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ON MINIMAL DEGREE OF TRANSITIVE PERMUTATION GROUPS WITH

STABILISER BEING A 2-GROUP

PRIMOŽ POTOČNIK AND PABLO SPIGA

Abstract. The minimal degree of a permutation group G is defined as the minimal number of non-fixed
points of a non-trivial element of G. In this paper we show that if G is a transitive permutation group of
degree n having no non-trivial normal 2-subgroups such that the stabiliser of a point is a 2-group, then the
minimal degree of G is at least 2

3
n. The proof depends on the classification of finite simple groups.

1. Introduction

Given a finite group acting on a finite set Ω and g ∈ G, we let FixΩ(g) := {ω ∈ Ω | ωg = ω} denote the
set of fixed points of g and we let suppΩ(g) := Ω \ FixΩ(g). The parameter

mindegΩ(G) := min
g∈G\{1}

|suppΩ(g)|

is then called the minimal degree of the permutation group G. Minimal degree (and a related parameter
FixΩ(G) := maxg∈G\{1} |FixΩ(g)| = |Ω| −mindegΩ(G), sometimes called the fixity of G) has been the focus
of intense study by several authors with most work concentrating on proving upper and lower bounds on the
minimal degree of primitive permutation groups and permutation actions of classical groups (see [2, 5, 14, 21],
to name a few). Far less papers deal with other permutation groups (see [19, 25]).

The aim of this paper is to consider a lower bound on the minimal degree of a transitive permutation
group G whose point stabiliser is a 2-group and such that O2(G) = 1 (where by O2(G) we denote the largest
normal 2-subgroup of G). In particular, we prove the following:

Theorem 1.1. Let G be a transitive permutation group on a set Ω with O2(G) = 1 such that the point

stabiliser Gω is a 2-group. Then mindegΩ(G) ≥ 2|Ω|/3.

Our motivation to prove this result stems from the investigation of the minimal degree of permutation
groups appearing as arc-transitive automorphism groups of finite connected (possibly directed) graphs, or
equivalently, permutation groups admitting a connected suborbit, where by a connected suborbit of a tran-
sitive permutation group G ≤ Sym(Ω) we mean an orbit Σ of the point-stabiliser Gω acting on Ω\ {ω}, such
that the directed graph with the vertex-set Ω and the edge-set {(ωg, δg) | δ ∈ Σ, g ∈ G} is connected. Note
that a transitive permutation group G ≤ Sym(Ω) is primitive if and only if all of its non-trivial suborbits are
connected. In view of the numerous results regarding the minimal degree of permutation groups, it is thus
natural to relax the condition of primitivity to that of an existence of a single connected suborbit. In fact,
based on the available computational data [10, 11, 27, 28], one can see that under some additional assump-
tions on the length and the self-pairity of the connected suborbit (and modulo some well-defined exceptions)
lower bounds on the minimal degree holding for primitive permutation groups seem to extend to this more
general situation. Theorem 1.1 represents a crucial step in a recent result [26] stating that apart from a
well-understood infinite family and a finite set of examples, every transitive permutation group G ≤ Sym(Ω)
admitting a connected suborbit of length at most 2 or a self-paired connected suborbit of length at most
4 satisfies mindegΩ(G) ≥ 2|Ω|/3 (a suborbit Σ is self-paired if for every edge (ω′, ω′′) of the corresponding
directed graph also the pair (ω′′, ω′) is an edge of that directed graph).

We would also like to point out that Guralnick and Magaard [17] (building on an earlier work of Lawther,
Liebeck and Saxl [21, 22]) have proved that, except for an explicit list of exceptions, the minimal degree of
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every primitive permutation group of degree n is at least n/2. Our proof of Theorem 1.1 quickly reduces to
the case that the group G under consideration is quasiprimitive. In this sense our result can be thought of
as an attempt to extend the result of Guralnick and Magaard to the case of quasiprimitive groups.

We use a fairly standard notation. Given a set Ω, we denote by Sym(Ω) and Alt(Ω) the symmetric and
the alternating group on Ω. When the domain Ω is irrelevant or clear from the context, we write Sym(n)
and Alt(n) for the symmetric and alternating group of degree n. Given a permutation g ∈ Sym(Ω), we write
fprΩ(g) for the fixed-point-ratio of g, that is

fprΩ(g) :=
|FixΩ(g)|

|Ω|
.

A subgroup G of Sym(Ω) is said to be semiregular if the identity is the only element of G fixing some
point of Ω. Let G be a group and let H be a subgroup of G, we denote by H\G the set of right cosets of H
in G. Recall that G acts transitively on H\G by right multiplication. The normaliser of H in G is denoted
by NG(H).

2. Proof of Theorem 1.1

We begin by two useful lemmas and then proceed to the proof of Theorem 1.1.

Lemma 2.1. Let X be a group acting transitively on Ω, let Σ be a system of imprimitivity for X in its

action on Ω and let x ∈ X. Then fprΩ(x) ≤ fprΣ(x).

Proof. This is clear because, if x fixes a block B ∈ Σ, then FixB(x) ⊆ B and hence |FixB(x)| ≤ |B|. �

Lemma 2.2. Let X be a group acting on a set Ω, let Y be a normal subgroup of X, let x ∈ X and let ω ∈ Ω.
Then

(2.1) fprωY (x) =
|xY ∩Xω|

|xY |
,

where xY := {xy | y ∈ Y } is the Y -conjugacy class of the element x.

Proof. This equality is classic, see for instance [22]. Here we present a short proof: consider the bipartite
graph with one side of the bipartition labeled by the elements of xY and the other side of the bipartition
labeled by the elements of ωY . Declare x′ ∈ xY adjacent to ω′ if x′ fixes ω′. Clearly, x′ ∈ xY has
valency |FixωY (x′)| = |FixωY (x)| and ω′ ∈ ωY has valency |xY ∩Xω′ | = |xY ∩Xω|. Thus |xY ||FixωY (x)| =
|xY ∩Xω||ωY |. �

The rest of the section is devoted to the proof Theorem 1.1. Let G be a transitive permutation group
acting on a set Ω, |Ω| = n, with O2(G) = 1 such that the point stabiliser Gω is a 2-group. We need prove
that fix Ω(G) ≤ n/3. Our proof is by induction on |Ω|+ |G|.

LetQ be a Sylow 2-subgroup ofG withGω ≤ Q and letB := ωQ. SinceGω ≤ Q, the set Σ := {Bx | x ∈ G}
is a G-invariant partition of Σ upon which G acts with the stabiliser of the element B ∈ Σ being Q. As
O2(G) = 1 and Q is a 2-group, the action of G on Σ is faithful. If |Σ| < |Ω|, then by induction fprΣ(g) ≤ 1/3,
for every g ∈ G \ {1}. Therefore, from Lemma 2.1, we have fprΩ(g) ≤ 1/3, for every g ∈ G \ {1}. We may
thus suppose that Q = Gω, that is,

(2.2) Gω is a Sylow 2-subgroup of G.

Let N be a minimal normal subgroup of G and let K be the kernel of the action of G on the set Σ of
N -orbits. Suppose that N is not transitive on Ω. In particular, G/K is a non-identity transitive permutation
group on Σ of odd degree greater than 1; moreover, given B ∈ Σ and ω ∈ B, the setwise stabilizer of B in G
is GωK and GωK/K is a Sylow 2-subgroup of G/K. By induction, if g ∈ G \K, then fprΣ(gK) ≤ 1/3 and
hence fprΩ(g) ≤ fprΣ(gK) ≤ 1/3. Suppose that g ∈ K \ {1}. Since K EG and Gω is a Sylow 2-subgroup of
G, we deduce that Kω is a Sylow 2-subgroup of K. In particular, from the Frattini argument, we have

G = KNG(Kω).

This implies that the core of Kω in K equals the core of Kω in G, which is trivial, implying that K acts
faithfully on ωK . Since this argument does not depend upon ω ∈ Ω, K acts faithfully on each element of
Σ. In particular, for every B ∈ Σ, the restriction of g to B is a non-identity permutation and hence, by
induction, fprB(g) ≤ 1/3. Since this argument does not depend upon B ∈ Σ, we have fprΩ(g) ≤ 1/3.
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It remains to deal with the case that every minimal normal subgroup of G is transitive on Ω, that is, G
is quasiprimitive.

The class of quasiprimitive permutation groups may be described (see [29]) in a fashion very similar to the
description given by the O’Nan-Scott Theorem for primitive permutation groups. In [30] this description is
refined and eight types of quasiprimitive groups are defined, namely HA, HS, HC, SD, CD, TW, PA and AS,
such that every quasiprimitive group belongs to exactly one of these types. As our group G has odd degree,
it is readily seen, using the terminology in [29, 30], that it is of HA, AS or PA type, that is, Holomorphic
Abelian, Almost Simple or Product Action. We refer the reader to [29, 30] for more informations on the
structure of groups of HA, AS or PA type, or to [31] for an extensive treatment of permutation groups and
Cartesian decompositions.

Assume that G has O’Nan-Scott type HA; let V be the socle of G, let g ∈ G\{1} with FixΩ(g) 6= ∅ and let
ω ∈ FixΩ(g). As O2(G) = 1, V is an elementary abelian p-group, for some prime p > 2. Then G = V ⋊Gω

and the action of G on Ω is permutation equivalent to the natural holomorph action of G on V , with V
acting by right multiplication and with Gω acting by conjugation. Using this identification, we have

fprΩ(g) =
1

|V : CV (g)|
≤

1

p
≤

1

3
.

Assume that G has O’Nan-Scott type PA. Following [29, 30], we set some notation and state some facts
regarding the groups of the O’Nan-Scott type PA. Let g ∈ G \ {1} with FixΩ(g) 6= ∅, let ω ∈ FixΩ(g) and N
be the socle of G. Then there exists a finite non-abelian simple group T such that N = T1×T2× · · ·×Tℓ for
some ℓ ≥ 2 with Ti

∼= T for each i. The group G can then be identified with a subgroup of Aut(T )wr Sym(ℓ).
Let R be a Sylow 2-subgroup of T and let ∆ be the set R\T of right cosets of R in T . As Gω is a Sylow
2-subgroup of G, we have

Gω ∩N = R1 × · · · ×Rℓ
∼= Rℓ,

where Ri is a Sylow 2-subgroup of Ti for each i. From [29, 30], the action of G on Ω is permutation
isomorphic to the natural Cartesian product action of G on ∆ℓ. By identifying Ω with ∆ℓ, we have G ≤ W
with W := Aut(T )wr Sym(ℓ), where W acts on Ω with the Cartesian product action. In particular, we may
write the elements x ∈ W in the form

x = (a1, a2, . . . , aℓ)σ,

for some a1, a2, . . . , aℓ ∈ Aut(T ) and σ ∈ Sym(ℓ). Recall that, if (δ1, δ2, . . . , δℓ) ∈ ∆ℓ = Ω, then

(δ1, δ2, . . . , δℓ)
x = (δ1, δ2, . . . , δℓ)

(a1,a2,...,aℓ)σ = (δa1

1 , δa2

2 , . . . , δaℓ

ℓ )σ = (δ
a
1σ−1

1σ−1 , δ
a
2σ−1

2σ−1 , . . . , δ
a
ℓσ−1

ℓσ−1 ).

We write g = (a1, a2, . . . , aℓ)σ.
Suppose σ 6= 1. Using the explicit description of g and of the action of g on Ω, with a computation we

obtain

fprΩ(g) ≤
1

|∆|
.

As |∆| = |T : R| and T is a non-abelian simple group, we have |∆| ≥ 3 and hence fprΩ(g) ≤ 3.
Suppose σ = 1. As g 6= 1, without loss of generality, we may assume a1 6= 1. Then

FixΩ(g) = Fix∆ℓ(g) ⊆ Fix∆(a1)×∆ℓ−1.

Since ℓ ≥ 2, we have |∆| < |Ω| and hence, by induction, fpr∆(a1) ≤ 1/3 and fprΩ(g) ≤ 1/3.
It remains to deal with the case that G is an almost simple group. Let T be the socle of G. We now

divide the proof in four parts, depending on whether T is a sporadic, an alternating, an exceptional group
of Lie type or a classical group.

2.1. Sporadic groups. Here we consider the situation where the socle T is one of the sporadic finite
simple groups. The proof is entirely computational and uses the astonishing package “The GAP character
Table Library” [1] implemented in the computer algebra system GAP [13]. For sporadic groups, the proof of
Theorem 1.1 follows immediately from Lemma 2.1 and from Lemma 2.3.

Lemma 2.3. Let G be an almost simple primitive group on Ω with socle a sporadic simple group. Then

fprΩ(g) ≤
1

3
,
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for every g ∈ G\{1}, except when G = Aut(M22) in its primitive action of degree 22 where the maximum fixed

point ratio is 4/11. Moreover, for each 2-subgroup Q of Aut(M22) and for each x ∈ Aut(M22) with g 6= 1,
in the action of Aut(M22) on the set Q \Aut(M22) of cosets of Q in Aut(M22), we have fprQ\Aut(M22)(g) ≤
3/55 < 1/3.

Proof. Apart from

• the Monster and
• the action of the Baby Monster on the cosets of a maximal subgroup of type (22 × F4(2)) : 2,

each permutation character of each primitive permutation representation of an almost simple group with
socle a sporadic simple group is available in GAP via the package “The GAP character Table Library”.
Therefore, except for the two cases mentioned above, we can quickly and easily use GAP to test the veracity
of the lemma. The permutation character of the Baby Monster G on the cosets of a maximal subgroup M
of type (22 ×F4(2)) : 2 is missing from the GAP library because the conjugacy fusion of some of the elements
of M in G remains a mystery: this information is vital for computing the permutation character.

In the rest of the proof we use Lemma 2.2. Suppose then G is the Baby Monster. Let Gω be the stabilizer
in G of the point ω ∈ Ω and suppose Gω

∼= (22 × F4(2)) : 2. Using the ATLAS notation, with a direct
computation we see that

fprΩ(g) =
|gG ∩Gω|

|gG|
≤

|Gω|

|gG|
≤

1

3
,

unless g is in the conjugacy class 1A, 2A or 2B. In particular, the lemma is proved also in this case except
when g is in the conjugacy class 2A or 2B. Let us denote by t the number of solutions to the equation x2 = 1
in Gω. From [18, (4.6)], we see that

t =
∑

χ∈Irr+(Gω)

χ(1)−
∑

χ∈Irr−(Gω)

χ(1),

where Irr+(Gω) and Irr−(Gω) are the sets of the irreducible complex characters of Gω of orthogonal and of
symplectic type. As the character table of Gω is available in GAP, we can compute t with this formula and
we obtain that t = 1605784576. Therefore, when g is in the conjugacy class 2A and 2B, we can refine the
previous bound and we obtain

fprΩ(g) =
|gG ∩Gω |

|gG|
≤

t

|gG|
≤

1

3
.

For the rest of this proof we may assume that G is the Monster group. Let ω ∈ Ω. From [34, Section 3.6],
we see that the classification of the maximal subgroups of the Monster is complete except for a few small
open cases. Suppose first that Gω is isomorphic to the double cover of the Baby monster. Let π be the
permutation character of G on Ω. It was proved by Breuer and Lux [4, page 2309] that

π = χ1 + χ2 + χ4 + χ5 + χ9 + χ14 + χ21 + χ34 + χ35

(this was also proved independently in [24]). With this character we can check that no non-identity element
of G fixes more than 1/3 of the points. (Accidentally, as far as we are aware, π is the only permutation
character of the Monster that has been computed.) For the rest of the proof, we may assume that Gω is not
conjugate to the double cover of the Baby monster. From [34, Section 3.6], it follows that |Gω| ≤ |21+24.Co1|.
Now, it is an easy computation to check that

fprΩ(g) ≤
|gG ∩Gω |

|gG|
≤

|Gω|

|gG|
≤

|21+24.Co1|

|gG|
<

1

3
,

except when g is in the conjugacy class 1A and 2A. Therefore, for the rest of the proof we may assume that
g is in the conjugacy class 2A. From [22, Lemma 2.7], we have

fprΩ(g) ≤ max

{

1 + |χ(g)|

1 + χ(1)
| χ ∈ Irr(G), χ(1) 6= 1

}

.

This quantity can be easily computed and it is less than 1/3. �

This allows us to finish the proof of Theorem 1.1 when T is a sporadic simple group: Let Σ be a
maximal system of imprimitivity for G acting on Ω. Except when G = Aut(M22), the proof follows applying
Lemmas 2.1 and 2.3 to Σ. When G = Aut(M22), the proof follows directly from Lemma 2.3.
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2.2. Exceptional groups of Lie type. Suppose now that the socle T of G is an exceptional groups of Lie
type. Exactly as for the sporadic groups, we prove a much stronger statement than needed for the proof of
Theorem 1.1.

Lemma 2.4. Let G be an almost simple primitive group on Ω with socle an exceptional simple group of Lie

type. Then fprΩ(g) ≤
1
3 for every g ∈ G \ {1}.

Proof. For exceptional groups of Lie type Lawther, Liebeck and Seitz [21, Theorem 1] have obtained useful
and explicit upper bounds on fprΩ(g). From these bounds, it readily follows that fprΩ(g) ≤ 1/3, for every
element g ∈ G \ {1}, except when the socle of G is G2(2)

′ and 2G2(3)
′. Now, G2(2)

′ ∼= PSU3(3) and
2G2(3)

′ ∼= PSL2(8); these cases can be analyzed with a help of a computer. The maximum fixed point ratio
for G when the socle is PSL2(8) is 1/3 (arising from the natural action of PΓL2(8) on the nine points of
the projective line). The same holds for groups having socle PSU3(3), the maximum 1/3 is achieved on the
primitive action of degree 36. �

The proof of Theorem 1.1 in the case when T is an exceptional simple group of Lie type now follows by
applying Lemmas 2.1 and 2.4 to a maximal system of imprimitivity Σ of the action of G on Ω.

2.3. Alternating groups. Suppose now that T (as an abstract group) is isomorphic to the alternating
group Alt(n), for some n ∈ N with n ≥ 5. For this proof, we argue by induction on n. We first consider the
case that n ∈ {5, 6, 7, 8}, this will avoid some detour in our arguments. The result in this case follows with
a computation with the invaluable computer algebra system magma [3]. From now on we may assume that
n ≥ 9 and hence, in particular, G = Alt(n) or G = Sym(n). Since the action of Alt(n) on the cosets of one
of its Sylow 2-subgroups extends to an action of Sym(n), we may assume that G = Sym(n).

Case n odd.

Let H be a subgroup of G with H ∼= Sym(n−1) and Gω ≤ H , for some ω ∈ Ω. (Observe that this is possible
because n is odd.) Let Σ be the system of imprimitivity determined by the overgroup H of Gω . Clearly,

FixΩ(g) =
⋃

B∈FixΣ(g)

FixB(g).

As n−1 ≥ 5 and asH acts faithfully on each of its orbits on Ω, we deduce by induction that |FixB(g)| ≤ |B|/3,
for each B ∈ FixΣ(g). Therefore, fprΩ(g) ≤ 1/3.

Case n even.

Let H be a subgroup of G isomorphic to the imprimitive wreath product Sym(n/2)wr Sym(2) and with
Gω ≤ H , for some ω ∈ Ω. (Observe that this is possible because n is even.) As above,

FixΩ(g) =
⋃

B∈FixΣ(g)

FixB(g).

Let B ∈ FixΣ(g) and, when FixB(g) 6= ∅, let ω′ ∈ FixB(g). Now, Gω ≤ GB
∼= H and hence, without loss of

generality, we may suppose that ω′ = ω and GB = H . In what follows we aim to estimate FixB(g).
Now,Gω = P wrSym(2), where P is a Sylow 2-subgroup of Sym(n/2). The action ofH = Sym(n/2)wr Sym(2)

on the cosets of P wrSym(2) = Gω (that is, the action of G on Ω) is permutation equivalent to the natural
product action of Sym(n/2)wr Sym(2) on the Cartesian product ∆2, where ∆ = P\Sym(n/2). (This is
clear from the structure of H and Gω, and we refer to [31] for more details on Cartesian decompositions
of permutation groups.) Now, we can write the element g in the form (h1, h2) or in the form (h1, h2)(1 2),
where h1, h2 ∈ P and (1 2) is the element swapping the two factors of ∆2, that is, (δ1, δ2)

(1 2) = (δ2, δ1) for
every (δ1, δ2) ∈ ∆. A permutation of the second kind fixes at most |∆| points and hence

fprΩ(g) = fpr∆2(g) ≤
1

|∆|
=

1

|Sym(n/2) : P |
≤

1

3
.

A permutation of the first kind has the property that either h1 6= 1 or h2 6= 1. Since n/2 ≥ 5, we may apply
induction and say that the non-identity element h1 or h2 fixes at most 1/3 of its domain and hence so does
g.



6 PRIMOŽ POTOČNIK AND PABLO SPIGA

2.4. Classical groups. Suppose finally that the socle T of G is a simple classical group defined over the
finite field of size q and recall that we may assume that T ≤ G ≤ Aut(T ).

Notation 2.5. For twisted groups our notation for q is such that PSUn(q) and PΩ−
2m(q) are the twisted

groups contained in PSLn(q
2) and PΩ+

2m(q2), respectively. We write q = pe, for some prime p and some
e ≥ 1, and we define

q0 :=

{

q2 if G is unitary,

q otherwise.

We let V be the natural module defined over the field Fq0 of size q0 for the covering group of T , and we
let n be the dimension of V over Fq0 .

In studying actions of classical groups, it is rather natural to distinguish between those actions which
permute the subspaces of the natural module and those which do not. The stabilizers of subspaces are
generally rather large (every parabolic subgroup falls into this class) and therefore the fixed-point-ratio in
these cases also tends to be rather large. As the culmination of an important series of papers [5, 6, 7,
8], Burness obtained remarkably good upper bounds on the fixed-point-ratio for each finite almost simple
classical group in non-subspace actions. For future reference, we first need to make the definition of non-
subspace action precise.

Definition 2.6. Assume Notation 2.5. A subgroup H of G is a subspace subgroup if, for each maximal
subgroup M of T that contains H ∩ T , one of the following conditions hold:

(a): M is the stabilizer in T of a proper non-zero subspace U of V , where U is totally singular, or
non-degenerate, or, if T is orthogonal and p = 2, a non-singular 1-subspace (U can be any subspace
if T = PSL(V ));

(b): M = O
±
2m(q) and (T, p) = (Sp2m(q)′, 2).

A transitive action of G on a set ∆ is a subspace action if the point-stabilizer Gδ of δ ∈ ∆ is a subspace
subgroup of G; non-subspace subgroups and actions are defined accordingly. For the convenience of the
reader we report [5, Theorem 1].

Theorem 2.7 ([5, Theorem 1]). Let G be a finite almost simple classical group acting transitively and

faithfully on a set ∆ with point-stabilizer Gδ ≤ H, where H is a maximal non-subspace subgroup of G. Let

T be the socle of G. Then, for every x ∈ G \ {1}, we have

fprΩ(x) < |xG|−
1
2
+ 1

n
+ι,

where n is defined in [5, Definition 2] and either ι = 0 or (T,H, ι) is listed in [5, Table 1].

In Theorem 2.7, apart from PSL3(2) and PSp4(2)
′ (where n = 2), n is exactly as in Notation 2.5. The

upper bound in Theorem 2.7 is quite sharp when n is large and is extremely useful for our application.
However, for small values of n, Theorem 2.7 loses all of its power. For instance, when T = PSL4(q), we see
from [5, Table 1] that ι = 1/4 and hence the upper bound in Theorem 2.7 only says fprΩ(x) ≤ |xG|0 = 1.
However, we point out that Burness and Guest [9] have strengthened Theorem 2.7 for linear groups of very
small rank.

We are now well equipped for the proof of Theorem 1.1 in the case where T is a non-abelian simple
classical group. We use the notation that we have established above. We argue by contradiction and we
suppose that there exists g ∈ G \ {1} with fprΩ(g) > 1/3. Without loss of generality, we may assume that
o(g) = 2. Recall that we are proving Theorem 1.1 by induction on |Ω|+ |G|. In particular, we may suppose
that G = 〈T, g〉.

Case “q ≥ 4”.

When q ≥ 4, [22, Theorem 1’] yields that the pair (T, g) is in Tables 1 and 2 in [22]. These tables, together
with the pair (T, g), have some additional information on the subgroup Gω, on a maximal subgroup M of G
containing Gω and on fprΩ(g). Using this detailed information, a routine case-by-case analysis yields that
fprΩ(x) ≤ 1/3, for every x ∈ G \ {1}.

Case “q ≤ 3 and n ≤ 8”.

Since we have only a finite number of cases to check, we have proved the result invoking the help of a
computer. This was done with a very naive algorithm, based on Lemma 2.1, which we now briefly explain.
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Given a groupX and a collection of subgroup Y of X , we construct all maximal subgroupsMY of Y , for each
Y ∈ Y. For each M ∈ MY , we construct the permutation representation of X acting on M\X . If X contains
a non-identity permutation with fprM\X(x) > 1/3, then we save M in a set Y ′, otherwise we disregard M

from further analysis. Next, we apply this routine with Y replaced by Y ′. (This computation might seem
very time and memory consuming but for most groups this procedure stops after the first iteration.) Finally,
we consider the collection X of all subgroups returned in the previous procedure and check that the claim
of the theorem holds in each case.

For the rest of the proof, we may assume q ≤ 3 and n ≥ 9.

Case “Gω ≤ H, where H is a maximal non-subspace subgroup of G”.

We use the result of Burness described earlier. Then 1/3 < |fprΩ(g)| < |gG|−1/2+1/n+ι and

(2.3) |gG| ≤ 3
1
2
− 1

n
−ι.

Using the information on ι in [5, Table 1], some very basic information on the conjugacy classes of T (which
can be find in [15] or in [12] for small groups) and n ≥ 9, we find with a case-by-case analysis that (2.3) is
never satisfied.

For the rest of the proof, we may assume that the only maximal subgroups H of G with Gω ≤ H are
subspace subgroups. Case (b) in Definition 2.6 does not arise here because Gω is a Sylow 2-subgroup of G
(recall (2.2)), but |Sp2m(q) : O±

2m(q)| is even. In particular, every maximal subgroup H of G with Gω ≤ H
is in the Aschbacher class C1.

Case “There exists a maximal subgroup H of G with Gω ≤ H and O2(H) ∩ gG = ∅”.

Let Σ be the system of imprimitivity determined by the overgroup H of Gω . Consider ∆ := ωH and the
permutation group H∆ induced by H on ∆. Since Gω is a Sylow 2-subgroup of G, we deduce that Gω is a
Sylow 2-subgroup of H . Therefore, the kernel of the action of H on ∆ is

⋂

h∈H

Gh
ω = O2(H).

Thus H∆ ∼= H/O2(H) and hence O2(H
∆) = 1. We have

(2.4) FixΩ(g) =
⋃

∆′∈FixΣ(g)

Fix∆′(g).

Let ∆′ ∈ FixΣ(g). Then ∆′ = ∆x, for some x ∈ G, and Hx is the setwise stabilizer of ∆′ in G. Therefore

O2((H
x)∆

′

) = 1. Since |∆′| < |Ω|, by induction we have that either fpr∆′(g) ≤ 1/3, or g fixes pointwise
each element of ∆′. However the latter case does not arise because the kernel of the action of Hx on ∆′ is
O2(H)x and we are assuming O2(H) ∩ gG = ∅. Thus g does not act trivially on ∆′ and fpr∆′(g) ≤ 1/3.
Now, (2.4) yields fprΩ(g) ≤ 1/3.

For the rest of the proof, we may suppose that, every maximal subgroup H of G with Gω ≤ H , is in
the Aschbacher class C1 and satisfies O2(H) ∩ gG 6= ∅. In particular, O2(H) 6= 1 and hence H is a 2-local
subgroup. Using the information on the maximal subgroupsH of the finite classical groups in the Aschbacher
class C1 in [20, Section 4.1] and the fact that O2(H) ∩ gG 6= ∅, we obtain g ∈ T and

G = 〈T, g〉 = T.

Case “q = 3”.

Using again the information in [20, Section 4.1], we have that, if H is a maximal subspace subgroup with
Gω ≤ H and q = 3, then |O2(H)| ≤ 2. In particular, we are in the position to refine slightly the argument
in (2.4). Let Σ be the system of imprimitivity determined by the overgroup H of Gω. We partition
FixΣ(g) := Σ1 ∪ Σ2 in two subsets: Σ1 consists of the ∆ ∈ FixΣ(g) with g not fixing pointwise ∆ and Σ2

consists of the ∆ ∈ FixΣ(g) with g fixing pointwise ∆. Observe that, if ∆ ∈ Σ2, then g ∈ O2(G{∆}) and hence
O2(G{∆}) = 〈g〉. If Σ2 contains two distinct elements ∆ and ∆′, we deduce O2(G{∆}) = 〈g〉 = O2(G{∆′})
and hence 〈g〉 is centralized by 〈G{∆}, G{∆′}〉 = G, where the last equality follows from the maximality of
G{∆} and G{∆′} in G and from ∆ 6= ∆′. Therefore |Σ2| ≤ 1. Thus, applying the inductive hypothesis for
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the action of g on ∆ ∈ FixΣ(g), from (2.4) we deduce

|FixΩ(g)| =
∑

∆∈Σ1

|Fix∆(g)|+
∑

∆∈Σ2

|Fix∆(g)| ≤ |Σ1|
|ωH |

3
+ |Σ2||ω

H | ≤ |ωH |

(

|FixΣ(g)| − 1

3
+ 1

)

.

Since g 6= 1, g does not act trivially on Σ and hence |FixΣ(g)| ≤ |Σ| − 2. Thus

|FixΩ(g)| ≤ |ωH |

(

|Σ| − 3

3
+ 1

)

=
|ωH ||Σ|

3
=

|Ω|

3
.

Case “q = 2”.

Here, G = 〈T, g〉 is one of the following groups PSLn(2), PSUn(2), PSpn(2), PΩ
+
n (2) and PΩ−

n (2).
Recall that V is the underlying module for G. Let W be a totally isotropic subspace of V of dimension

1 fixed by Gω and let H be the stabilizer of W . (The existence of W is guaranteed by the fact that Gω

is a 2-group and by the fact that V has characteristic 2.) Now, H is a maximal C1-subgroup of G with
Gω ≤ H . Considering the cases we are left at this point of the proof, H is a maximal parabolic subgroup
of G. Since O2(H) ∩ gG 6= ∅, we deduce from the structure of H in [20], that g is a transvection, that is,
dimCV (g) = n− 1.

Let U be the group of upper unitriangular matrices in GLn(2) and let T (n) be the number of transvections
in U . It is easy to show arguing inductively on n that T (n) = 2T (n− 1) + 2n−1 − 1. Using this recursive
relation and the fact that T (2) = 1, we obtain T (n) = (n− 2)2n−1 + 1.

From the previous paragraph, we have |gG ∩Gω| ≤ (n− 2)2n−1 + 1 and hence

fprΩ(g) =
|gG ∩Gω |

|gG|
≤

(n− 2)2n−1 + 1

|G : CG(g)|
≤

1

3
,

where the last inequality follows by comparing |G : CG(g)| with (n−2)2n−1+1. (Information on |G : CG(g)|
can be found for all the groups under consideration either in [20] or in [15].)

This completes the proof of Theorem 1.1.
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