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On the minimal degree of a transitive
permutation group with stabilizer a 2-group

Primož Potočnik and Pablo Spiga*
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Abstract. The minimal degree of a permutation groupG is defined as the minimal number
of non-fixed points of a non-trivial element of G. In this paper, we show that if G is
a transitive permutation group of degree n having no non-trivial normal 2-subgroups such
that the stabilizer of a point is a 2-group, then the minimal degree of G is at least 2

3
n. The

proof depends on the classification of finite simple groups.

1 Introduction

Given a finite group acting on a finite set � and g 2 G, we let

Fix�.g/´ ¹! 2 � j !g D !º

denote the set of fixed points of g, and we let supp�.g/´ � n Fix�.g/. Then the
parameter

mindeg�.G/´ min
g2Gn¹1º

jsupp�.g/j

is called the minimal degree of the permutation groupG. Minimal degree (and a re-
lated parameter Fix�.G/´ maxg2Gn¹1ºjFix�.g/j D j�j �mindeg�.G/, some-
times called the fixity of G) has been the focus of intense study by several authors
with most work concentrating on proving upper and lower bounds on the minimal
degree of primitive permutation groups and permutation actions of classical groups
(see [2,5,13,15,20], to name a few). Far fewer papers deal with other permutation
groups (see [18, 23]).

The aim of this paper is to consider a lower bound on the minimal degree of
a transitive permutation group G whose point stabilizer is a 2-group and such that
O2.G/ D 1 (where by O2.G/ we denote the largest normal 2-subgroup of G). In
particular, we prove the following.
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Theorem 1.1. LetG be a transitive permutation group on a set� with O2.G/ D 1
such that the point stabilizer G! is a 2-group. Then mindeg�.G/ �

2
3
j�j.

Our motivation to prove this result stems from the investigation of the minimal
degree of permutation groups appearing as arc-transitive automorphism groups of
finite connected (possibly directed) graphs or, equivalently, permutation groups
admitting a connected suborbit, where by a connected suborbit of a transitive
permutation group G � Sym.�/ we mean an orbit † of the point stabilizer G!
acting on � n ¹!º, such that the directed graph with vertex-set � and edge-set
¹.!g ; ıg/ j ı 2 †; g 2 Gº is connected. Note that a transitive permutation group
G � Sym.�/ is primitive if and only if all of its non-trivial suborbits are con-
nected. In view of the numerous results regarding the minimal degree of permu-
tation groups, it is thus natural to relax the condition of primitivity to that of an
existence of a single connected suborbit. In fact, based on the available computa-
tional data [10, 11, 25, 26], one can see that, under some additional assumptions
on the length and the self-pairedness of the connected suborbit (and modulo some
well-defined exceptions), lower bounds on the minimal degree holding for primi-
tive permutation groups seem to extend to this more general situation. Theorem 1.1
represents a crucial step in a recent result [24] stating that, apart from a well-
understood infinite family and a finite set of examples, every transitive permutation
group G � Sym.�/ admitting a connected suborbit of length at most 2 or a self-
paired connected suborbit of length at most 4 satisfies mindeg�.G/ �

2
3
j�j (a

suborbit † is self-paired if, for every edge .!0; !00/ of the corresponding directed
graph, also the pair .!00; !0/ is an edge of that directed graph). Arc-transitive auto-
morphism groups of graphs having point stabilizer a 2-group have already cropped
up a few times in the literature; see for instance [31, 32].

We would also like to point out that Guralnick and Magaard [16] (building on
earlier work of Lawther, Liebeck and Saxl [20, 21]) have proved that, except for
an explicit list of exceptions, the minimal degree of every primitive permutation
group of degree n is at least n

2
. Our proof of Theorem 1.1 quickly reduces to the

case that the groupG under consideration is quasiprimitive. In this sense, our result
can be thought of as an attempt to extend the result of Guralnick and Magaard to
the case of quasiprimitive groups.

We use fairly standard notation. Given a set �, we denote by Sym.�/ and
Alt.�/ the symmetric and the alternating group on �. When the domain � is
irrelevant or clear from the context, we write Sym.n/ and Alt.n/ for the symmetric
and alternating group of degree n. Given a permutation g 2 Sym.�/, we write
fpr�.g/ for the fixed-point ratio of g, that is,

fpr�.g/´
jFix�.g/j
j�j

:
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Using this notation, Theorem 1.1 is equivalent to the following.

Theorem 1.2. LetG be a transitive permutation group on a set� with O2.G/ D 1
such that the point stabilizer G! is a 2-group. Then fpr�.g/ �

1
3

for every non-
identity element g of G.

Sometimes, for instance in Lemma 2.1, we need slightly more general notation:
given a subset � of �, we let fpr�.g/´

j�\Fix�.g/j
j�j

.
A subgroup G of Sym.�/ is said to be semiregular if the identity is the only

element of G fixing some point of �. Let G be a group, and let H be a subgroup
of G; we denote by H nG the set of right cosets of H in G. Recall that G acts
transitively onH nG by right multiplication. The normalizer ofH inG is denoted
by NG.H/.

2 Proof of Theorem 1.1

We begin with two useful lemmas and then proceed to the proof of Theorem 1.1.

Lemma 2.1. Let X be a group acting transitively on �, let † be a system of im-
primitivity for X in its action on �, and let x 2 X . Then fpr�.x/ � fpr†.x/.

Proof. This is clear because, if x fixes a block B 2 †, then FixB.x/ � B and
hence jFixB.x/j � jBj.

Lemma 2.2. LetX be a group acting on a set�, let Y be a normal subgroup ofX ,
let x 2 X , and let ! 2 �. Then

fpr!Y .x/ D
jxY \X! j

jxY j
;

where xY ´ ¹xy j y 2 Y º is the Y -conjugacy class of the element x.

Proof. This equality is classic; see for instance [21]. Here we present a short
proof: consider the bipartite graph with one side of the bipartition labeled by
the elements of xY and the other side of the bipartition labeled by the elements
of !Y . Declare x0 2 xY adjacent to !0 if x0 fixes !0. Clearly, x0 2 xY has valency
jFix!Y .x

0/j D jFix!Y .x/j and !0 2 !Y has valency jxY \X!0 j D jxY \X! j.
Thus jxY jjFix!Y .x/j D jx

Y \X! jj!
Y j.

The rest of the section is devoted to the proof Theorem 1.1. LetG be a transitive
permutation group acting on a set�, j�j D n, with O2.G/ D 1 such that the point
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stabilizer G! is a 2-group. We need to prove that fix�.G/ � n
3

. Our proof is by
induction on j�j C jGj.

Let Q be a Sylow 2-subgroup of G with G! � Q, and let B ´ !Q. Since
G! � Q, the set †´ ¹Bx j x 2 Gº is a G-invariant partition of † upon which
G acts with the stabilizer of the element B 2 † being Q. As O2.G/ D 1 and
Q is a 2-group, the action of G on † is faithful. If j†j < j�j, then by induc-
tion fpr†.g/ �

1
3

for every g 2 G n ¹1º. Therefore, from Lemma 2.1, we have
fpr�.g/ �

1
3

for every g 2 G n ¹1º. We may thus suppose that Q D G! , that is,

G! is a Sylow 2-subgroup of G: (2.1)

Let N be a minimal normal subgroup of G, and let K be the kernel of the
action of G on the set † of N -orbits. Suppose that N is not transitive on �.
In particular, G=K is a non-identity transitive permutation group on † of odd
degree greater than 1; moreover, given B 2 † and ! 2 B , the setwise stabilizer
of B in G is G!K, and G!K=K is a Sylow 2-subgroup of G=K. By induction,
if g 2 G nK, then fpr†.gK/ �

1
3

, and hence fpr�.g/ � fpr†.gK/ �
1
3

. Suppose
that g 2 K n ¹1º. Since K E G and G! is a Sylow 2-subgroup of G, we deduce
that K! is a Sylow 2-subgroup of K. In particular, from the Frattini argument,
we have G D KNG.K!/. This implies that the core of K! in K equals the core
of K! in G, which is trivial, implying that K acts faithfully on !K . Since this
argument does not depend upon ! 2 �,K acts faithfully on each element of†. In
particular, for every B 2 †, the restriction of g to B is a non-identity permutation,
and hence, by induction, fprB.g/ �

1
3

. Since this argument does not depend upon
B 2 †, we have fpr�.g/ �

1
3

.
It remains to deal with the case that every minimal normal subgroup of G is

transitive on �, that is, G is quasiprimitive.
The class of quasiprimitive permutation groups may be described (see [27])

in a fashion very similar to the description given by the O’Nan–Scott theorem for
primitive permutation groups. In [28], this description is refined, and eight types of
quasiprimitive groups are defined, namely HA, HS, HC, SD, CD, TW, PA and AS,
such that every quasiprimitive group belongs to exactly one of these types. As our
group G has odd degree, it is readily seen, using the terminology in [27, 28], that
it is of HA, AS or PA type, that is, holomorphic abelian, almost simple or product
action. We refer the reader to [27, 28] for more information on the structure of
groups of HA, AS or PA type, or to [29] for an extensive treatment of permutation
groups and Cartesian decompositions.

Assume G has O’Nan–Scott type HA; let V be the socle of G, let g 2 G n ¹1º
with Fix�.g/ ¤ ;, and let ! 2 Fix�.g/. As O2.G/ D 1, V is an elementary abel-
ian p-group for some prime p > 2. Then G D V ÌG! , and the action of G on �
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is permutation equivalent to the natural holomorph action ofG on V , with V acting
by right multiplication and with G! acting by conjugation. Using this identifica-
tion, we have

fpr�.g/ D
1

jV W CV .g/j
�
1

p
�
1

3
:

Assume that G has O’Nan–Scott type PA. Following [27, 28], we set some no-
tation and state some facts regarding the groups of O’Nan–Scott type PA. Let
g 2 G n ¹1º with Fix�.g/ ¤ ;, let ! 2 Fix�.g/, and let N be the socle of G.
There exists a finite non-abelian simple group T such thatN D T1 � T2 � � � � � T`
for some ` � 2 with Ti Š T for each i . The group G can then be identified with
a subgroup of Aut.T / wr Sym.`/. Let R be a Sylow 2-subgroup of T , and let �
be the set R n T of right cosets of R in T . As G! is a Sylow 2-subgroup of G,
we have G! \N D R1 � � � � �R` Š R`, where Ri is a Sylow 2-subgroup of Ti
for each i . From [27, 28], the action of G on � is permutation isomorphic to
the natural Cartesian product action of G on �`. By identifying � with �`, we
have G � W with W ´ Aut.T / wr Sym.`/, where W acts on � with the Carte-
sian product action. In particular, we may write the elements x 2 W in the form
x D .a1; a2; : : : ; a`/� for some a1; a2; : : : ; a` 2 Aut.T / and � 2 Sym.`/. Recall
that if .ı1; ı2; : : : ; ı`/ 2 �` D �, then

.ı1; ı2; : : : ; ı`/
x
D .ı1; ı2; : : : ; ı`/

.a1;a2;:::;a`/� D .ı
a1
1 ; ı

a2
2 ; : : : ; ı

a`
`
/�

D .ı
a
1��1

1��1
; ı
a
2��1

2��1
; : : : ; ı

a
`��1

`��1
/: (2.2)

We write g D .a1; a2; : : : ; a`/� .
Suppose � is a cycle of length � � 2. Relabeling the index set ¹1; : : : ; `º, we

may suppose that � D .1 2 � � � �/. From (2.2), we see that .ı1; : : : ; ı`/ 2 � is fixed
by g if and only if

ı2 D ı
a1
1 ; ı3 D ı

a2
2 ; : : : ; ı� D ı

a��1
��1 ı

a�C1
�C1 ; : : : ; ı` D ı

a`
`
:

Clearly, this yields that the points fixed by g are of the form

.ı1; ı
a1
1 ; ı

a1a2
1 ; : : : ; ı

a1a2���a��1
1 ; ı�C1; : : : ; ı

a`
`
/;

where ı1 is an arbitrary element of� and ıi 2 Fix�.ai / for each i > �. Therefore,

fpr�.g/ D
j�j

j�j�
�

Ỳ
jD�C1

fpr�.ai / �
1

j�j��1
�

1

j�j
:

Suppose now � ¤ 1. Arguing by induction on the number of cycles in a de-
composition of � in disjoint cycles and using a computation similar to that in the
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previous paragraph, we obtain

fpr�.g/ �
1

j�j
:

As j�j D jT W Rj and T is a non-abelian simple group, we have j�j � 3 and hence
fpr�.g/ � 3.

Suppose � D 1. As g ¤ 1, without loss of generality, we may assume a1 ¤ 1.
Then

Fix�.g/ D Fix�`.g/ � Fix�.a1/ ��`�1:

Since ` � 2, we have j�j < j�j and hence, by induction,

fpr�.a1/ �
1

3
and fpr�.g/ �

1

3
:

It remains to deal with the case that G is an almost simple group. Let T be
the socle of G. We now divide the proof in four parts, depending on whether T is
a sporadic, an alternating, an exceptional group of Lie type or a classical group.

2.1 Sporadic groups

Here we consider the situation where the socle T is one of the sporadic finite sim-
ple groups. The proof is entirely computational and uses the astonishing package
“The GAP character Table Library” [1] implemented in the computer algebra sys-
tem GAP [33]. For sporadic groups, the proof of Theorem 1.1 follows immediately
from Lemma 2.1 and from Lemma 2.3.

Lemma 2.3. LetG be an almost simple primitive group on� with socle a sporadic
simple group. Then

fpr�.g/ �
1

3

for every g 2 G n ¹1º, except when G D Aut.M22/ in its primitive action of de-
gree 22, where the maximum fixed-point ratio is 4

11
. Moreover, for each 2-subgroup

Q of Aut.M22/ and for each x 2 Aut.M22/ with g ¤ 1, in the action of Aut.M22/

on the set Q n Aut.M22/ of cosets of Q in Aut.M22/, we have

fprQnAut.M22/.g/ �
3

55
<
1

3
:

Proof. Apart from

� the Monster and

� the action of the Baby Monster on the cosets of a maximal subgroup of type
.22 � F4.2// W 2,
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each permutation character of each primitive permutation representation of an al-
most simple group with socle a sporadic simple group is available in GAP via the
package “The GAP character Table Library”. Therefore, except for the two cases
mentioned above, we can quickly and easily use GAP to test the veracity of the
lemma. The permutation character of the Baby MonsterG on the cosets of a maxi-
mal subgroupM of type .22 � F4.2// W 2 is missing from the GAP library because
the conjugacy fusion of some of the elements of M in G remains a mystery; this
information is vital for computing the permutation character.

In the rest of the proof, we use Lemma 2.2. Suppose thenG is the Baby Monster.
Let G! be the stabilizer in G of the point ! 2 �, and suppose

G! Š .2
2
� F4.2// W 2:

Using the ATLAS notation, with a direct computation, we see that

fpr�.g/ D
jgG \G! j

jgG j
�
jG! j

jgG j
�
1

3
;

unless g is in the conjugacy class 1A, 2A or 2B . In particular, the lemma is proved
also in this case, except when g is in the conjugacy class 2A or 2B . Let us denote
by t the number of solutions to the equation x2 D 1 in G! . From [17, (4.6)], we
see that

t D
X

�2IrrC.G!/

�.1/ �
X

�2Irr�.G!/

�.1/;

where IrrC.G!/ and Irr�.G!/ are the sets of the irreducible complex characters of
G! of orthogonal and of symplectic type. As the character table ofG! is available
in GAP, we can compute t with this formula, and we obtain that t D 1605784576.
Therefore, when g is in the conjugacy class 2A and 2B , we can refine the previous
bound, and we obtain

fpr�.g/ D
jgG \G! j

jgG j
�

t

jgG j
�
1

3
:

For the rest of this proof, we may assume that G is the Monster group. Let
! 2 �. From [30, Section 3.6], we see that the classification of the maximal sub-
groups of the Monster is complete except for a few small open cases. Suppose
first that G! is isomorphic to the double cover of the Baby monster. Let � be the
permutation character of G on�. It was proved by Breuer and Lux [4, page 2309]
that

� D �1 C �2 C �4 C �5 C �9 C �14 C �21 C �34 C �35
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(this was also proved independently in [22]). With this character, we can check
that no non-identity element of G fixes more than 1

3
of the points. (Coincidentally,

as far as we are aware, � is the only permutation character of the Monster that has
been computed.) For the rest of the proof, we may assume thatG! is not conjugate
to the double cover of the Baby monster. From [30, Section 3.6], it follows that
jG! j � j2

1C24:Co1j. Now, it is an easy computation to check that

fpr�.g/ �
jgG \G! j

jgG j
�
jG! j

jgG j
�
j21C24:Co1j
jgG j

<
1

3
;

except when g is in the conjugacy class 1A and 2A. Therefore, for the rest of the
proof, we may assume that g is in the conjugacy class 2A. From [21, Lemma 2.7],
we have

fpr�.g/ � max
²
1C j�.g/j

1C �.1/

ˇ̌̌
� 2 Irr.G/; �.1/ ¤ 1

³
:

This quantity can be easily computed, and it is less than 1
3

.

This allows us to finish the proof of Theorem 1.1 when T is a sporadic simple
group. Let † be a maximal system of imprimitivity for G acting on �. Except
whenG D Aut.M22/, the proof follows applying Lemmas 2.1 and 2.3 to†. When
G D Aut.M22/, the proof follows directly from Lemma 2.3.

2.2 Exceptional groups of Lie type

Suppose now that the socle T of G is an exceptional group of Lie type. Exactly as
for the sporadic groups, we prove a much stronger statement than needed for the
proof of Theorem 1.1.

Lemma 2.4. Let G be an almost simple primitive group on� with socle an excep-
tional simple group of Lie type. Then fpr�.g/ �

1
3

for every g 2 G n ¹1º.

Proof. For exceptional groups of Lie type, Lawther, Liebeck and Seitz [20, The-
orem 1] have obtained useful and explicit upper bounds on fpr�.g/. From these
bounds, it readily follows that fpr�.g/ �

1
3

for every element g 2 G n ¹1º, ex-
cept when the socle of G is G2.2/0 and 2G2.3/

0. Now, G2.2/0 Š PSU3.3/ and
2G2.3/

0 Š PSL2.8/; these cases can be analyzed with a help of a computer. The
maximum fixed-point ratio for G when the socle is PSL2.8/ is 1

3
(arising from

the natural action of P�L2.8/ on the nine points of the projective line). The same
holds for groups having socle PSU3.3/; the maximum 1

3
is achieved on the primi-

tive action of degree 36.
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The proof of Theorem 1.1 in the case when T is an exceptional simple group
of Lie type now follows by applying Lemmas 2.1 and 2.4 to a maximal system of
imprimitivity † of the action of G on �.

2.3 Alternating groups

Suppose now that T (as an abstract group) is isomorphic to the alternating group
Alt.n/ for some n 2 N with n � 5. For this proof, we argue by induction on n.
We first consider the case that n 2 ¹5; 6; 7; 8º; this will avoid some detour in our
arguments. The result in this case follows with a computation with the invaluable
computer algebra system Magma [3]. From now on, we may assume that n � 9
and hence, in particular, G D Alt.n/ or G D Sym.n/. Since the action of Alt.n/
on the cosets of one of its Sylow 2-subgroups extends to an action of Sym.n/, we
may assume that G D Sym.n/.
Case “n odd”. Let H be a subgroup of G with H Š Sym.n � 1/ and G! � H
for some ! 2 �. (Observe that this is possible because n is odd.) Let † be the
system of imprimitivity determined by the overgroup H of G! . Clearly,

Fix�.g/ D
[

B2Fix†.g/

FixB.g/:

As n � 1 � 5 and as H acts faithfully on each of its orbits on �, we deduce by
induction that jFixB.g/j � 1

3
jBj for each B 2 Fix†.g/. Therefore, fpr�.g/ �

1
3

.
Case “n even”. Let H be a subgroup of G isomorphic to the imprimitive wreath
product Sym.n

2
/ wr Sym.2/ and withG! � H for some ! 2 �. (Observe that this

is possible because n is even.) As above,

Fix�.g/ D
[

B2Fix†.g/

FixB.g/:

Let B 2 Fix†.g/, and when FixB.g/¤ ;, let !0 2 FixB.g/. Now,G! �GB ŠH ,
and hence, without loss of generality, we may suppose that !0 D ! and GB D H .
In what follows, we aim to estimate FixB.g/.

Now, G! D P wr Sym.2/, where P is a Sylow 2-subgroup of Sym.n
2
/. The

action of H D Sym.n
2
/ wr Sym.2/ on the cosets of P wr Sym.2/ D G! (that is,

the action of G on �) is permutation equivalent to the natural product action of
Sym.n

2
/ wr Sym.2/ on the Cartesian product �2, where � D P n Sym.n

2
/. (This

is clear from the structure of H and G! , and we refer to [29] for more details on
Cartesian decompositions of permutation groups.) Now, we can write the element
g in the form .h1; h2/ or in the form .h1; h2/.1 2/, where h1; h2 2 P and .1 2/
is the element swapping the two factors of �2, that is, .ı1; ı2/.1 2/ D .ı2; ı1/ for



628 P. Potočnik and P. Spiga

every .ı1; ı2/ 2 �. A permutation of the second kind fixes at most j�j points, and
hence

fpr�.g/ D fpr�2.g/ �
1

j�j
D

1

jSym.n
2
/ W P j

�
1

3
:

A permutation of the first kind has the property that either h1 ¤ 1 or h2 ¤ 1.
Since n

2
� 5, we may apply induction and say that the non-identity element h1 or

h2 fixes at most 1
3

of its domain and hence so does g.

2.4 Classical groups

Suppose finally that the socle T of G is a simple classical group defined over the
finite field of size q, and recall that we may assume that T � G � Aut.T /.

Notation 2.5. For twisted groups, our notation for q is such that PSUn.q/ and
P��2m.q/ are the twisted groups contained in PSLn.q2/ and P�C2m.q

2/, respec-
tively. We write q D pe for some prime p and some e � 1, and we define

q0´

´
q2 if G is unitary;
q otherwise:

We let V be the natural module defined over the field Fq0 of size q0 for the
covering group of T , and we let n be the dimension of V over Fq0 .

In studying actions of classical groups, it is rather natural to distinguish between
those actions which permute the subspaces of the natural module and those which
do not. The stabilizers of subspaces are generally rather large (every parabolic
subgroup falls into this class), and therefore the fixed-point ratio in these cases also
tends to be rather large. As the culmination of an important series of papers [5–8],
Burness obtained remarkably good upper bounds on the fixed-point ratio for each
finite almost simple classical group in non-subspace actions. For future reference,
we first need to make the definition of non-subspace action precise.

Definition 2.6. Assume Notation 2.5. A subgroup H of G is a subspace subgroup
if, for each maximal subgroup M of T that contains H \ T , one of the following
conditions holds:

(a) M is the stabilizer in T of a proper non-zero subspace U of V , where U is
totally singular, or non-degenerate, or, if T is orthogonal and p D 2, a non-
singular 1-subspace (U can be any subspace if T D PSL.V /);

(b) M D O˙2m.q/ and .T; p/ D .Sp2m.q/
0; 2/.
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A transitive action ofG on a set� is a subspace action if the point stabilizerGı
of ı 2 � is a subspace subgroup of G; non-subspace subgroups and actions are
defined accordingly. For the convenience of the reader, we recall [5, Theorem 1].

Theorem 2.7 ([5, Theorem 1]). Let G be a finite almost simple classical group
acting transitively and faithfully on a set � with point stabilizer Gı � H , where
H is a maximal non-subspace subgroup of G. Let T be the socle of G. Then,
for every x 2 G n ¹1º, we have fpr�.x/ < jx

G j
� 1
2
C 1
n
C�, where n is defined in [5,

Definition 2] and either � D 0 or .T;H; �/ is listed in [5, Table 1].

In Theorem 2.7, apart from PSL3.2/ and PSp4.2/
0 (where n D 2), n is ex-

actly as in Notation 2.5. The upper bound in Theorem 2.7 is quite sharp when
n is large and is extremely useful for our application. However, for small values
of n, Theorem 2.7 loses all of its power. For instance, when T D PSL4.q/, we see
from [5, Table 1] that � D 1

4
, and hence the upper bound in Theorem 2.7 only says

fpr�.x/ � jx
G j0 D 1. However, we point out that Burness and Guest [9] have

strengthened Theorem 2.7 for linear groups of very small rank.
We are now well equipped for the proof of Theorem 1.1 in the case where T is

a non-abelian simple classical group. We use the notation that we have established
above. We argue by contradiction, and we suppose that there exists g 2 G n ¹1º
with fpr�.g/ >

1
3

. Without loss of generality, we may assume that g is an in-
volution. Recall that we are proving Theorem 1.1 by induction on j�j C jGj. In
particular, we may suppose that G D hT; gi.

Case “q � 4”. When q � 4, [21, Theorem 10] yields that the pair .T; g/ is in [21,
Tables 1 and 2]. These tables, together with the pair .T; g/, have some additional
information on the subgroup G! , on a maximal subgroup M of G containing G!
and on fpr�.g/. Using this detailed information, a routine case-by-case analysis
yields that fpr�.x/ �

1
3

for every x 2 G n ¹1º.

Case “q � 3 and n � 8”. Since we have only a finite number of cases to check,
we have proved the result invoking the help of a computer. This was done with
a very naive algorithm, based on Lemma 2.1, which we now briefly explain. Given
a group X and a collection of subgroup Y of X , we construct all maximal sub-
groups MY of Y for each Y 2 Y. For each M 2MY , we construct the permuta-
tion representation of X acting on M nX . If X contains a non-identity permuta-
tion with fprMnX .x/ >

1
3

, then we save M in a set Y0; otherwise, we disregard
M from further analysis. Next, we apply this routine with Y replaced by Y0. (This
computation might seem very time and memory consuming, but for most groups,
this procedure stops after the first iteration.) Finally, we consider the collection X

of all subgroups returned in the previous procedure and check that the claim of the
theorem holds in each case.
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For the rest of the proof, we may assume q � 3 and n � 9.

Case “G! � H , where H is a maximal non-subspace subgroup of G”. We use
the result of Burness described earlier. Then 1

3
< jfpr�.g/j < jg

G j
� 1
2
C 1
n
C� and

jgG j � 3
1
2
� 1
n
��: (2.3)

Using the information on � in [5, Table 1], some very basic information on the
conjugacy classes of T (which can be find in [14] or in [12] for small groups) and
n � 9, we found with a case-by-case analysis that (2.3) is never satisfied.

For the rest of the proof, we may assume that the only maximal subgroups H
of G with G! � H are subspace subgroups. Definition 2.6 (b) does not arise here
because G! is a Sylow 2-subgroup of G (recall (2.1)), but jSp2m.q/ W O

˙
2m.q/j

is even. In particular, every maximal subgroup H of G with G! � H is in the
Aschbacher class C1.

Case “there exists a maximal subgroupH ofG withG! �H , O2.H/\ gG D;”.
Let† be the system of imprimitivity determined by the overgroupH of G! . Con-
sider �´ !H and the permutation group H� induced by H on �. Since G!
is a Sylow 2-subgroup of G, we deduce that G! is a Sylow 2-subgroup of H .
Therefore, the kernel of the action of H on � is\

h2H

Gh! D O2.H/:

Thus H� Š H=O2.H/, and hence O2.H�/ D 1. We have

Fix�.g/ D
[

�02Fix†.g/

Fix�0.g/: (2.4)

Let �0 2 Fix†.g/. Then �0 D �x for some x 2 G, and Hx is the setwise sta-
bilizer of �0 in G. Therefore, O2..Hx/�

0

/ D 1. Since j�0j < j�j, by induction,
we have that either fpr�0.g/ �

1
3

or g fixes pointwise each element of �0. How-
ever, the latter case does not arise because the kernel of the action of Hx on �0

is O2.H/x , and we are assuming O2.H/ \ gG D ;. Thus g does not act trivially
on �0 and fpr�0.g/ �

1
3

. Now, (2.4) yields fpr�.g/ �
1
3

.
For the rest of the proof, we may suppose that every maximal subgroupH of G

with G! � H is in the Aschbacher class C1 and satisfies O2.H/ \ gG ¤ ;. In
particular, O2.H/ ¤ 1, and henceH is a 2-local subgroup. Using the information
on the maximal subgroupsH of the finite classical groups in the Aschbacher class
C1 in [19, Section 4.1] and the fact that O2.H/ \ gG ¤ ;, we obtain g 2 T and
G D hT; gi D T .
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Case “q D 3”. Using again the information in [19, Section 4:1], we have that if
H is a maximal subspace subgroup with G! � H and q D 3, then jO2.H/j � 2.
In particular, we are in the position to refine slightly the argument in (2.4). Let †
be the system of imprimitivity determined by the overgroupH ofG! . We partition
Fix†.g/´ †1 [†2 in two subsets: †1 consists of the � 2 Fix†.g/ with g not
fixing pointwise�, and†2 consists of the� 2 Fix†.g/with g fixing pointwise�.
Observe that if � 2 †2, then g 2 O2.G¹�º/, and hence O2.G¹�º/ D hgi. If †2
contains two distinct elements � and �0, then O2.G¹�º/ D hgi D O2.G¹�0º/,
and hence hgi is centralized by hG¹�º; G¹�0ºi D G, where the last equality fol-
lows from the maximality of G¹�º and G¹�0º in G and from � ¤ �0. There-
fore, j†2j � 1. Thus, applying the inductive hypothesis for the action of g on
� 2 Fix†.g/, from (2.4), we deduce

jFix�.g/j D
X
�2†1

jFix�.g/j C
X
�2†2

jFix�.g/j

� j†1j
j!H j

3
C j†2jj!

H
j � j!H j

�
jFix†.g/j � 1

3
C 1

�
:

Since g ¤ 1, g does not act trivially on †, and hence jFix†.g/j � j†j � 2. Thus

jFix�.g/j � j!H j
�
j†j � 3

3
C 1

�
D
j!H jj†j

3
D
j�j

3
:

Case “q D 2”. HereGDhT;gi is one of the groups PSLn.2/, PSUn.2/, PSpn.2/,
P�Cn .2/ and P��n .2/.

Recall that V is the underlying module for G. Let W be a totally isotropic
subspace of V of dimension 1 fixed by G! , and let H be the stabilizer of W .
(The existence of W is guaranteed by the fact that G! is a 2-group and by the
fact that V has characteristic 2.) Now, H is a maximal C1-subgroup of G with
G! � H . Considering the cases we are left at this point of the proof,H is a maxi-
mal parabolic subgroup ofG. Since O2.H/ \ gG ¤ ;, we deduce from the struc-
ture of H in [19] that g is a transvection, that is, dim CV .g/ D n � 1.

Let U be the group of upper unitriangular matrices in GLn.2/, and let T .n/
be the number of transvections in U . It is easy to show arguing inductively on n
that T .n/ D 2T .n � 1/C 2n�1 � 1. Using this recursive relation and the fact that
T .2/ D 1, we obtain T .n/ D .n � 2/2n�1 C 1.

From the previous paragraph, jgG \G! j � .n � 2/2n�1 C 1, and hence

fpr�.g/ D
jgG \G! j

jgG j
�
.n � 2/2n�1 C 1

jG W CG.g/j
�
1

3
;
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where the last inequality follows by comparing jG WCG.g/jwith .n� 2/2n�1C 1.
(Information on jG W CG.g/j can be found for all the groups under consideration
either in [19] or in [14].)

This completes the proof of Theorem 1.1.
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