Alzheimer’s disease (AD) is a neurodegenerative disease characterized by rapid brain cell degeneration affecting different areas of the brain. Hippocampus is one of the earliest involved brain regions in the disease. Modern technologies based on high-throughput data have identified transcriptional profiling of several neurological diseases, including AD, for a better comprehension of genetic mechanisms of the disease. In this study, we investigated differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets of hippocampus of AD patients. The identified DEGs were submitted to Weighted correlation network analysis (WGCNA) and ClueGo to explore genes with a higher degree centrality and to comprehend their biological role. Subsequently, MCODE was used to identify subnetworks of interconnected DEGs. Our study found 40 downregulated genes and 36 up-regulated genes as consensus DEGs. Analysis of the co-expression network revealed ACOT7, ATP8A2, CDC42, GAD1, GOT1, INA, NCALD, and WWTR1 to be genes with a higher degree centrality. ClueGO revealed the pathways that were mainly enriched, such as clathrin coat assembly, synaptic vesicle endocytosis, and DNA damage response signal transduction by p53 class mediator. In addition, we found a subnetwork of 12 interconnected genes (AMPH, CA10, CALY, NEFL, SNAP25, SNAP91, SNCB, STMN2, SV2B, SYN2, SYT1, and SYT13). Only CA10 and CALY are targets of known drugs while the others could be potential novel drug targets.

Quarato, V., D'Antona, S., Battista, P., Zupo, R., Sardone, R., Castiglioni, I., et al. (2022). Transcriptional Profiling of Hippocampus Identifies Network Alterations in Alzheimer’s Disease. APPLIED SCIENCES, 12(10) [10.3390/app12105035].

Transcriptional Profiling of Hippocampus Identifies Network Alterations in Alzheimer’s Disease

D'Antona, S;Castiglioni, I;Porro, D;Cava, C
2022

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by rapid brain cell degeneration affecting different areas of the brain. Hippocampus is one of the earliest involved brain regions in the disease. Modern technologies based on high-throughput data have identified transcriptional profiling of several neurological diseases, including AD, for a better comprehension of genetic mechanisms of the disease. In this study, we investigated differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets of hippocampus of AD patients. The identified DEGs were submitted to Weighted correlation network analysis (WGCNA) and ClueGo to explore genes with a higher degree centrality and to comprehend their biological role. Subsequently, MCODE was used to identify subnetworks of interconnected DEGs. Our study found 40 downregulated genes and 36 up-regulated genes as consensus DEGs. Analysis of the co-expression network revealed ACOT7, ATP8A2, CDC42, GAD1, GOT1, INA, NCALD, and WWTR1 to be genes with a higher degree centrality. ClueGO revealed the pathways that were mainly enriched, such as clathrin coat assembly, synaptic vesicle endocytosis, and DNA damage response signal transduction by p53 class mediator. In addition, we found a subnetwork of 12 interconnected genes (AMPH, CA10, CALY, NEFL, SNAP25, SNAP91, SNCB, STMN2, SV2B, SYN2, SYT1, and SYT13). Only CA10 and CALY are targets of known drugs while the others could be potential novel drug targets.
Articolo in rivista - Articolo scientifico
Alzheimer’s disease; bioinformatics; co-expression;
English
16-mag-2022
2022
12
10
5035
open
Quarato, V., D'Antona, S., Battista, P., Zupo, R., Sardone, R., Castiglioni, I., et al. (2022). Transcriptional Profiling of Hippocampus Identifies Network Alterations in Alzheimer’s Disease. APPLIED SCIENCES, 12(10) [10.3390/app12105035].
File in questo prodotto:
File Dimensione Formato  
Quarato-2022-Appl Sci-VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 4.36 MB
Formato Adobe PDF
4.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/434223
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact