We consider a smooth, complete and non-compact Riemannian manifold (M, g) of dimension d≥ 3 , and we look for solutions to the semilinear elliptic equation -Δgw+V(σ)w=α(σ)f(w)+λwinM.The potential V: M→ R is a continuous function which is coercive in a suitable sense, while the nonlinearity f has a subcritical growth in the sense of Sobolev embeddings. By means of ∇ -theorems introduced by Marino and Saccon, we prove that at least three non-trivial solutions exist as soon as the parameter λ is sufficiently close to an eigenvalue of the operator - Δg.

Appolloni, L., Molica Bisci, G., Secchi, S. (2023). Multiple solutions for Schrödinger equations on Riemannian manifolds via ∇ -theorems. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 63(1) [10.1007/s10455-023-09885-1].

Multiple solutions for Schrödinger equations on Riemannian manifolds via ∇ -theorems

Appolloni L.;Secchi S.
2023

Abstract

We consider a smooth, complete and non-compact Riemannian manifold (M, g) of dimension d≥ 3 , and we look for solutions to the semilinear elliptic equation -Δgw+V(σ)w=α(σ)f(w)+λwinM.The potential V: M→ R is a continuous function which is coercive in a suitable sense, while the nonlinearity f has a subcritical growth in the sense of Sobolev embeddings. By means of ∇ -theorems introduced by Marino and Saccon, we prove that at least three non-trivial solutions exist as soon as the parameter λ is sufficiently close to an eigenvalue of the operator - Δg.
Articolo in rivista - Articolo scientifico
Riemannian manifolds; Schrödinger equations; Variational methods; ∇ -theorems;
English
24-gen-2023
2023
63
1
11
partially_open
Appolloni, L., Molica Bisci, G., Secchi, S. (2023). Multiple solutions for Schrödinger equations on Riemannian manifolds via ∇ -theorems. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 63(1) [10.1007/s10455-023-09885-1].
File in questo prodotto:
File Dimensione Formato  
Appolloni-2023-Ann Glob Anal Geom-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 365.83 kB
Formato Adobe PDF
365.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Appolloni-2023-Ann Glob Anal Geom-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 390.97 kB
Formato Adobe PDF
390.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/408397
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact