In this study, Hypnum cupressiforme moss bags were used to examine the atmospheric deposition of trace elements in the oil refinery region of Sardinia (Italy) compared with surrounding natural zones. The concentrations of 13 elements [arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn)] were determined using inductively coupled plasma optical emission spectrometry. A significant accumulation of pollutants was detected using active biomonitoring with moss bags compared with a control site. The most relevant contaminants for all of the tested sites were Cr, Cu, Ni, and Zn. Moreover, the accumulation of Cr and Zn in the refinery industrial areas, IA1 and IA2, was more than five times greater than that detected at the control site. Levels of Cd, Mg, and Pb were also higher at all of the monitored sites compared with the control site. Both genomic and proteomic methods were used to study the response of H. cupressiforme to air pollution. No DNA damage or mutations were detected using the amplified fragment length polymorphisms (AFLP) method. At the protein level, 15 gel spots exhibited differential expression profiles between the moss samples collected at the IA1 site and the control site. Furthermore, among the 14 spots that showed a decrease in protein expression, nine were associated with ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and proteins of the light-harvesting complexes of photosystem (PS) II, three were associated with protein synthesis, and three were stress-related proteins. Thus, some of these proteins may represent good moss biosensors which could be used as pre-alert markers of environmental pollution.

Cortis, P., Vannini, C., Cogoni, A., DE MATTIA, F., Bracale, M., Mezzasalma, V., et al. (2016). Chemical, molecular, and proteomic analyses of moss bag biomonitoring in a petrochemical area of Sardinia (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL, 23(3), 2288-2300 [10.1007/s11356-015-5393-7].

Chemical, molecular, and proteomic analyses of moss bag biomonitoring in a petrochemical area of Sardinia (Italy)

DE MATTIA, FABRIZIO;MEZZASALMA, VALERIO
Penultimo
;
LABRA, MASSIMO
Ultimo
2016

Abstract

In this study, Hypnum cupressiforme moss bags were used to examine the atmospheric deposition of trace elements in the oil refinery region of Sardinia (Italy) compared with surrounding natural zones. The concentrations of 13 elements [arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn)] were determined using inductively coupled plasma optical emission spectrometry. A significant accumulation of pollutants was detected using active biomonitoring with moss bags compared with a control site. The most relevant contaminants for all of the tested sites were Cr, Cu, Ni, and Zn. Moreover, the accumulation of Cr and Zn in the refinery industrial areas, IA1 and IA2, was more than five times greater than that detected at the control site. Levels of Cd, Mg, and Pb were also higher at all of the monitored sites compared with the control site. Both genomic and proteomic methods were used to study the response of H. cupressiforme to air pollution. No DNA damage or mutations were detected using the amplified fragment length polymorphisms (AFLP) method. At the protein level, 15 gel spots exhibited differential expression profiles between the moss samples collected at the IA1 site and the control site. Furthermore, among the 14 spots that showed a decrease in protein expression, nine were associated with ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and proteins of the light-harvesting complexes of photosystem (PS) II, three were associated with protein synthesis, and three were stress-related proteins. Thus, some of these proteins may represent good moss biosensors which could be used as pre-alert markers of environmental pollution.
Articolo in rivista - Articolo scientifico
Air pollution; Genotoxic; Heavy metals; Hypnum cupressiforme; Proteomic; Refinery;
Air pollution; Genotoxic; Heavy metals; Hypnum cupressiforme; Proteomic; Refinery; Environmental Chemistry; Health, Toxicology and Mutagenesis; Pollution
English
2016
23
3
2288
2300
none
Cortis, P., Vannini, C., Cogoni, A., DE MATTIA, F., Bracale, M., Mezzasalma, V., et al. (2016). Chemical, molecular, and proteomic analyses of moss bag biomonitoring in a petrochemical area of Sardinia (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL, 23(3), 2288-2300 [10.1007/s11356-015-5393-7].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/106676
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
Social impact