For a prime number ℓ we say that an oriented pro-ℓ group (G, θ) has the Bogomolov–Positselski property if the kernel of the canonical projection on its maximal θ-abelian quotient πG,θab:G→G(θ) is a free pro-ℓ group contained in the Frattini subgroup of G. We show that oriented pro-ℓ groups of elementary type have the Bogomolov–Positselski property (cf. Theorem 1.2). This shows that Efrat’s Elementary Type Conjecture implies a positive answer to Positselski’s version of Bogomolov’s Conjecture on maximal pro-ℓ Galois groups of a field K in case that K×/(K×)ℓ is finite. Secondly, it is shown that for an H∙-quadratic oriented pro-ℓ group (G, θ) the Bogomolov–Positselski property can be expressed by the injectivity of the transgression map d22,1 in the Hochschild–Serre spectral sequence (cf. Theorem 1.4).
Quadrelli, C., Weigel, T. (2022). Oriented pro-ℓ groups with the Bogomolov-Positselski property. RESEARCH IN NUMBER THEORY, 8(2) [10.1007/s40993-022-00318-9].
Oriented pro-ℓ groups with the Bogomolov-Positselski property
Quadrelli, C
;Weigel, T.
2022
Abstract
For a prime number ℓ we say that an oriented pro-ℓ group (G, θ) has the Bogomolov–Positselski property if the kernel of the canonical projection on its maximal θ-abelian quotient πG,θab:G→G(θ) is a free pro-ℓ group contained in the Frattini subgroup of G. We show that oriented pro-ℓ groups of elementary type have the Bogomolov–Positselski property (cf. Theorem 1.2). This shows that Efrat’s Elementary Type Conjecture implies a positive answer to Positselski’s version of Bogomolov’s Conjecture on maximal pro-ℓ Galois groups of a field K in case that K×/(K×)ℓ is finite. Secondly, it is shown that for an H∙-quadratic oriented pro-ℓ group (G, θ) the Bogomolov–Positselski property can be expressed by the injectivity of the transgression map d22,1 in the Hochschild–Serre spectral sequence (cf. Theorem 1.4).File | Dimensione | Formato | |
---|---|---|---|
Bogomolov_Jan_29.pdf
accesso aperto
Descrizione: Preprint presente su arxiv
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
450.19 kB
Formato
Adobe PDF
|
450.19 kB | Adobe PDF | Visualizza/Apri |
10281-351878_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
484.49 kB
Formato
Adobe PDF
|
484.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.