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Abstract

We consider a smooth, complete and non-compact Riemannian manifold (M, g)
of dimension d ≥ 3, and we look for solutions to the semilinear elliptic equation

−∆gw + V (σ)w = α(σ)f(w) + λw in M.

The potential V : M→ R is a continuous function which is coercive in a suitable
sense, while the nonlinearity f has a subcritical growth in the sense of Sobolev
embeddings. By means of ∇-Theorems introduced by Marino and Saccon, we prove
that at least three non-trivial solutions exist as soon as the parameter λ is sufficiently
close to an eigenvalue of the operator −∆g.

1 Introduction
The study of solutions to semilinear partial differential equations of Schrödinger type
is by far one of the richest field in Nonlinear Analysis, where Variational Methods and
Critical Point Theory provide a powerful setting for existence results. The occurrence
of more than one solution to such equations is guaranteed, at a basic level, by some
symmetry condition together with the use of topological indices like the genus or the
relative category. We refer to the classical monograph [?] for a survey.
Semilinear elliptic equations of Schrödinger type are typically set in the whole Euclidean
space Rd, d ≥ 3, which has a rather poor geometric structure. Multiplicity results
may then appear as a consequence of the presence of potential functions with suitable
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properties. The situation is much different if Rd is replaced by a more general Riemannian
manifoldM, since the geometry ofM may influence the existence of one or more solutions
to the equation. Analysis on Manifolds and Geometric Analysis become the necessary
language to work with these problems: we refer to [?, ?, ?, ?, ?] and the references
therein for an introduction. For the sake of brevity, we will assume that the reader is
familiar with the basic definitions of Riemannian Geometry.
We will consider d-dimensional smooth complete non-compact Riemannian manifold
(M, g) with d ≥ 3. The aim of this paper is to study the existence of solutions for
problem {

−∆gw + V (σ)w = α(σ)f(w) + λw in M
w(σ)→ 0 as dg(σ0, σ)→∞,

where α ∈ L1(M)∩L∞(M), α > 0 a.e. inM, f : R→ R is a continuous function, λ ∈ R
is a real parameter. We assume that V : M→ R is a continuous function such that

(V1) υ0 := infσ∈M V (σ) > 0;

(V2) there exists σ0 ∈M such that

lim
dg(σ0,σ)→∞

V (σ) = +∞,

where dg : M×M → [0, +∞) is the distance associated to the Riemannian metric g.
Finally, ∆g denotes the Laplace-Beltrami operator. This operator is defined in local
coordinates by

∆gh =
∑
i,j

1√
det g

∂

∂xi

(
gij

√
det g

∂h

∂xj

)
.

We point out that we have defined ∆g with the “analyst’s sign convention”, so that −∆g

coincides with −∆ in Rd with its flat metric.

The nonlinearity f : R→ R is a continuous function that satisfies

(f1)

lim
t→0

f(t)
|t|

= 0;

(f2) there results

lim
t→+∞

f(t)
|t|r−1 <∞

where r ∈
(

2,
2d

d− 2

)
;

(f3) 0 < rF (t) < f(t)t for all t ∈ R \ {0} where F (t) :=
∫ t

0
f(τ) dτ .
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To introduce the main assumption on the manifold (M, d), we suppose that there exists
a function H : [0,∞)→ R of class C1 such that∫ ∞

0
tH(t) dt <∞

and

(Ric) for some σ̄0 ∈M there results

Ric(M,g)(σ) ≥ (1− d)H(dg(σ̄0, σ)).

Moreover, we will assume throughout the paper that

inf
σ∈M

Volg (Bσ(1)) > 0

where
Bσ(1) := {ξ ∈M | dg(ξ, σ) < 1}

and
Volg (Bσ(1)) :=

∫
Bσ(1)

dvg.

Since we want to prove a multiplicity result for (??), a natural approach could be based
on Morse Theory, see [?, ?]. Unfortunately, Morse Theory requires in general more
regularity of the Euler functional associated to the variational problem, and this would
require a more regular nonlinearity f in (??).
We propose here a different approach via ∇-Theorems, a family of variational tools which
were introduced by Marino and Saccon in [?] to study the multiplicity of solutions of some
asymptotically non-symmetric semilinear elliptic problems with jumping nonlinearities.
More precisely, we will make use of the sphere-torus linking Theorem with mixed type
assumptions (see [?, Theorem 2.10]). The main condition of this theorem can be roughly
summarized in these terms: the Euler functional constrained on a closed subspace must
not have critical values in a certain prescribed range with “some uniformity”. A rigorous
definition is as follows.

Definition 1. Let H be a Hilbert space and I : H → R a C1 functional. Let also X
be a closed subspace of H, a, b ∈ R ∪ {−∞,∞}; we say that I satisfies the condition
(∇) (I,X , a, b) if there exists γ > 0 such that

inf {∥PX∇I(w)∥ | a ≤ I(w) ≤ b, dist(w,X ) ≤ γ} > 0

where PX : H → X denotes the standard orthogonal projection. In the following, we will
refer to it as (∇)-condition for short.

In order to make the paper self-contained, we also write the statement of the ∇-theorem.
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Theorem 1. Let H be a Hilbert space and Xi, i = 1, 2, 3 three subspaces of H such that
H = X1 ⊕X2 ⊕X3 and dimXi <∞ for i = 1, 2. Denote with PXi : H → Xi the standard
orthogonal projection. Let I : H → R a C1 functional. Let ρ, ρ′, ρ′′, ρ1 be such that ρ1 > 0,
0 ≤ ρ′ < ρ < ρ′′ and define

∆ =
{
w ∈ X1 ⊕X2 | ρ′ ≤ ∥PX2∥ ≤ ρ′′, ∥PX2∥ ≤ ρ1

}
and T = ∂X1⊕X2∆,

S23 = {w ∈ X2 ⊕X3 | ∥w∥ = ρ} and B23 = {w ∈ X2 ⊕X3 | ∥w∥ ≤ ρ} .

Assume that
a′ = sup I(T ) < inf I(S23) = a′′.

Let a and b be such that a′ < a < a′′ and b > sup I(∆). Assume (∇) (I,X1 ⊕X3, a, b)
holds and that (PS)c is verified for all c ∈ [a, b]. Then I has at least two critical points
in I−1 ([a, b]). Moreover, if a1 < inf I(B23) > −∞ and (PS)c holds for all c ∈ [a1, b],
then I has another critical level in [a1, a′].

Therefore, we need a suitable Hilbert space in which (??) can be associated to the critical
points of a C1 functional I. In order to respond to this need, we introduce here the
variational framework in which problem (??) is set.
The Sobolev space H1

g (M) is obtained as the closure of C∞
0 (M) with respect to the norm

∥w∥g :=
(∫

M
|∇gw(σ)|2 dvg +

∫
M
|w(σ)|2 dvg

) 1
2

,

where C∞
0 (M) denotes the space of smooth compactly supported function in M. We

further set
H1

V (M) := {w ∈ H1
g (M) | ∥w∥2 <∞}

where

∥w∥ :=
(∫

M
|∇gw(σ)|2 dvg +

∫
M

V (σ) |w(σ)|2 dvg

)1/2

is the norm induced by the scalar product

⟨w1, w2⟩ :=
∫

M
⟨∇gw1(σ),∇gw2(σ)⟩g dvg +

∫
M

V (σ)w1(σ)w2(σ) dvg.

We recall that under the assumptions we made on the potential and the manifold, the
embedding H1

V (M) ↪→ Lq(M) is continuous for any q ∈ [2, 2∗]. Furthermore, as a result
of the Hypothesis V1 and V2 we also have the following Lemma, whose proof can be found
in [?, Lemma 2.1].

Lemma 1. Let M be a complete, non-compact d-dimensional Riemannian manifold
satisfying the curvature condition (Ric) and infσ∈M Volg (Bσ(1)) > 0. If V satisfies V1
and V2 the embedding H1

V (M) ↪→ Lq(M) is compact for all q ∈ [2, 2∗).
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∇-Theorems turned out to be a powerful tool when one is interested in studying the
multiplicity of solutions for nonlinear equations. In particular, in [?] Pistoia proved the
existence of four solutions for a superlinear elliptic problem on a bounded domain of
Rd. At a later time, in the same spirit of the paper of Pistoia, Mugnai proved in [?]
the existence of three solutions for a superlinear boundary problem with a more general
nonlinearity. ∇-Theorems are useful also when one deal with problems with higher order
operators as showed in [?] by Micheletti, Pistoia and Saccon. It is also worth mentioning
[?] where Molica Bisci, Mugnai and Servadei showed the existence of three solutions for
an equation driven by the fractional Laplacian on a bounded domain of Rd with Dirichlet
condition and a general nonlinearity. When one draws his attentions to problems settled
in unbounded domains, the situation is completely different. Indeed, in order to apply
the sphere-torus linking Theorem it is necessary to split the space on which is defined the
functional in three linear subspaces, two of them finite dimensional, while the third infinite
dimensional. When Ω is a bounded domain of Rd it is well known that the embedding
H1(Ω) ↪→ L2(Ω) is compact. As a consequence of that, the resolvent of the Schrödinger
operator or the Laplacian is compact and with standard arguments it is possible to prove
that the spectrum of these operators is discrete and that the eigenfunctions are dense in
the space under considerations. So, a common approach to select the three subspaces is
to consider the whole space as a direct sum of eigenspaces. Unfortunately, this strategy
fails in the case of unbounded domains, since the spectrum of the Schrödinger operator
or the Laplacian is not even discrete in general. A contribution in this direction was
given by Tehrani in [?] where the existence of two solution for the Nonlinear Schrödinger
equation in Rd. Following the characterization of the essential spectrum of a Schrödinger
operator present in [?], they are able to decompose the space and apply the theorem. The
drawback of their approach is that they don’t give sufficient condition on the potential to
ensure the existence of eigenvalues subsequent to the first one. A recent result was also
obtained by Mugnai in [?] proving the existence of at least two solutions for an equation
in which the nonlinearity is allowed to have an exponential growth in R2. In the present
paper, we want to extend the results quoted previously in two directions. The first one is
to give sufficient condition that will enable us to completely characterize the spectrum of
the operator taken into account. Secondly, the problem we want to investigate is settled
in a non-compact Riemannian manifold and, as far as we know, results as the one we are
going to prove are not present in literature. One of the first contribute for the Nonlinear
Schrödinger equation on Riemannian manifolds was given in [?], where Faraci and Farkas
established a necessary and sufficient condition for the existence of non-trivial solutions
with hypothesis on the manifold equal to the ones we will assume. More recently, Molica
Bisci and Secchi in [?] showed the existence of at least two solutions for (??) requiring λ
large enough under similar assumptions on f . We also quote [?] where the same authors
of this paper proved the existence of infinitely many solutions for a Schödinger equation
set on a Cartan-Hadamard manifold.

The main result of the paper is a multiplicity result for problem (??) whenever λ is
sufficiently close to an eigenvalue of −∆g.
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Theorem 2. Assume f : R → R and V : M→ R are continuous functions that verify
respectively (f1) – (f3) and (V1) – (V2). For every eigenvalue λk of −∆g, there exists
µ > 0 such that if λk − µ < λ < λk, then problem (??) admits at least three non-trivial
weak solutions w1, w2 and w3. Furthermore, these solutions belong to L∞(M) and for
each i ∈ {1, 2, 3} there results

lim
dg(σ,σ0)→+∞

wi(σ) = 0.

The proof of the previous Theorem is based on a precise description of the spectral
properties of the operator −∆g + V which governs (Pλ). In Section ?? we list in detail
these properties, since they seem to be new in the setting of a non-compact manifold M.
Remark 1. The boundedness of our solutions and their decay at infinity (??) follow from
[?, Theorem 3.1]. This remark applies to the eigenfunctions considered in Theorem ?? as
well.

To the best of our knowledge, our results are new even in the Euclidean case M = Rd,
d ≥ 3. In this case, our assumptions on V can be relaxed, and we can rely on some
conditions introduced in [?] which ensure both the discreteness of the spectrum of the
operator −∆+V and the necessary compact embedding of the Sobolev space H1

V (Rd). In
our setting, the compactness of the embedding of H1

V (M) into Lp(M) for all p ∈ [2, 2∗)
follows from [?, Lemma 2.1]. As a concrete example, we propose the following result.

Theorem 3. Assume that V : Rd → R is a function in L∞
loc(Rd) which verifies V (x) ≥

V0 > 0 for almost every x ∈ Rd and

lim
|x|→+∞

∫
B1(x)

dy

V (y) = 0.

