The minimal degree of a permutation group G is defined as the minimal number of non-fixed points of a non-trivial element of G. In this paper, we show that if G is a transitive permutation group of degree n having no non-trivial normal 2-subgroups such that the stabilizer of a point is a 2-group, then the minimal degree of G is at least 23n. The proof depends on the classification of finite simple groups.
Potocnik, P., Spiga, P. (2021). On the minimal degree of a transitive permutation group with stabilizer a 2-group. JOURNAL OF GROUP THEORY, 24(3), 619-634 [10.1515/jgth-2020-0058].
On the minimal degree of a transitive permutation group with stabilizer a 2-group
Spiga P.
2021
Abstract
The minimal degree of a permutation group G is defined as the minimal number of non-fixed points of a non-trivial element of G. In this paper, we show that if G is a transitive permutation group of degree n having no non-trivial normal 2-subgroups such that the stabilizer of a point is a 2-group, then the minimal degree of G is at least 23n. The proof depends on the classification of finite simple groups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Spiga-2021-J Group Theory-preprint.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
196.56 kB
Formato
Adobe PDF
|
196.56 kB | Adobe PDF | Visualizza/Apri |
Spiga-2021-J Group Theory-VoR.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
223.15 kB
Formato
Adobe PDF
|
223.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.