m) : f has a relaxed slope},

the Cheeger form E is the densely defined functional on L2(X ,m) given by

E ( f ) :=
∫

X
|∇ f |2∗dm, f ∈ F (X),

and (X ,d,m) is called infinitesimally Hilbertian, if E is a quadratic form. In this case,
given f , g ∈ F (X) the limit

(∇ f ,∇g) := lim
ε→0+

1

2ε

(
|∇( f + εg)|2∗ − |∇ f |2∗

)

exists in L1(X ,m), and (X ,m,E ,F (X)) becomes a strongly local Dirichlet space,
with

d�( f , g) = (∇ f ,∇g)dm for all f , g ∈ F (X).

In the Hilbertian case, given N ≥ 1, K ∈ R, one calls (X ,d,m) an RCD∗(K , N )-
space (see [25] and the references therein), if

• every f ∈ F (X) with |∇ f |∗ ≤ 1 has a 1-Lipschitz m-representative,
• one has

∫

X
e−d(x0,x)2dm(x) <∞ for all x0 ∈ X , c > 0,
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• for all f ∈ Dom(H) with H f ∈ F (X) and all 0 ≤ g ∈ Dom(H) ∩ L∞(X ,m)

with Hg ∈ L∞(X ,m) one has the Bochner inequality

−1

2

∫

X
(Hg)|∇ f |2∗dm+

∫

X
g · (∇(H f ),∇ f )dm

≥ K
∫

X
g|∇ f |2∗dm+

1

N

∫

X
g · (H f )2dm.

Here H denotes the nonnegative self-adjoint operator in L2(X ,m) associated with
(E ,F (X)). If (X ,d,m) is an RCD∗(K , N )-space, then this space satisfies the local
volume doubling assumption [25, 59], and the heat kernel of Pt satisfies the two-sided
local Li–Yau heat kernel bounds [35]. It follows from Proposition A.1 in the appendix
that then (X ,m,E ,F (X)) is locally smoothing.

Note that if (X ,d,m) is induced from a complete connected Riemannian manifold
X , then theCheeger form is equal to the energy form, and theRCD∗(K , N )-assumption
is equivalent to dim(X) ≤ N and Ric ≥ K .

Example 3.8 Carnot groups Assume G is a simply connected Lie group with Lie
algebra g, such that there exists N ≥ 1 and a stratification

g = V1 ⊕ · · · ⊕VN

such that [Vi ,V j ] = Vi+ j (noting that such stratification is essentially unique [43]),
where Vk := {0} for k > N . In this situation, G is nilpotent and called a Carnot
group. Let m denote the Haar measure on G, and let V1, . . . , Vd denote a basis of
V1, considered as left invariant vector fields on G. Then the closure (E ,F (G)) in
L2(G,m) of the symmetric bilinear form

C∞c (G)× C∞c (G) � ( f , g) �−→
∫

G

d∑

i, j=1
(Vi f )(Vj g)dm ∈ R

turns (X ,m,E ,F (X)) into a strongly local Dirichlet space with

d�( f , g) =
d∑

i, j=1
(Vi f )(Vj g)dm for all f , g ∈ F (G).

The Carnot-Caratheodory distance d on G is complete and induces the original topol-
ogy onG [24], and the metric measure space (G,d,m) becomes doubling and Ahlfors
regular, m(B(x, r)) ∼ r Q , where

Q :=
N∑

i=1
i dim(Vi )

123



A new notion of subharmonicity on locally smoothing…

denotes the homogeneous dimension. Furthermore, the heat kernel of Pt satisfies the
two-sided Gaussian estimate, as shown in [10]: there exist c1, c2, c3, c4 > 0 such that
for all t > 0, x, y ∈ G one has

c1t
−Q/2e−c2

d(x,y)2

t ≤ p(t, x, y) ≤ c3t
−Q/2e−c4

d(x,y)2

t .

It follows from Proposition A.1 in the appendix that (G,m,E ,F (G)) is locally
smoothing. Note that in general (G,d,m) is not an RCD∗-space. In fact, it has been
shown in [37] that for the Heisenberg group H2m+1 there exists no pair (N , K ) such
that (H2m+1,d,m) becomes an RCD∗(K , N ) space.

Example 3.9 Unbounded Sierpinski gasket Let X ⊂ R
2 be the unbounded Sierpinski

gasket, with its usual graph approximation (Xn) ⊂ X . Then with α := log(3)/ log(2)
the Hausdorff dimension of X andm the α-dimensional Hausdorff measure on X , the
symmetric bilinear form

E ( f , g) := lim
n→∞

(
5

3

)n ∑

x,y∈Xn ,x∼y

( f (x)− f (y))2,

F (X) := { f ∈ L2(X ,m) : E ( f ) <∞},

turns (X ,m,E ,F (X)) into a strongly local Dirichlet space. This follows from com-
bining the results in [4] with Proposition A.2.

4 A new notion of subharmonic functions

We start this section with the following classical definition, see [29, 45]:

Definition 4.1 Given λ ≥ 0, h ∈ L1
loc(X ,m) is called

(i) λ-defective, if h ≤ 0 and e−λt Pt h ≥ h for all t > 0,
(ii) λ-excessive, if −h is λ-defective.

The following characterization of subharmonic functions of fixed sign is well-
known, if one considers functions in Floc(X), see [29], Theorem 2.2.1, [45],
Proposition III.1.2. The main point of the result below is that we can drop this local
regularity assumption. For λ = 0, it has already been recorded by Sturm in [58],
Lemma 3, that this is possible. Note, however, that the methods from therein do not
generalize directly to the λ > 0 case, roughly speaking, as they rely on the strong
locality of E (which fails for Eλ).

Theorem 4.2 Let h ∈ L1
loc(X ,m), and let λ ≥ 0.

(a) Assume h ≤ 0 and consider the following properties:

(i) h is weakly λ-subharmonic.
(ii) For all f ∈ Fc(X) one has h ∨ f ∈ F (X) and Eλ(h ∨ f , f − h ∨ f ) ≥ 0.
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(iii) For all f ∈ Fc(X) one has h ∨ f ∈ F (X) and Eλ( f , f − h ∨ f ) ≥ 0.
(iv) For all f ∈ Fc(X) one has h ∨ f ∈ F (X) and Eλ(h ∨ f ) ≤ Eλ( f ).
(v) h is λ-defective.

Then the following implications hold:
(i) ⇒(ii) ⇒[(iii) and (iv)]⇐⇒(v).

(b) Assume h is λ-defective. Then one has

h ∈ Floc(X) ⇐⇒ ∃h� ∈ Floc(X) : h ≥ h�

⇐⇒ ∀V � X ∃h�
V ∈ Fc(X) : h|V ≥ h�

V .

In particular, if h ∈ L∞loc(X ,m), then h ∈ Floc(X).
(c) If h is λ-defective and h satisfies one of the equivalent conditions from (b), then h

is weakly λ-subharmonic.

Proof We follow an approach which is in the spirit of [53], Section 2.4.

(a) (i) ⇒(ii): This is ‘algebraic’ in nature, we follow the proof of Lemma 2.50 in
[53]. We let f ∈ Fc(X) and consider V � X so that supp( f ) ⊂ V . Note that
h ∈ Floc(X) by assumption and therefore, there is h� ∈ Fc(X) such that

h = h� on V .

We can and will assume that h� ≤ 0 and note that

h ∨ f = h� ∨ f ∈ Fc(V ).

Having seen this, we omit the superscript � for the rest of the calculation. Since

h ∨ f = 1

2
(h + f + |h − f |) ,

it follows that

Eλ(h ∨ f )− Eλ(h ∨ f , f ) = Eλ(h ∨ f , h ∨ f − f )

= 1

4
Eλ ( f + h + |h − f | , h + |h − f | − f )

= 1

4
{Eλ (h + |h − f |)− Eλ ( f )}

= 1

4
{Eλ (h)+ Eλ (|h − f |)+ 2Eλ (h, |h − f |)− Eλ ( f )}

≤ 1

4
{Eλ (h)+ Eλ (h − f )+ 2Eλ (h, |h − f |)− Eλ ( f )}

= 1

4
{2Eλ (h)− 2Eλ (h, f )+ 2Eλ (h, |h − f |)}

= 1

2
{Eλ (h, h − f + |h − f |)}

= Eλ (h, (h − f )+) ≤ 0,
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since h is weakly λ-subharmonic and

0 ≤ (h − f )+ = h ∨ f − f ∈ Fc(X).

From this chain of inequalities we get:

Eλ(h ∨ f , f ) ≥ Eλ(h ∨ f ),

which is (ii); expanding f = f − h ∨ f + h ∨ f we get (iii), since

Eλ( f , f − h ∨ f ) ≥ Eλ(h ∨ f , f − h ∨ f ) ≥ 0,

which in turn is obvious. From (ii) and (iii) we get (iv):

Eλ( f )− Eλ(h ∨ f ) = Eλ( f + h ∨ f , f − h ∨ f )

= Eλ( f , f − h ∨ f )+ Eλ( f ∨ h, f − h ∨ f )

≥ 0

The equivalence [(iii) and (iv)]⇐⇒(v) is a consequence of the characterization of
convex sets that are invariant under the semigroup in terms of the corresponding
quadratic form given in [48]. Here are the details: For given h as in the assumption,
the set

K := {v ∈ L2(X ,m) | v ≥ h}

is closed and convex in L2(X ,m) and the projection π : L2(X ,m) → K is given
by π f = h ∨ f . Clearly (v) implies that the semigroup associated with Eλ, given
by St = e−λt Pt for t ≥ 0, leaves K invariant. Denoting the following stronger
versions of the properties in the Theorem by
(iii’) For all f ∈ F (X) one has h ∨ f ∈ F (X) and Eλ( f , f − h ∨ f ) ≥ 0.
(iv’) For all f ∈ F (X) one has h ∨ f ∈ F (X) and Eλ(h ∨ f ) ≤ Eλ( f ),
(iii’)⇐⇒(iv’)⇐⇒(v) follows from Theorem 2.1 and Corollary 2.4 in [48].
A standard approximation argument gives (iv)⇒ (iv’) and so we get the implica-
tions:
(ii)⇒ [(iii) and (iv)]⇒ (iv’)⇔ (v)⇔ (iii’), which settles (a).

(b) For the two equivalences, it remains to show that the last property implies the
first. The other implications are evident. Let V � X and h�

V as asserted. Then (iii)

implies that h ∨ h�
V ∈ F (X) and h ∨ h�

V = h on V , giving that h ∈ Floc(X). The
‘in particular’ follows, since locally bounded functions can be locally minorized
by (negative) equilibrium potentials, see below.

(c) This is a standard semigroup argument plus some approximation argument. It
suffices to consider bounded h: in fact,

Eλ(h, f ) = lim
n→∞Eλ(h ∨ (−n), f )
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for any f ∈ Fc(X) and h ∨ (−n) is λ-defective, provided h is. By rescaling, we
can and will assume that h ≥ −1. Let f ∈ Fc(X), f ≥ 0 and pick V ,W open,
V � W � X such that supp( f ) ⊂ V . Let eW be the λ-equilibrium potential of
the set W , see [29], which is λ-excessive. Therefore,

h� := h ∨ (−eW )

is λ-defective, h = h� on W and h� ∈ F (X), because −h� is λ-excessive and
0 ≤ −h� ≤ eW ∈ F (X). It follows that

Eλ(h, f ) = Eλ(h
�, f )

= − lim
t↘0

〈

h�,
1

t

(
e−λt Pt f − f

)
〉

= − lim
t↘0

〈
1

t

(
e−λt Pt h

� − h�
)
, f

〉

≤ 0,

completing the proof. ��
The following characterization of λ-subharmonic functions in the distributional

sense in the Riemannian case served as the blueprint for our new notion of subhar-
monicity in Definition 4.4 below. Recall that a distribution g defined on an open setU
of a Riemannian manifold X with Laplace–Beltrami operator� is called λ-harmonic,
if (�− λ)g = 0 on U in the sense of distributions. By local elliptic regularity, this is
equivalent to g being a smooth classical solution of the latter equation and thus also
to the weak λ-harmonicity of g.

Proposition 4.3 Assume X is a connected Riemannian m-manifold (considered as a
smoothing strongly local Dirichlet space in the sense of Example 3.6) and let f ∈
L1
loc(X ,m), λ ≥ 0. The following two properties are equivalent:

(i) (� − λ) f ≥ 0 in the sense of distributions, that is, 〈 f , (�− λ)φ〉 ≥ 0 for all
0 ≤ φ ∈ C∞c (X),

(ii) For all U � X there exists a λ-harmonic function g ∈ Cb(U ) on U such for all
t > 0 one has e−tλPU

t ( f |U − g) ≥ f |U − g.

Proof Note first that in the above situation, e−tλPU
t ( f |U −g) ≥ f |U −g for all t > 0

is equivalent to

t �→ e−tλPU
t ( f |U − g) is increasing in t > 0.

(i)⇒ (ii): By Theorem D or Theorem 3.2 in [7] we can pick open and smooth neigh-
bourhoods U � U ′ � Ũ � X and a sequence ( fk) ∈ C∞(Ũ ) such that

• fk |U ′ ↘ f |U ′ ,
• � fk − λ fk ≥ 0 in Ũ ,
• supU ′ fk |U ′ ≤ supU ′ f |U ′ + 1 for all k.
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Note that the first property implies fk → f |U ′ in L1(U ′) by dominated convergence
and also that f can be chosen upper semicontinuous. By the latter fact we can pick
c ∈ R such that f |U ′ ≤ c/2 and fk |U ′ ≤ c. Let g̃ be a solution to

{
(�− λ)g̃ = 0 on U ′

g̃|∂U ′ = c

and set h := f |U ′ − g̃. We have that hk := fk |U ′ − g̃ is λ-subharmonic on U ′ and
hk ≤ 0 on ∂U ′. Thus h = limk→∞ hk ≤ 0 on U ′ by the (weak) maximum principle.
Moreover, hk → h in L1(U ′). Let 0 ≤ φ ∈ C∞c (U ′). For all t > 0 one has

(d/dt)
〈
e−λt PU ′

t h, φ
〉
=

〈
(�− λ)e−λt PU ′

t h, φ
〉
=

〈
e−λt PU ′

t h, (�− λ)φ
〉

=
〈
h, e−λt PU ′

t (�φ − λφ)
〉
=

〈
h, (�− λ)e−λt PU ′

t φ
〉
.

Since �e−λt PU ′
t φ = e−λt PU ′

t �φ is bounded, the latter is

= lim
k

〈
hk,�e−λt PU ′

t φ − λe−λt PU ′
t φ

〉
.

Next we show
〈
hk,�e−λt PU ′

t φ − λe−λt PU ′
t φ

〉
≥ 0 for all k.

To this end, we compute

〈
hk,�e−λt PU ′

t φ − λe−λt PU ′
t φ

〉
=

∫

∂U ′
hk∂ν

(
e−λt PU ′

t φ
)
dσ

−
∫

U ′
(∇hk,∇e−λt PU ′

t φ)dm

−
∫

U ′
λhke

−λt PU ′
t φdm

≥ −
∫

U ′
(∇hk,∇e−λt PU ′

t φ)dm

−
∫

U ′
λhke

−λt PU ′
t φdm

=
∫

U ′
(�hk − λhk)e

−λt PU ′
t φdm

−
∫

∂U ′
(e−λt PU ′

t φ)∂νhkdσ

≥ 0,

where we have used hk ≤ 0 and ∂νe−λt PU ′
t φ ≤ 0 (because e−λt PU ′

t φ ≥ 0) in the first
inequality, and e−λt PU ′

t φ = 0 on ∂U ′ together with (�−λ)hk ≥ 0 and PU ′
t φ ≥ 0 on
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U ′ for the last inequality. We have thus shown e−λt PU ′
t ( f |U ′ − g̃) ≥ f |U ′ − g̃ for all

t > 0. Since PU ′
t → 0 as t →∞ strongly in L1(U ,m) (cf. the proof of Lemma 4.6(b)

below for a detailed argument), we have f |U ′ − g̃ ≤ 0. Thus,

e−λt PU
t ( f |U − g̃|U ) ≥ e−λt PU ′

t ( f |U ′ − g̃) on V ,

and the claim follows from setting g := g̃|U .
(i) ⇐ (ii): Let U � X be arbitrary and pick a λ-harmonic function g on U as

in the assumption. We have e−λt PU
t ( f |U − g) → f |U − g in L1(U ,m), and so

e−λt PU
t ( f |U − g)→ f |U − g as t → 0+ as distributions. Since

(�− λ)e−λt PU
t ( f |U − g) = ∂t e

−λt PU
t ( f |U − g) ≥ 0,

as e−λt PU
t ( f |U − g) is increasing in t , we get for all 0 ≤ φ ∈ C∞c (U ),

∫

U
f (�φ − λφ)dm =

∫

U
( f − g)(�φ − λφ)dm

= lim
t→0+

〈
e−λt PU

t ( f |U − g),�φ − λφ
〉

= lim
t→0+

〈
(�− λ)e−λt PU

t ( f |U − g), φ
〉
≥ 0,

and the proof is complete. ��
The previous result motivates:

Definition 4.4 Let f ∈ L1
loc(X ,m), λ ≥ 0. We say that f is

• locally λ-shift defective, if for allU � X there exists aweaklyλ-harmonic function
g ∈ Cb(U ) such that

e−tλPU
t ( f |U − g) ≥ f |U − g for all t > 0, (4.1)

• locally λ-shift excessive, if − f is locally λ-shift defective.

If λ = 0, then we will simply talk about ‘locally shift defective (excessive)’.

Remark 4.5 1. We stress that no a priori regularity on f is needed in the above defi-
nition, other than the somewhat minimal L1

loc-assumption.
2. Note that in the definition of local λ-shift defectiveness we do not require explicitly

that f |U − g ≤ 0. The latter will however follow automatically in the locally
smoothing case (cf. the transfer principle below). In other words, in the locally
smoothing case, f ∈ L1

loc(X ,m) is locally λ-shift defective, if and only if for
all U � X there exists a λ-harmonic function g ∈ Cb(U ) such that f |U − g
is λ-defective in U , hence f |U − g ≤ 0. This justifies the name ‘locally λ-shift
defective’.
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3. A function f ∈ L1
loc(X ,m) is obviously locally λ-shift defective, if and only

if f |U is locally λ-shift defective for every U � X , that is, with respect to
(U ,m,E ,F (U )). Moreover, the class of locally λ-shift defective functions is
stable under taking sums, multiplication by positive constants, and shifting by
negative constants.

For locally smoothing spaces we get the following result, which will allow us to
transfer results for signed functions to functions of varying sign:

Lemma 4.6 (Transfer principle) Let (X ,m,E ,F (X)) be locally smoothing and λ ≥
0.

(a) For every c ∈ R, U � X there exists g ∈ Cb(U ) weakly λ-harmonic on U, such
that g ≥ c.

(b) If f ∈ L1
loc(X ,m) is locally λ-shift defective, then with U, g as in Definition 4.4

one has f |U − g ≤ 0.

Proof (a) Pick an open set U ′ ⊂ X such that U � U ′ and U ′ \U �= ∅, and such that
(U ′,m,E ,F (U ′)) is doubly Feller and irreducible. Pick 0 ≤ ψ ∈ Cc(U ′) \ {0}
with supp(ψ) ⊂ U ′ \U .
Assume first λ > 0. Then we can define

0 < h := (HU ′ + λ)−1ψ ∈ C0(U
′) ∩ Dom(HU ′).

Since h is continuous and the closure of U is a compact subset of U ′, we have
inf h|U > 0, and so for some a > 0 we have c ≤ g := a ·h|U ∈ Cb(U )∩Floc(U ),
and given φ ∈ Fc(U ) we have

E (g, φ)+ λ 〈g, φ〉 = aE (h, φ)+ λa 〈h, φ〉
= a〈HU ′h, φ〉 + aλ 〈h, φ〉 = a 〈ψ, φ〉 = 0.

For λ = 0, we can simply take a constant function.
(b) For all t ≥ 1 we have

e−tλPU
t−1PU

1 ( f |U − g) ≥ f |U − g,

where PU
1 ( f |U−g) ∈ L2(U ,m). By spectral calculus we have that PU

s converges
as s →∞ strongly in L2(U ,m) to the projection onto Ker(HU ), the latter space
being equal to {0}, as HU has a spectral gap. ��
We continue with:

Lemma 4.7 (Approximation lemma) Assume (X ,m,E ,F (X)) is locally smoothing
and λ ≥ 0. Let f be locally λ-shift defective.

Given U � X, pick a weakly λ-harmonic function g ∈ Cb(U ) on U as in Defini-
tion 4.4. Then, for every k ∈ N,

f Uk := e−λ/k PU
1/k( f |U − g)+ g ∈ Floc(U ) ∩ Cb(U )

123



B. Güneysu et al.

is locally λ-shift defective and weakly λ-subharmonic, and one has f Uk ↓ f |U m-a.e.,
and so f •U := infk∈N f Uk is an upper semicontinuous (u.s.c.)m-representative of f |U .

In particular, the function f has an u.s.c. m-representative.

Proof Let V � U . We have

e−λt PV
t ( f Uk |V − g|V ) = e−λt PV

t

(
e−λ/k(PU

1/k( f |U − g))|V
)

≥
(
e−λt PU

t (e−λ/k PU
1/k( f |U − g))

)
|V

=
(
e−λ(t+1/k)PU

t+1/k( f |U − g)
)
|V ≥

(
e−λ/k PU

1/k( f |U − g)
)
|V = f Uk |V − g|V ,

where have used that f |U − g ≤ 0 for the first estimate (part (b) of transfer principle),
and that f is locally λ-shift defective. Thus f Uk is locally λ-shift defective. Since
f Uk −g ≤ 0 is continuous and λ-defective, it is weakly λ-subharmonic by Theorem 4.2
(c). This sequence converges pointwise in a monotonically decreasing way onU , and
the limit function is u.s.c. and coincides m-a.e. with f |U .

The ’in particular’ follows with a partition of unity argument. ��
Using the transfer principle, we can establish the following results analogous to

those of Theorem 4.2, now for functions of varying sign:

Theorem 4.8 Let λ ≥ 0 and let (X ,m,E ,F (X)) be locally smoothing.

(a) If f ∈ L1
loc(X ,m) is locally λ-shift defective and in Floc(X), then f is weakly

λ-subharmonic. In particular, if f ∈ L∞loc(X ,m) is locally λ-shift defective, then
f is weakly λ-subharmonic

(b) If f ∈ Floc(X) is weakly λ-subharmonic and locally bounded above, then f is
locally λ-shift defective.

Proof (a) Let U � X be arbitrary and pick g as in Definition 4.4. Then f |U − g ∈
Floc(U ) is λ-defective on U by the transfer principle; applying Theorem 4.2(c)
with h = f |U − g on U (instead of X ) shows that this function is weakly λ-
subharmonic on U , and so f |U = f |U − g + g is weakly λ-subharmonic on
U .

(b) Let U � X be arbitrary and pick c ∈ R with f |U ≤ c and using the transfer
principle pick g ∈ Cb(U )weakly λ-harmonic onU with g ≥ c. Then f |U−g ≤ 0
is weakly λ-subharmonic on U , and so applying Theorem 4.2 (a) to h = f |U − g
on U gives that

e−λt PU
t ( f |U − g) ≥ f |U − g,

completing the proof. ��
Remark 4.9 The local boundedness from above, required in (b) of the previous Theo-
rem, can be typically deduced from elliptic or parabolic subsolution estimates, which
are valid under some mild local assumptions on the space. For the most general result
to this effect that we are aware of, we can refer to Theorem 4.7 in [44]: under the
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assumption that the space (X ,m,E ,F (X)) has the property that on every U � X a
volume doubling up to a finite scale and a Poincare inequality up to a finite scale are
satisfied, a parabolic subsolution estimate is valid, which shows that every weakly λ-
subharmonic function is automatically locally bounded above. Indeed, if f is weakly
λ-subharmonic, then so if f+ by Lemma 2.3, and then applying Theorem 4.7 in [44] to
(t, x) �→ e−tλ f+(x), we get that on such a space f+ is automatically locally bounded,
and so f is locally bounded above. This applies to all examples of locally smoothing
spaces above.

5 Kato–Brezis theorem and regularity for �-shift defective functions

The starting point of this section is the following probabilistic characterization of
locally λ-shift defective functions:

Proposition 5.1 Assume that (X ,m,E ,F (X)) is locally smoothing and that λ ≥ 0. A
function f ∈ L1

loc(X ,m) is locally λ-shift defective, if and only if for all U � X there
exists a u.s.c m-representative f •U of f |U such that for all V � U with U \ V �= ∅
one has

E
x
U

[
e−λτV f •U (XτV )

] ≥ f •U (x) for q.e. x ∈ V . (5.1)

The proof is based on the following technical result by Chen and Kuwae, which
holds on any strongly local Dirichlet space and which follows from applying Theorem
2.9 in [16] (see also [13]) to the Dirichlet form which is shifted by λ, noting that the
result therein holds for nonlocal Dirichlet forms:

Lemma 5.2 A function h ∈ L∞loc(X) is weakly λ-subharmonic, if and only if for all
V � X with X\V �= ∅ one has

E
x [

e−λτV h(XτV )
] ≥ h(x) for q.e. x ∈ V . (5.2)

Note that, if h ∈ L∞loc(X) is weakly λ-harmonic, one gets an equality in (5.2).

Proof of Proposition 5.1 ⇒: Let U � X . Consider the functions g, f Uk , f •U from the
approximation Lemma 4.7. For every k ∈ N the function f Uk − g ≤ 0 is continuous
and λ-defective on U , in particular, weakly λ-subharmonic on U by Theorem 4.2(c).
It follows from using the previous lemma with h = f Uk − g that

E
x
U

[
e−λτV ( f Uk − g)(XτV )

]
≥ ( f Uk − g)(x) for q.e. x ∈ V .

For k →∞ we arrive at

E
x
U

[
e−λτV ( f •U − g)(XτV )

] ≥ ( f •U − g)(x) for q.e. x ∈ V ,
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which using the previous lemma with h = g gives

E
x
U

[
e−λτV g(XτV )

] = g(x) for q.e. x ∈ V , (5.3)

proving (5.1).
⇐: The function f •|U is bounded above for givenU � X . As above, we can pick a

weakly λ-harmonic function g ∈ Cb(U ) such that f •|U − g ≤ 0 onU . Given V � U
with U\V �= ∅, the assumption on f together with (5.3) implies

E
x
U

[
e−λτV ( f •U − g)(XτV )

] ≥ f •U (x)− g(x), for q.e. x ∈ V .

For arbitrary n ∈ N, this implies

E
x
U

[
e−λτV

(
( f •U − g) ∨ (−n)

)
(XτV )

] ≥ ( f •U (x)− g(x)) ∨ (−n), for q.e. x ∈ V .

and so the locally bounded function ( f •U−g)∨(−n) is weakly λ-subharmonic onU by
the previous lemma. From Theorem 4.2(a) we get that ( f •U − g)∨ (−n) is λ-defective
onU . Since this is true for arbitrary n ∈ N, we get that f •U − g is λ-defective onU . ��

As noted above, Lemma 5.2 is a consequence of Theorem 2.9 in [16]. The latter
gives a probabilistic characterization of weak λ-subharmonicity under the a priori
assumption that the function is in L∞loc. This assumption is partially used in [16] to
verify necessary measurability proporties and to make the expectation on the LHS of
(5.2) well-defined, noting that the proof goes through an intermediate step, giving a
characterization in terms of a submartingale property.

Note that we do not make an L∞loc-assumption in Proposition 5.1, replacing the
weak λ-subharmonicity assumption with a local λ-shift defectiveness assumption in
one direction of the equivalence of Lemma 5.2. The main reason for this is that we
get a u.s.c.m-respresentative from our local smoothing assumptions on the space. The
main strength of Theorem 2.9 in [16], however, clearly lies in the very remarkable
fact that this result applies to nonlocal forms (with some mild additional regularity
assumptions).

As an application of Proposition 5.1 we immediately get the following generaliza-
tion of a consequence of Kato’s celebrated inequality, Lemma A from [39], which
states that for all f ∈ L1

loc(R
n) such that � f ∈ L1

loc(R
n), one has

�| f | ≥ sign( f )� f (5.4)

in the sense of distributions. This readily gives

� f+ ≥ 1{ f≥0}� f . (5.5)

This was later sharpened and generalized (see Ancona, [3] for a thorough discus-
sion) to the case that � f is a Radon measure in the article [12] by Brezis and Ponce.
It is maybe superfluous to add that some regularity assumption on � f is needed to
ensure that the RHS of (5.4) and (5.5) are well-defined distributions. An immediate

123



A new notion of subharmonicity on locally smoothing…

consequence of the latter estimate is that� f+ is a positive distribution, in other words,
f+ is subharmonic in the distributional sense. Remarkably, using the results we have
obtained so far, we get a considerably strengthened variant of the statement f ∈ L1

loc
is subharmonic in the distributional sense⇒ f+ is subharmonic in the distributional
sense in our general setting, where neither test functions nor distributions are available.
Indeed, the the following result follows immediately from Proposition 5.1:

Theorem 5.3 (Kato–Brezis) Assume that (X ,m,E ,F (X)) is locally smoothing and
that λ ≥ 0. If f , g ∈ L1

loc(X ,m) are locally λ-shift defective, then so is f ∨ g. If
0 ≤ f ∈ L1

loc(X ,m) is locally λ-shift defective, then f is locally shift defective.

The reader may find similar statements in [50] for Riemannian manifolds and in
[19] for Carnot groups.

As a first application of the above theorem, we are going to prove:

Theorem 5.4 (Regularity theorem) Let (X ,m,E ,F (X)) be locally smoothing, let
λ ≥ 0 and let f ∈ L1

loc(X ,m) be locally λ-shift defective. Then for every c ≥ 0, q > 1

one has ( f − c)q/2
+ ∈ Floc(X), and for q ≥ 2 this function is weakly subharmonic.

Proof The function f −c is locally λ-shift defective and so byKato–Brezis ( f −c)+ is
locally λ-shift defective. Thus we can assume c = 0 and f ≥ 0. Then, again by Kato–
Brezis, f is locally shift defective. As f has a u.s.c. m-representative, f is locally
bounded above (and by f ≥ 0 then locally bounded) and thus weakly subharmonic
by Theorem 4.8 (a). It then follows immediately from the chain rule that for q ≥ 2
the function f q/2 is weakly subharmonic as well (cf. the calculation in the proof of
Lemma 2 a) in [58]).

For arbitrary q > 1 we proceed as follows to show that f q/2 ∈ Floc(X): let V � X
be arbitrary and pickU with V � U � X . We also pick 0 ≤ φ ∈ Cc(U )∩F (U ) such
that 1V ≤ φ ≤ 1U , and a sequence

(
f Uk

)
k∈N as in Lemma 4.7 and set 0 ≤ f |U ≤

fk := f Uk ∈ Floc(U )∩Cb(U ) for notational convenience. Replacing fk with fk+1/k

if necessary, we can assume fk > 0 and still get fk ↓ f |U . We have f q−1k ∈ Floc(U )

by the chain rule, so

0 ≤ ψk := φ2 f q−1k ∈ F (U ) ∩ Cc(U )

is a test function. Since fk is weakly subharmonic,

0 ≥ E ( fk, ψk) =
∫

U
d�( fk, φ

2 f q−1k )

=
∫

U
φ2d�( fk, f q−1k )+

∫

U
f q−1k d�( fk, φ

2)

= (q − 1)
∫

U
φ2 f q−2k d�( fk)+ 2

∫

U
f q−1k φd�( fk, φ),

where have used the chain rule. Using the Cauchy-Schwarz inequality (2.1) with

v = fk, w = φ, f = φ f q/2−1
k , g = f q/2

k ,
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on the second term we get, for ε > 0:

2

∣
∣
∣
∣

∫

U
f q−1k φd�( fk, φ)

∣
∣
∣
∣ ≤ 2

(∫

U
φ2 f q−2k d�( fk)

) 1
2
(∫

U
f qk d�(φ)

) 1
2

≤ ε

∫

U
φ2 f q−2k d�( fk)+ 1

ε

∫

U
f qk d�(φ)

For ε > 0 small enough (depending only on q), we deduce that

0 ≥ (q − 1− ε)

∫

U
φ2 f q−2k d�( fk)− ε−1

∫

U
f qk d�(φ),

Using the chain rule

d�( f q/2
k ) = q2

4
f q−2k d�( fk),

we end up with the second estimate in

∫

V
d�( f q/2

k ) ≤
∫

U
φ2d�( f q/2

k )

≤ q2

4ε(q − 1− ε)

∫

U
f qk d�(φ) ≤ q2

ε(q − 1− ε)

∫

U
f q1 d�(φ),

the latter expression being finite, as f q1 ∈ L∞(U ,m). Finally, applying Lemma 2.2

with wk := f q/2
k |V , we can conclude f q/2|V ∈ Floc(V ), as clearly wk → f q/2|V in

L2
loc(V ,m) (in fact, in L2(V ,m)). ��

6 Maximum principle

The main result of this section is:

Theorem 6.1 (Maximum principle) Let (X ,m,E ,F (X)) be locally smoothing and
let f ∈ L1

loc(X ,m).

(a) If f is locally shift defective, then for every V � X there exists a u.s.c m-
representative f •V on V of f |V such that

sup
V

f •V = sup
∂V

f •V .

(b) If λ ≥ 0 and if f is be locally λ-shift defective, then for every V � X there exists
a u.s.c. m-representative f •+,V on V of f+|V such that

sup
V

f •+,V = sup
∂V

f •+,V .
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Note that part (b) follows immediately frompart (a), as by theKato–Brezis theorem,
f+ is locally shift defective. Note also that it follows immediately fromProposition 5.1
that

f •V ≤ sup
∂V

f •V q.e. in V .

In this sense, the main point of Theorem 6.1 is to show that one can guarantee a
pointwise inequality of this form.

Proof of Theorem 6.1 a) From the definition of local shift defectiveness, it is easy to
see that it is enough to prove that for every defective function h, which is defined in an
open neighbourhood U � X of V , there exists an m-representative h• of h such that

sup
∂V

h• ≥ sup
V

h•.

As PU
t h(x) is continuous in x and increasing in t , we define

h• := lim
n→∞ PU

1/nh.

Assume, by contradiction, that there exists x̄ ∈ V such that h•(x̄) > sup∂V h•. We
choose δ1, δ2 ∈ R such that

h•(x̄) > δ1 > δ2 > sup
∂V

h•.

Since h• is u.s.c., we have that h• < δ2 in some open neighborhood N∂V of ∂V in V̄
and, up to choosing a smaller set, we can always assume that

h• ≤ δ2 in 'N∂V .

We claim that, by a variation of the proof of Dini’s theorem, there exists t0 > 0 small
enough such that, for all 0 < t < t0,

PU
t h < δ1 in 'N∂V .

Indeed, let

Et := {x ∈ V̄ : PU
t h < δ1}.

Since h is defective, Et ⊆ Es for t > s, and by pointwise convergence we get

'N∂V ⊂
⋃

t>0

Et .

Hence Et0 ⊃ 'N∂V for some t0 small enough, and the claimed property follows.
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On the other hand

PU
t h(x̄) ≥ h•(x̄) > δ1.

Now, PU
t h is defective on U and in F (U ) ∩ Cb(U ). Thus, Theorem 4.2 (c) implies

that PU
t h, and hence u := PU

t h − δ1, is weakly subharmonic. Since u ≤ 0 in V̄ \Y
where Y := V̄ \N∂V , the weak maximum principle of [58, Lemma 4] gives that u ≤ 0
on V . In particular,

PU
t h(x̄) ≤ δ1.

The contradiction completes the proof. ��
Example 6.2 Assume that (X ,m,E ,F (X)) stems from an RCD∗(0, N ) space for
some N ≥ 1, see Example 3.7 above. Since |∇·|∗ is local, one can define |∇ f |∗ also for
f ∈ Floc(X). Let f be weakly λ-harmonic for some λ ≥ 0, with λ f ∈ Lq

loc(X ,m) for
some q ≥ max(N , 4). It then follows from the localized Bochner inequality (cf. [34])
that |∇ f |2∗ is weakly subharmonic. By Remark 4.9 this function is locally bounded
(above), and so Theorem 4.8 (b) shows that this function is locally shift defective. We
get that for every V � X there exists a u.s.c. m-representative |∇ f |2∗•V of |∇ f |2∗|V
such that

sup
V

|∇ f |2∗•V = sup
∂V
|∇ f |2∗•V .

7 A proof of the BMS-conjecture on locally smoothing spaces

We still assume that (X ,m,E ,F (X)) is a strongly local Dirichlet space. Then there
exists a possibly degenerate pseudo metric dE on X (that is, it may happen that
dE (x, y) = ∞ for some x, y ∈ X , or that dE (x, y) = 0 for some x, y ∈ X with
x �= y), called the intrinsic metric, given by

dE (x, y) := sup{ f (x)− f (y) : f ∈ Floc(X) ∩ C(X), d�( f ) ≤ dm},

where the condition d�( f ) ≤ dm means that �( f ) is absolutely continuous with
respect to m, with a density ≤ 1.

Definition 7.1 We say that (X ,m,E ,F (X)) is

• strictly local, if dE induces the original topology on X ,
• intrinsically complete, if this space is strictly local and complete.

If (X ,m,E ,F (X)) is strictly local, then intrinsic completeness is equivalent to
properness. This follows from the Hopf-Rinow theorem for locally compact length
spaces, in combination with the fact that strictly local Dirichlet spaces are lenght
spaces [56].
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In spirit of [58], we say that (X ,m,E ,F (X)) has the Lq-Liouville property, for
given q ∈ [1,∞], if every weakly subharmonic function 0 ≤ f ∈ Lq(X ,m) is
constant. One of the main results from Sturm’s seminal paper [58] states:

Theorem 7.2 If (X ,m,E ,F (X)) is intrinsically complete and irreducible, then it has
the Lq-Liouville property for every q ∈ (1,∞).

The following definition is adapted from [31], where the setting of Riemannian
manifolds has been considered:

Definition 7.3 Given q ∈ [1,∞], one says that (X ,m,E ,F (X)) is Lq-positivity
preserving, if for every locally 1-shift-excessive function f ∈ Lq(X ,m) one has
f ≥ 0.

With this definition, we easily get:

Proposition 7.4 If (X ,m,E ,F (X)) is locally smoothing with the Lq-Liouville prop-
erty for some q ∈ (1,∞), then it is Lq-positivity preserving.

Proof If f ∈ Lq(X ,m) is locally 1-shift excessive, then− f is locally 1-shift defective,
so 0 ≤ (− f )+ ∈ Lq(X ,m) is weakly subharmonic by the regularity Theorem 5.4;
thus this function must be constant by the Lq -Liouville property, and thus = 0. ��

Finally, as stated in the introduction, Theorem 7.2 in combination with Proposi-
tion 7.4 immediately leads to a proof of a conjecture by Braverman, Milatovic and
Shubin extended to our general setting (see Conjecture P in Appendix B, p. 679, and
also the discussion in [33]):

Theorem 7.5 (BMS-conjecture) If (X ,m,E ,F (X)) is locally smoothing, intrinsi-
cally complete and irreducible, then it is Lq-positivity preserving for all q ∈ (1,∞).

Note that every connected and complete Riemannian manifold, every RCD∗-space,
as well as every Carnot group satisfies the assumptions of this theorem. Indeed, in the
Riemannian case the intrinsic completeness is well-known, in the RCD∗-case it is
shown in [2], and for the Carnot group in [24]. In all cases, the irreducibility follows
from the strict positivity of the heat kernel.
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A. Appendix: A class of locally smoothing spaces

We assume in this section that (X ,m,E ,F (X)) is a strongly local Dirichlet space,
with (X ,d) a metric space such that for all open balls B(x, r) one has

m(x, r) := m(B(x, r)) <∞.

We assume furthermore that t �→ Pt has a strictly positive Markovian heat kernel,
by which we mean that there exists a jointly continuous function

p : (0,∞)× X × X −→ (0,∞)

with

∫

X
p(t, x, y)dm(y) = 1, p(t + s, x, y)

=
∫

X
p(t, x, z)p(s, z, y)dm(z) for all t, s > 0, x, y ∈ X ,

such that for all t > 0, 0 ≤ f ∈ L2(X ,m) one has

Pt f (x) =
∫

X
p(t, x, y) f (y)dm(y) form-a.e. x ∈ X .

The same formula then gives a pointwise well-defined representative of Pt f for all
f ∈ Lq(X ,m), q ∈ [1,∞], or for nonnegative or nonpositive f ∈ B(X ,m).
The main result of this section is:

Proposition A.1 Assume that in the above situation the following two assumptions are
satisfied:

• (Local volume doubling) There exists constants C > 0, α ≥ 1, such that for all
0 < r < R, x ∈ X one has

m(x, R)

m(x, r)
≤ CeCR(R/r)α.
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• (Local upper Li–Yau heat kernel bound) There exist constants c1, c2, c3,> 0, such
that for all t > 0, x, y ∈ X one has

p(t, x, y) ≤ c1m(x,
√
t)−1e−c2

d(x,y)2

t ec3t .

Then for allU � X the space (U ,m,E ,F (U )) is ultracontractive, and (X ,m,E ,F (X))

is doubly Feller and irreducible. In particular, (X ,m,E ,F (X)) is locally smoothing.

Proof Let us first record the following consequences of local volume doubling: firstly,
there exists D > 0 such that for all x, y ∈ X , and all t > 0 one has

m(x,
√
t)

m(y,
√
t)
≤ DeDte

d(x,y)2

t . (A.2)

This fact is wellknown (cf. Section 2 of [5] for the simple argument).
Secondly, there exist A, B > 0 such that for all δ, t ∈ [0, 1), x ∈ X , one has

∫

{d(x,y)≥δ}
e−

−d(x,y)2

ct dm(y) ≤ m(x,
√
t)Ae−

δ2
Bt . (A.3)

This is consequence of Lemma 5.2.13 in [51] and local volume doubling.
1. Let U � X . The space (U ,m,E ,F (U )) is ultracontractive: indeed, given

0 ≤ f ∈ L1(U ,m) one has

PU
t f (x) ≤ Pt f (x) =

∫

U
p(t, x, y) f (y)dm(y) ≤

(
sup

x ′,y′∈U
pt (x

′, y′)
) ∫

U
f (y)dm(y),

as (x, y) �→ p(t, x, y) is continuous.
2. The space (X ,m,E ,F (X)) is doubly Feller: we first show that Pt : C0(X) →

C0(X). Clearly, it suffices to show that Pt f ∈ C0(X) for all f ∈ Cc(X). With K the
support of f , the local Li–Yau bound implies

|Pt f (x)| ≤ c1e
c3t sup

y∈K
m(B(y,

√
t))−1 ‖ f ‖∞

∫

K
e−c2

d(x,y)2

t dm(y),

which tends to 0 as x → ∞ and we can see the continuity of x �→ Pt f (x) by
dominated convergence. Note that

sup
y∈K

m(B(y,
√
t))−1 <∞

is a consequence of (A.2) and that m has a full support.
Next, we show that Pt : L∞(X ,m) → C(X): since Pt has a jointly continuous

integral kernel, Corollary 2.2 in [52] (which is formulated for Rn , but the proofs
apply in our situation), show that it suffices to prove that Pt : Cb(X) → C(X). This
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again follows (cf. the remark prior to Corollary 2.2 in [52]), from the fact that Pt1 is
continuous, as

Pt1(x) =
∫

X
p(t, x, y)dm(y) = 1,

and the fact that Pt f ∈ C(X) for all f ∈ Cc(X) (which we have already shown
above).

Next we show that

lim
t→0+ Pt f = f uniformly in every compact K ⊂ X , for all f ∈ C0(X). (A.4)

To this end, given ε > 0 we can pick δ > 0 such that for all x ∈ K , all y ∈ B(x, δ)
one has | f (x)− f (y)| ≤ ε. For all t > 0 we have

|Pt f (x)− f (x)| ≤
∫

{d(x,y)<δ}
p(t, x, y)| f (x)− f (y)|dm(y)

+
∫

{d(x,y)≥δ}
p(t, x, y)| f (x)− f (y)|dm(y).

The first summand is

≤ ε

∫

X
p(t, x, y)dm(y) = ε.

The second is estimated using the local Li–Yau bound according to

≤ 2c1e
c3t ‖ f ‖∞m(B(x,

√
t))−1

∫

{d(x,y)≥δ}
e−c2

d(x,y)2

t dm(y),

which by (A.3) for all 0 < t < 1 is

≤ 2c1e
c3t ‖ f ‖∞ Ae−

δ2
Bt .

This completes the proof of the doubly Feller property.
3. The space (X ,m,E ,F (X)) is irreducible: indeed, given 0 ≤ f ∈ L2(X) \ {0},

this follows from

Pt f (x) =
∫

X
p(t, x, y) f (y)dm(y) > 0,

as (x, y) �→ p(t, x, y) > 0 is continuous and m has a full support. ��
We record the following corollary to the proof of the above result:

Proposition A.2 Assume that in the above situation one has
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• Pt : Cb(X)→ C(X) for all t > 0,
• Pt : Cc(X)→ C0(X) for all t > 0,
• limt→0+ Pt f (x) = f (x) for all f ∈ C0(X), x ∈ X.

Then for all U � X the space (U ,m,E ,F (U )) is ultracontractive, and (X ,m,E ,

F (X)) is doubly Feller and irreducible. In particular, (X ,m,E ,F (X)) is locally
smoothing.
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