Then the same conclusions as in Theorem ?? hold for−∆w + V (x)w =
(
1 + |x|d

)−2
|w|r−2w + λw in Rd

w(x)→ 0 as |x| → ∞,

where r ∈
(
2, 2d

d−2

)
.

2 A setting for (Pλ)
Let us consider{

−∆gw + V (σ)w = α(σ)f(w) + λw in M
w(σ)→ 0 as dg(σ0, σ)→∞,

where α ∈ L1(M) ∩ L∞(M) \ {0} is a non-negative function and f satisfies assumptions
(f1) – (f3).
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In order to find solutions for problem (??) we introduce the energy functional associated
to the problem. Namely, let Jλ : H1

V (M)→ R be such that

Jλ(w) = 1
2∥w∥

2 − λ

2 ∥w∥
2
L2(M) −

∫
M

α(σ)F (w(σ)) dvg.

By virtue of the embedding results presented in the previous sections, this functional is
well-defined, and it is standard to prove that it is of class C1. Moreover, as is well known,
critical points of Jλ correspond to weak solutions of problem (??), i.e.

⟨w, φ⟩ = λ⟨w, φ⟩L2(M) +
∫

M
α(σ)f(w(σ))φ(σ) dvg

for any φ ∈ H1
V (M). More in general, one can show that the derivative of the functional

Jλ along a function v ∈ H1
V (M) is

J ′
λ(w) [w] = ⟨w, v⟩ − λ⟨w, v⟩L2(M) −

∫
M

α(σ)f(w(σ))v(σ) dvg.

Now, take s ∈ [2, 2∗) and consider its conjugate exponent s′ such that 1/s + 1/s′ = 1.
We select a function h ∈ Ls′(M) and we focus on the equation

−∆gw = h(σ), σ ∈M.

By applying the classical Riesz or Lax-Milgram Theorem, one can easily show that the
problem above has a unique weak solution. By virtue of that, we are able to define

∆−1
g : Ls′(M) → H1

V (M)
h 7→ w = ∆−1

g h

where ∆−1
g h is the only weak solution of (??), which means

⟨∆−1
g h, φ⟩ = ⟨h, φ⟩L2(M).

Remark 2. We emphasize that the operator ∆−1
g is compact. Indeed, it is possible to

write it by the composition of two maps

Ls′(M)
(
H1

V (M)
)∗

H1
V (M)j ∆−1

g

where the first is compact, recalling that H1
V (M) ↪→ Ls(M) is compact and applying

[?, Theorem 6.4]. Since H1
V (M) is a Hilbert space, there is a unique element called the

gradient of Jλ and denoted ∇Jλ such that

⟨∇Jλ(w), v⟩ = J ′
λ(u) [v] .

It is also possible to verify that the gradient of Jλ can be written as

∇Jλ(w) = w −∆−1
g (λw + αf(w)) .
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We begin our analysis by proving a technical lemma that will provide some useful
estimates we will use throughout the paper.

Lemma 2. If f : R→ R is a function that satisfies (f1) – (f3), then we have the following
estimates:

(i) for any ε > 0 there exists a constant Aε
1 > 0 such that

|f(t)| ≤ 2ε |t|+ rAε
1 |t|

r−1

and

F (t) ≤ εt2 + Aε
1 |t|

r

for every t ∈ R;

(ii) for any ε > 0 there exist A2, Aε̃
2 > 0 such that

|f(t)| ≤ A2 + Aε
2 |t|

r−1

for every t ∈ R;

(iii) there exists A3, A4 > 0 such that

F (t) ≥ A3 |t|r −A4

for every t ∈ R.

Proof. The verification of the three inequalities is standard, and we omit the details.

We end this section by proving that the functional Jλ satisfies a good compactness
condition in Critical Point Theory.

Definition 2. We say that a sequence (wj)j ⊂ H1
V (M) is a Palais-Smale sequence at

level c ∈ R, (PS)c sequence for short, if Jλ(wj)→ c in R and J ′
λ(wj)→ 0 in

(
H1

V (M)
)∗

as j →∞. Furthermore, the functional Jλ is said to satisfy the (PS)c condition if every
(PS)c sequence for Jλ admits a strongly convergent subsequence in H1

V (M).

Proposition 1. Let f be a map that satisfies (f1)–(f3) and λ > 0 a real parameter.
Then, (PS)c condition holds for every c ∈ R for functional Jλ.

Proof. Let (wj)j ⊂ H1
V (M) a (PS)c sequence for functional Jλ, i.e.

Jλ(wj)→ c in R

and

J ′
λ(wj)→ 0 in H1

V (M)
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as j → ∞. We first prove that (wj)j is bounded in H1
V (M), adapting the ideas of [?,

Proof of Theorem 6.1]. We proceed by contradiction, assuming without loss of generality,
that ρj = ∥wj∥ → +∞ as j → +∞. Let us set vj = wj/ρj , so that we may assume that
vj ⇀ v in H1

V (M) and vj → v strongly in L2(M).
Now,

c + o(1) = Jλ(wj) = 1
2∥wj∥2 −

λ

2 ∥wj∥22 −
∫

M
α(σ)F (wj(σ)) dvg,

hence
o(1) = 1

2 −
λ

2 ∥vj∥22 −
∫

M
α(σ)F (wj(σ))

ρ2
j

dvg,

and

lim
j→+∞

∫
M

α(σ)F (wj(σ))
ρ2

j

dvg = 1
2 −

λ

2 ∥v∥
2
2.

We consider
M0 = {σ ∈M | v(σ) ̸= 0} ,

and we notice that wj(σ)→ +∞ when σ ∈ M0. From ?? (iii) it is straightforward to
verify

lim
t→∞

F (t)
t2 =∞

thus, applying the Fatou’s Lemma, we get

lim
j→∞

∫
M0

α(σ)F (wj(σ))
∥wj∥2

dvg =∞.

This obviously implies that

lim
j→+∞

∫
M

α(σ)F (wj(σ))
ρ2

j

dvg = +∞.

Comparing (??) and (??) we must conclude that Volg(M0) = 0, which means that v = 0
a.e. on M and in particular vj → 0 strongly in L2(M). From

C∥wj∥ ≥ ⟨∇Jλ(wj), wj⟩ = ∥wj∥2 − λ∥wj∥22 −
∫

M
α(σ)f(wj(σ))wj(σ) dvg

we see that
lim

j→+∞

∫
M

α(σ)f(wj(σ))wj(σ)
ρ2

j

dvg = 1− λ∥v∥22 = 1.

Therefore

lim
j→+∞

∫
M

α(σ)rF (wj(σ))− f(wj(σ))wj(σ)
ρ2

j

dvg = r

2 −
λr

2 ∥v∥
2
2 − 1 + λ∥v∥22 = r

2 − 1.

Coupling this with assumption (f3), we conclude that r
2 ≤ 1, against the assumption

that r > 2. This contradiction implies that (wj)j is a bounded sequence in H1
V (M).

We can now use (??) and Remark ?? (see also [?, Proposition 2.2] for a general approach)
to conclude the proof.
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3 Geometry of the ∇-Theorem
As mentioned at the beginning of the paper, our aim is to prove an existence result
through the so-called ∇-Theorem. In order to apply this tool, it is necessary to split the
space in three closed subspaces, two of finite dimension and one of infinite dimension.
Furthermore, the functional is required to have a precise geometrical structure. A standard
decomposition of H1

V (M) into three subspaces can be made through an adequate selection
of some eigenspaces associated to the operator ∆g. The following theorem characterizes
completely the spectrum of the resolvent of the Laplace-Beltrami operator under the
assumptions that guarantees the compact embedding H1

V (M) ↪→ Ls(M) for s ∈ (2, 2∗).

Theorem 4. The following statements hold true:

(a) the smallest eigenvalue of problem (??) is positive, and it can be characterized as

λ1 := min
w∈H1

V (M)
∥w∥L2(M)=1

∥w∥2

or analogously

λ1 := min
w∈H1

V (M)\{0}

∥w∥2

∥w∥2L2(M)
;

(b) there is a non-negative eigenfunction e1 ∈ H1
V (M) that is an associated eigenfunc-

tion to λ1 where the minimum in (??) is attained. Moreover, ∥e1∥L2(M) = 1 and
λ1 = ∥e1∥2;

(c) the eigenvalue λ1 is simple, i.e. if w ∈ H1
V (M) is such that∫

M
⟨∇gw(σ),∇gφ(σ)⟩g dvg +

∫
M

V (σ)w(σ)φ(σ) dvg = λ1

∫
M

w(σ)φ(σ) dvg

for any φ ∈ H1
V (M) then there exists ξ ∈ R such that w = ξe1;

(d) the set of eigenvalues of problem (??) can be arranged into a sequence (λk)k such
that

λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ λk+1 ≤ ...

where limk→∞ λk = +∞. Moreover, every eigenvalue can be characterized as

λk+1 := min
w∈E⊥

k
∥w∥L2(M)=1

∥w∥

or equivalently
λk+1 := min

w∈E⊥
k

∥w∥
∥w∥2L2(M)

where
Ek := span{e1, . . . , ek};
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(e) for any k ∈ N there is an eigenfunction ek ∈ E⊥
k−1 associated to the eigenvalue λk

such that the minimum in (??) is attained, i.e. ∥ek∥L2(M) = 1 and

λk = ∥ek∥2;

(f) the eigenfunctions (ek)k are an orthonormal basis for L2(M) and an orthogonal
basis for H1

V (M);

(g) each eigenvalue has finite multiplicity. Namely, if λk is such that

λk−1 < λk = . . . = λk+h < λk+h+1

for some h ∈ N0, then span{ek, . . . , ek+h} is the eigenspace associated to λk.

Proof. All these results are a by-product of the classical theorems of functional analysis
on the basic properties of compact self-adjoint operators defined on Hilbert spaces. As a
consequence of that, we will omit the proof, and we remind the interested reader to [?]
where an elementary proof is presented that can be easily adapted to our new setting.

We point out that the previous Theorem completely describes the set of solutions of the
eigenvalues problem {

−∆gw + V (σ)w = λw in M
w(σ)→ 0 as dg(σ0, σ)→∞.

The condition w(σ)→ 0 as dg(σ, σ0)→ +∞ follows from Remark ??.
In this section, we are going to show that the functional Jλ associated to problem (??)
possesses the geometrical structure required by the (∇)-Theorem under the assumption
we made on the nonlinearity f and the potential V . Before doing that, for the sake of
simplicity, we fix some notation. Henceforth, k and h will be positive integers such that

λk−1 < λk = . . . = λk+h < λk+h+1.

We define
X1 := Ek−1, X2 := span{ek, . . . ek+h}, X3 := E⊥

k+h.

We point out that the existence of such integers h and k is guaranteed by Theorem ??.
Next Lemma generalize the Poincaré inequality to the case in which the functions belong
to eigenspaces or its orthogonal.

Lemma 3. Let k ∈ N. The following inequalities hold:

(a) if w ∈ E⊥
k then

∥w∥2 ≥ λk+1∥w∥2L2(M);

(b) if w ∈ Ek then

∥w∥2 ≤ λk∥w∥2L2(M).
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Proof. We start with the case (a). Since w ∈ E⊥
k we can write

w =
∞∑

j=k+1
αjej

for some coefficients αj ∈ R. Thus, we compute

∥w∥2 = ⟨w, w⟩ =
∞∑

j=k+1
α2

j λj ≥ λk+1∥w∥2L2(M)

where we used Theorem ?? (f), (??) and the Bessel-Parseval’s identity (see for instance
[?, Theorem 5.9]). On the other hand, when w ∈ Ek we have

w =
k∑

j=1
αjej .

As a consequence, similarly as we did above we get

∥w∥2 =
k∑

j=1
α2

j λj ≤ λk∥w∥2L2(M).

Next proposition will show the functional Jλ verifies the desired geometrical property we
need to apply the ∇-Theorem.

Proposition 2. If assumptions (f1) – (f3) hold and λ ∈ (λk−1, λk) then there are
ρ, R ∈ R, with R > ρ > 0 such that

sup
{w∈X1 | ∥w∥≤R}∪{w∈X1⊕X2 | ∥w∥=R}

Jλ < inf
{w∈X2⊕X3 | ∥w∥=ρ}

Jλ

Proof. We start showing
inf

{w∈X2⊕X3 | ∥w∥=ρ}
Jλ > 0

choosing ρ adequately and observing that X2 ⊕X3 = E⊥
k−1. Applying twice the Hölder

inequality, we get ∫
M

α(σ)|w(σ)|2 dvg ≤ ∥α∥
L

2∗
2∗−2 (M)

∥w∥2L2∗ (M)

and ∫
M

α(σ)|w(σ)|r dvg ≤ ∥α∥
L

2∗
2∗−r (M)

∥w∥rL2∗ (M).
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From Lemma ?? (i), (??) and (??) we obtain

Jλ(w) ≥ 1
2∥w∥

2 − λ

2 ∥w∥
2
L2(M) − ε

∫
M

α(σ)|w(σ)|2 dvg −Aε
1

∫
M

α(σ)|w(σ)|r dvg

≥ 1
2∥w∥

2 − λ

2 ∥w∥
2
L2(M) − ε∥α∥

L
2∗

2∗−2 (M)
∥w∥2L2∗ (M) −Aε

1∥α∥
L

2∗
2∗−r (M)

∥w∥rL2∗ (M).

Now, recalling H1
V (M) ↪→ Ls(M) for every s ∈ [2, 2∗] continuously, it is possible to find

C > 0 such that

Jλ(w) ≥ 1
2∥w∥

2 − λ

2 ∥w∥
2
L2(M) − εC∥α∥

L
2∗

2∗−2 (M)
∥w∥2 −Aε

1C∥α∥
L

2∗
2∗−r (M)

∥w∥r.

Finally, Lemma ?? yields

Jλ(w) ≥
[1

2

(
1− λ

λk

)
− εC∥α∥

L
2∗

2∗−2 (M)

]
∥w∥2 −Aε

1C∥α∥
L

2∗
2∗−r (M)

∥w∥r.

At this point, choosing ε > 0 such that

1
2

(
1− λ

λk

)
− εC∥α∥

L
2∗

2∗−2 (M)
> 0

and ρ sufficiently small, the desired assertion is proved. On the other hand, it is possible
to prove

sup
{w∈X1 | ∥w∥≤R}∪{w∈X1⊕X2 | ∥w∥=R}

Jλ ≤ 0.

Indeed, in the case w ∈ X1, from Lemma ?? and (f3), recalling α > 0 for a.e. σ ∈M, it
follows that

Jλ(w) ≤ λk−1 − λ

2 ∥w∥2L2(M) ≤ 0.

Instead, when w ∈ X1 ⊕X2 it suffices to use Lemma ?? (iii) to obtain

Jλ(w) ≤ 1
2∥w∥

2 −A3

∫
M

α(σ)|w(σ)|r dvg + A4∥α∥L1(M).

Since X1 ⊕X2 has finite dimension all norms are equivalent, then choosing R > 0 big
enough it is straightforward to see that r > 2 implies Jλ(w) ≤ 0.

4 Validity of the (∇)-condition
This section is devoted to show the validity of the (∇)-condition introduced in Definition
??. Before proving the main result of this section, we need two preliminary lemmas.

Proposition 3. Assume Hypotheses (f1) – (f3) hold. Then for every ϱ > 0 there
exists δϱ > 0 such that for each λ ∈ [λk−1 + ϱ, λk+h+1 − ϱ] the only critical point of Jλ

constrained on X1 ⊕X3 with Jλ ∈ [−δϱ, δϱ] is the trivial one.

13



Proof. By contradiction, we suppose the statement false. So, we assume the existence of
ϱ̃ > 0, two sequences µj ⊂ [λk−1 + ϱ̃, λk+h+1 − ϱ̃] and (wj)j ⊂ X1 ⊕X3 of critical points,
i.e.

⟨∇Jµj (wj), φ⟩ = 0 for any φ ∈ X1 ⊕X3

such that

lim
j→+∞

Jµj (wj) = 0.

Since (wj)j ⊂ X1 ⊕X3, we can choose φ = wj in (??). As a consequence we have

0 = ∥wj∥2 − µj∥wj∥2L2(M) −
∫

M
α(σ)f(wj(σ))wj(σ) dvg.

Then, we notice that (??) can be rewritten as

0 = 2Jµj (wj) + 2
∫

M
α(σ)F (wj(σ)) dvg −

∫
M

α(σ)f(wj(σ))wj(σ) dvg.

Exploiting (f3) in (??) we obtain

0 ≤ 2Jµj (wj) + (2− r)
∫

M
α(σ)F (wj(σ)) dvg.

Reordering the terms in (??) we get

0 ≤ (r − 2)
∫

M
α(σ)F (wj(σ)) dvg ≤ 2Jµj (wj).

Putting together (??) and (??) we obtain

lim
j→∞

∫
M

α(σ)F (wj(σ)) dvg = 0.

Now, recalling wj ∈ X1⊕X3 for all j ∈ N, we are able to find w1,j ∈ X1 and w3,j ∈ X3 such
that wj = w1,j + w3,j . At this point, on the one hand, we test (??) with φ = w1,j − w3,j

and exploiting the properties of orthogonality of w1,j and w3,j we have

0 = ⟨∇Jµj (wj), w1,j − w3,j⟩
= ∥w1,j∥2 − ∥w3,j∥2 − µj∥w1,j∥2L2(M) + µj∥w3,j∥2L2(M)

−
∫

M
α(σ)f(wj(σ))(w1,j(σ)− w3,j(σ)) dvg.

14



Rearranging (??) and applying Lemma ?? we get∫
M

α(σ)f(wj(σ))(w1,j(σ)− w3,j(σ)) dvg = ∥w1,j∥2 − ∥w3,j∥2 − µj∥w1,j∥2L2(M)

+ µj∥w3,j∥2L2(M)

≤ ∥w1,j∥2 − ∥w3,j∥2 −
µj

λk−1
∥w1,j∥2

+ µj

λk+h+1
∥w3,j∥2

= λk−1 − µj

λk−1
∥w1,j∥2 + µj − λk+h+1

λk+h+1
∥w3,j∥3

< − ϱ̃

λk−1
∥w1,j∥2 −

ϱ̃

λk+h+1
∥w3,j∥2

< − 2ϱ̃

λk+h+1
∥wj∥2.

On the other hand, thanks to Hölder and the continuous embedding H1
V (M) ↪→ Lr(M),

we have∣∣∣∣∫
M

α(σ)f(wj(σ))(w1,j(σ)− w3,j(σ)) dvg

∣∣∣∣ ≤ ∥αf(wj)∥Lr′ (M)∥w1,j − w3,j∥Lr(M)

≤ C∥αf(wj)∥Lr′ (M)∥wj∥

for some C > 0, where we used

⟨w1,j − w3,j , w1,j − w3,j⟩ = ∥w1,j∥2 − ∥w3,j∥2 = ∥wj∥2.

Coupling (??) and (??), we have

−C∥αf(wj)∥Lr′ (M)∥wj∥ ≤ −
2ϱ̃

λk+h+1
∥wj∥2

from which it follows that
2ϱ̃

λk+h+1
∥wj∥ ≤ C∥αf(wj)∥Lr′ (M).

Then, we use Lemma ?? (ii) and we obtain∫
M
|α(σ)f(wj(σ))|r

′
dvg ≤

∫
M

[
α(σ)

(
A2 + Aε

2|wj |r−1
)] r

r−1 .

Recalling that for any a, b ≥ 0 we have

(a + b)r ≤ 2r(ar + br),

it follows from (??) that∫
M
|α(σ)f(wj(σ))|r

′
dvg ≤

(
2A2∥α∥Lr′ (M)

)r′

+ (2Aε
2)r′

∫
M

(α(σ))r′
|wj |r dvg.
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Finally, we exploit Lemma ?? in (??) and we obtain∫
M
|α(σ)f(wj(σ))|r

′
dvg ≤

(
2A2∥α∥Lr′ (M)

)r′

+ A4
A3

(2Aε
2)r′
∥α∥r′

Lr′ (M)

+ (2Aε
2)r′ A4

A3
∥α∥r′−1

L∞(M)

∫
M

α(σ)F (wj(σ)) dvg.

From (??), (??) and (??), we can deduce that (wj)j is bounded in H1
V (M). Hence, up

to a subsequence
wj ⇀ w∞ in H1

V (M).

Furthermore, recalling that H1
V (M) ↪→ Lr(M) is compact, we have

wj → w∞ in Lr(M),
wj(σ)→ w∞(σ) for a.e. σ ∈M

as j →∞. Now, from (??), Lemma ?? (i) and the Minkowski inequality it follows

0 <
2ϱ̃

Cλk+h+1
≤
∥αf(wj)∥Lr′ (M)

∥wj∥

≤

(∫
M

[
α(σ)

(
2ε|wj |+ rAε

1|wj |r−1
)] r

r−1 dvg

) r−1
r

∥wj∥

≤
4ε

(∫
M α(σ)

r
r−1 |wj |

r
r−1 dvg

) r−1
r + 2rAε

1

(∫
M α(σ)

r
r−1 |wj |r dvg

) r−1
r

∥wj∥
.

Recalling that the embedding H1
V (M) ↪→ Ls(M) is continuous for every s ∈ [2, 2∗] we

deduce from (??) that

0 <
2ϱ̃

Cλk+h+1
≤ C̃

(
2ε + rAε

1∥wj∥r−2
)

for some optimal C̃ > 0. With similar estimates, it is straightforward to check that

|α(σ)f(wj(σ))|
r

r−1 ≤ Cε
1 |α(σ)|

r
r−1 + Cε

2 |wj(σ)|r

and
|α(σ)F (wj(σ))| ≤ Cε

3 |wj(σ)|2 + Cε
4 |wj(σ)|r

choosing adequately Cε
1 , Cε

2 , Cε
3 , Cε

4 > 0. Hence, the general Lebesgue dominated conver-
gence Theorem [?, Section 4.4, Theorem 19] implies

lim
j→∞

∫
M

α(σ)F (wj(σ)) dvg =
∫

M
α(σ)F (w∞(σ)) dvg

and

lim
j→∞

∫
M
|α(σ)f(wj(σ))|

r
r−1 dvg =

∫
M
|α(σ)f(w∞(σ))|

r
r−1 dvg.
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Coupling (??) and (??), keeping into account (f3), we see that w∞ = 0 is the only
admissible case. At this point, only two possible scenarios are possible. The first one is
that wj → 0 in H1

V (M), but if that were true, letting j →∞, then we would have

0 <
2ϱ̃

Cλk+h+1
≤ 2εC̃

which is impossible since ε > 0 is arbitrary. The second one is that there exist η > 0
such that ∥wj∥ ≥ η for each j ∈ N. In this case, firstly we notice that from w∞ = 0 and
f(0) = 0 it follows

lim
j→∞

∫
M
|α(σ)f(wj(σ))|

r
r−1 dvg = 0.

Then, thanks to (??), (??) becomes

0 <
2ϱ̃η

λk+h+1
≤ 0,

which is clearly a contradiction.

In the sequel, given a closed subspace Y of H1
V (M) we will denote with PY : H1

V (M)→ Y
the usual orthogonal projection.

Proposition 4. Suppose f satisfies (f1) – (f3), λ ∈ R and let (wj)j ⊂ H1
V (M) be a

sequence such that

(Jλ(wj))j is bounded

PX2wj → 0 in H1
V (M)

PX1⊕X3∇Jλ(wj)→ 0 in H1
V (M).

Then (wj)j is bounded in H1
V (M).

Proof. We argue by contradiction, and we suppose that

∥wj∥ → ∞

as j →∞. Normalizing, we assume up to a subsequence
wj

∥wj∥
⇀ w∞ in H1

V (M)

and
wj

∥wj∥
→ w∞ in Ls(M)

17



as j →∞ for all s ∈ [2, 2∗).
Clearly, we can write

wj = PX2wj + PX1⊕X3wj

with PX2wj → 0. Recalling (??), (??) and (??) we have

⟨PX1⊕X3∇Jλ(wj), wj⟩ = ⟨∇Jλ(wj), wj⟩ − ⟨PX2∇Jλ(wj), wj⟩

= ∥wj∥2 − λ∥wj∥2L2(M) −
∫

M
α(σ)f(wj(σ))wj(σ) dvg

− ⟨PX2

(
wj −∆−1

g (λwj + αf(wj))
)

, wj⟩

By orthogonality, we get

⟨PX2w, v⟩ = ⟨PX2w, PX1⊕X3v + PX2v⟩ = ⟨PX2w, PX2v⟩

and
⟨w, PX2v⟩ = ⟨PX1⊕X3w + PX2w, PX2v⟩ = ⟨PX2w, PX2v⟩

for every w, v ∈ H1
V (M), which means that PX2 is a symmetric operator. In virtue of

that, we have

⟨PX2

(
wj −∆−1

g (λwj + αf(wj))
)

, wj⟩ = ∥PX2wj∥2 − λ⟨∆−1
g wj , PX2wj⟩

− ⟨∆−1
g (αf(wj)) , PX2wj⟩.

Recalling (??) we get

λ⟨PX2wj , ∆−1
g wj⟩+ ⟨PX2wj , ∆−1

g (αf(wj))⟩

= λ∥PX2wj∥2L2(M) +
∫

M
α(σ)f(wj(σ))PX2wj(σ) dvg

Inserting (??) and (??) in (??) we obtain

⟨PX1⊕X3∇Jλ(wj), wj⟩ = 2Jλ(wj) + 2
∫

M
α(σ)F (wj(σ)) dvg

− ∥PX2wj∥2 + λ∥PX2wj∥2L2(M) −
∫

M
α(σ)f(wj(σ))wj(σ) dvg

+
∫

M
α(σ)f(wj(σ))PX2wj(σ) dvg.

Reordering the terms in (??) and using (??), (??), (??) and (??) we get

1
∥wj∥r

(
2

∫
M

α(σ)F (wj(σ)) dvg −
∫

M
α(σ)f(wj(σ))wj(σ) dvg

+
∫

M
α(σ)f(wj(σ))PX2wj dvg

)
→ 0

18



as j →∞.
Claim: w∞ = 0
We first need to show ∫

M
α(σ)f(wj(σ))PX2wj dvg

∥wj∥r
→ 0

as j →∞. As a first step, observe that all eigenfunctions are bounded by [?, Theorem
3.1]. Moreover, having X2 finite dimension, all norms are equivalent. Therefore, from
(??) it follows that

∥PX2wj∥L∞(M) → 0

as j →∞. Then, from Lemma ?? (i)∣∣∣∣∣∣∣∣
∫

M
α(σ)f(wj(σ))PX2wj(σ) dvg

∥wj∥r

∣∣∣∣∣∣∣∣
≤

2ε

∫
M

α(σ)wj(σ) dvg + rAε
1∥PX2wj∥L∞(M)

∫
M

α(σ)|wj(σ)|r−1 dvg

∥wj∥r
.

Applying the Hölder inequality twice and recalling H1
V (M) ↪→ L2(M) it follows∣∣∣∣∣∣∣∣

∫
M

α(σ)f(wj(σ))PX2wj(σ) dvg

∥wj∥r

∣∣∣∣∣∣∣∣
≤

2εC∥α∥L2(M)
∥wj∥r−2 +

rAε
1∥PX2wj∥L∞(M)∥α∥rLr(M)

∥∥∥ wj

∥wj∥

∥∥∥r−1

Lr(M)
∥wj∥

for some C > 0. Now, the validity of (??) follows from the boundedness of the sequence
wj/∥wj∥ in Lr(M). In virtue of (??), combining (??) with (f3), we obtain

o(1) =
2

∫
M

α(σ)F (wj(σ)) dvg −
∫

M
α(σ)f(wj(σ))wj(σ) dvg

∥wj∥r

≤
(2− r)

∫
M

α(σ)F (wj(σ)) dvg

∥wj∥r
≤ 0

from which we deduce

lim
j→∞

∫
M

α(σ)F (wj(σ)) dvg

∥wj∥r
= 0.
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At this point, Lemma ?? (iii) implies that∫
M

α(σ)|wj |r dvg

∥wj∥r
≤

A4∥α∥L1(M)
A3∥wj∥r

+ 1
A3∥wj∥r

∫
M

α(σ)F (wj(σ)) dvg.

Combining this with (??) we get that α(σ)|wj(σ)|r → 0 a.e. in M as j →∞, but then
the claim follows because of the positivity a.e of α. Now, we observe that

0← Jλ(wj)
∥wj∥2

= 1
2 −

λ

2

∥∥∥∥∥ wj

∥wj∥

∥∥∥∥∥
2

L2(M)

− 1
∥wj∥2

∫
M

α(σ)F (wj(σ)) dvg.

Recalling wj/∥wj∥ → 0 in L2(M) we obtain

1
∥wj∥2

∫
M

α(σ)F (wj(σ)) dvg →
1
2

as j →∞. Furthermore, from Lemma ?? (iii) it follows

1
∥wj∥2

∫
M

α(σ)|wj(σ)|r dvg ≤
A4∥α∥L1(M)

A3∥wj∥2
+ 1

A3∥wj∥2
∫

M
α(σ)F (wj(σ)) dvg.

Because of (??), the second member of (??) is bounded and so there exist a C̃ > 0 such
that ∫

M
α(σ)|wj(σ)|r dvg ≤ C̃∥wj∥2.

At this point, applying Lemma ?? (ii), the Hölder inequality and (??), we notice∫
M
|α(σ)f(wj(σ))PX2wj(σ)| dvg

∥wj∥2

≤
∥PX2wj∥L∞(M)

∥wj∥2
(

A2∥α∥L1(M) + Aε
2

∫
M
|α(σ)|

1
r |α(σ)|

r−1
r |wj(σ)|r−1

)

≤ ∥PX2wj∥L∞

A2∥α∥L1(M)
∥wj∥2

+
Aε

2∥α∥
1
r

L1(M)

∥wj∥
2
r


∫

M
α(σ)|wj(σ)|r dvg

∥wj∥2


r−1

r


≤ ∥PX2wj∥L∞

A2∥α∥L1(M)
∥wj∥2

+
Aε

2C̃1− 1
r ∥α∥

1
r

L1(M)

∥wj∥
2
r

 ,

which implies

lim
j→∞

∫
M
|α(σ)f(wj(σ))PX2wj(σ)| dvg

∥wj∥2
= 0.

20



Dividing (??) by ∥wj∥2 and using (??), (??), (??) and (??) we get

1
∥wj∥2

(∫
M

α(σ)F (wj(σ)) dvg −
∫

M
α(σ)f(wj(σ))wj(σ) dvg

)
→ 0

as j →∞. To conclude the proof, we argue as did in (??) to obtain

lim
j→∞

1
2

∫
M

α(σ)F (wj(σ)) dvg = 0.

Clearly (??) and (??) are not compatible.

Proposition 5. Assume that f satisfies (f1) – (f3). For any ϱ > 0 there exists ηϱ > 0
such that for any η′, η′′ ∈ (0, ηϱ), with η′ < η′′ we have that ∇ (Jλ, X1 ⊕X3, η′, η′′) is
verified for all λ ∈ (λk−1 + ϱ, λk+h+1 − ϱ).

Proof. By contradiction, we suppose that there is ϱ̃ > 0 such that for any ηϱ̃ > 0 we can
find λ̃ ∈ [λk−1 + ϱ̃, λk+h+1 − ϱ̃) and η′ < η′′ such that

(∇)
(
Jλ, X1 ⊕X3, η′, η′′)

does not hold. If so, it is possible to find a sequence (wj)j ⊂ H1
V (M) such that

Jλ̃(wj) ∈
[
η′, η′′]

dist(wj , X1 ⊕X3)→ 0 as j →∞

PX1⊕X3∇Jλ̃(wj)→ 0 as j →∞.

Because of that, Proposition ?? can be applied, thus (wj)j is bounded in H1
V (M). Hence,

up to a subsequence,

wj ⇀ w∞ in H1
V (M)

wj → w∞ in Ls(M) for all s ∈ [2, 2∗)

wj(σ)→ w∞(σ) a.e in M

as j →∞. Now, arguing as we did to obtain (??), we can find Ãε
1, Ãε

2 > 0 such that∫
M
|α(σ)f(wj(σ))|

r
r−1 dvg ≤ Ãε

1 + Ãε
2

∫
M
|wj(σ)|r dvg.

Since wj → w∞ in Lr(M) there is C̃ > 0 such that∫
M
|α(σ)f(wj(σ))|

r
r−1 dvg ≤ C̃.
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Then, recalling that ∆−1
g is a compact operator,

PX1⊕X3∆−1
g

(
λ̃wj + αf(wj)

)
→ PX1⊕X3∆−1

g

(
λ̃w∞ + αf(w∞)

)
.

Recalling (??), we have

PX1⊕X3∇Jλ(wj) = wj − PX2wj − PX1⊕X3∆−1
g

(
λ̃wj + αf(wj)

)
.

Since that, (??), (??) and (??) we deduce

wj → PX1⊕X3∆−1
g

(
λ̃w∞ + αf(w∞)

)
in H1

V (M) as j →∞. Now, on the one hand from (??) and (??) it follows

⟨∇Jλ̃(wj), φ⟩ = ⟨wj , φ⟩ − λ̃⟨wj , φ⟩L2(M) −
∫

M
α(σ)f(wj(σ))φ(σ) dvg → 0

for any φ ∈ X1 ⊕X3 as j →∞.

On the other hand, from (??) and (??) we also have

⟨∇Jλ̃(wj), φ⟩ → ⟨w∞, φ⟩ − λ̃⟨w∞, φ⟩L2(M) −
∫

M
α(σ)f(wj(σ))φ(σ) dvg

for any φ ∈ X1 ⊕ X3. Coupling (??) and (??) we get that w∞ is a critical point for
Jλ̃ constrained on X1 ⊕ X3. Then, we can apply Proposition ?? to obtain w∞ = 0.
But, since Jλ̃(wj) ≥ η′, wj → w∞ in H1

V (M), exploiting the continuity of Jλ̃ we obtain
Jλ̃(w∞) > 0. This is a contradiction, as Jλ̃(0) = 0.

5 Proof of Theorem ??
We begin with a technical result.

Lemma 4. If f verifies (f1)–(f3) then

lim
λ→λk

sup
w∈Ek+h

Jλ(w) = 0

Proof. We start noticing that from Lemma ?? (iii) it follows

lim
ξ→±∞

Jλ(ξw) = −∞

for all w ∈ Ek+h, thus
sup

w∈Ek+h

Jλ(w) is achieved.

Now, by contradiction we suppose there is a sequence τj → λk as j →∞ and a sequence
(wj)j ⊂ Ek+h such that

Jτj (wj) = sup
w∈Ek+h

Jλ(w) > γ
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for some γ > 0. We split the proof analysing separately the case (wj)j bounded and
unbounded. In the first one, since the weak and the strong topology coincide, we can
suppose wj → w∞ in Ek+h. In order to reach a contradiction, keeping into account (??)
and letting j →∞, it suffices to apply Lemma ?? to obtain

γ ≤ Jλk
(w∞) = (λk+h − λk)−

∫
M

α(σ)F (w∞(σ)) dvg ≤ 0.

Instead, if (wj)j is unbounded, we can assume ∥wj∥ → ∞ as j →∞. From Lemma ??
(iii) it follows

0 < γ ≤ Jτj (wj) ≤ 1
2∥wj∥2 −

τj

2 ∥wj∥2L2(M) −A3|wj∥rLr(M) + A4∥α∥L1(M).

Exploiting again the fact that on the finite-dimensional subspace Eh+k all norms are
equivalent, the right hand side of the above inequality goes to −∞ concluding the
proof.

Proof of Theorem ??. We want to apply [?, Theorem 2.10]. We start choosing ϱ > 0. In
correspondence of that, thanks to Proposition ?? there are ηϱ, η′, η′′ > 0, with η′ < η′′ < ηϱ

such that ∇ (Jλ, X1 ⊕X3, η′, η′′) is verified for all λ ∈ (λk−1 + ϱ, λk+h+1− ϱ). Exploiting
Lemma ?? we also have the existence of ϱ > 0, with ϱ ≤ ϱ such that

sup
w∈Ek+h

Jλ(w) ≤ η′

for λ ∈ (λk − ϱ, λk). At this point, recalling Propositions ?? and ??, all hypothesis of
Theorem 2.10 in [?] are satisfied, and we have the existence of two non-trivial critical
points w1 and w2 such that

Jλ(wi) ∈
[
η′, η′′] (i = 1, 2).

The third critical point w3 is a consequence of the classical Linking Theorem. Furthermore,
from Lemma ??, choosing λ sufficiently close to λk, we can see that

Jλ(wi) < sup
w∈Ek+h

Jλ(w) ≤ Jλ(w3), (i = 1, 2)

proving that w1, w2, w3 are distinct.
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