We outline the features of the R package SparseSignatures and its application to determine the signatures contributing to mutation profiles of tumor samples. We describe installation details and illustrate a step-by-step approach to (1) prepare the data for signature analysis, (2) determine the optimal parameters, and (3) employ them to determine the signatures and related exposure levels in the point mutation dataset. For complete details on the use and execution of this protocol, please refer to Lal et al. (2021).

Mella, L., Lal, A., Angaroni, F., Maspero, D., Piazza, R., Sidow, A., et al. (2022). SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples. STAR PROTOCOLS, 3(3) [10.1016/j.xpro.2022.101513].

SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples

Angaroni F.;Maspero D.;Piazza R.;Antoniotti M.
;
Graudenzi A.
;
Ramazzotti D.
2022

Abstract

We outline the features of the R package SparseSignatures and its application to determine the signatures contributing to mutation profiles of tumor samples. We describe installation details and illustrate a step-by-step approach to (1) prepare the data for signature analysis, (2) determine the optimal parameters, and (3) employ them to determine the signatures and related exposure levels in the point mutation dataset. For complete details on the use and execution of this protocol, please refer to Lal et al. (2021).
Articolo in rivista - Articolo scientifico
Bioinformatics; Cancer; Genomics;
English
1-lug-2022
2022
3
3
101513
none
Mella, L., Lal, A., Angaroni, F., Maspero, D., Piazza, R., Sidow, A., et al. (2022). SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples. STAR PROTOCOLS, 3(3) [10.1016/j.xpro.2022.101513].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/391793
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact