The minimal degree of a permutation group G is defined as the minimal number of non-fixed points of a non-trivial element of G. In this paper, we show that if G is a transitive permutation group of degree n having no non-trivial normal 2-subgroups such that the stabilizer of a point is a 2-group, then the minimal degree of G is at least 23n. The proof depends on the classification of finite simple groups.

Potocnik, P., Spiga, P. (2021). On the minimal degree of a transitive permutation group with stabilizer a 2-group. JOURNAL OF GROUP THEORY, 24(3), 619-634 [10.1515/jgth-2020-0058].

On the minimal degree of a transitive permutation group with stabilizer a 2-group

Spiga P.
2021

Abstract

The minimal degree of a permutation group G is defined as the minimal number of non-fixed points of a non-trivial element of G. In this paper, we show that if G is a transitive permutation group of degree n having no non-trivial normal 2-subgroups such that the stabilizer of a point is a 2-group, then the minimal degree of G is at least 23n. The proof depends on the classification of finite simple groups.
Articolo in rivista - Articolo scientifico
minimal degree
English
18-dic-2020
2021
24
3
619
634
open
Potocnik, P., Spiga, P. (2021). On the minimal degree of a transitive permutation group with stabilizer a 2-group. JOURNAL OF GROUP THEORY, 24(3), 619-634 [10.1515/jgth-2020-0058].
File in questo prodotto:
File Dimensione Formato  
Spiga-2021-J Group Theory-preprint.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 196.56 kB
Formato Adobe PDF
196.56 kB Adobe PDF Visualizza/Apri
Spiga-2021-J Group Theory-VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 223.15 kB
Formato Adobe PDF
223.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/416063
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact