Motivation: We introduce TRanslational ONCOlogy (TRONCO), an open-source R package that implements the state-of-the-art algorithms for the inference of cancer progression models from (epi)genomic mutational profiles. TRONCO can be used to extract population-level models describing the trends of accumulation of alterations in a cohort of cross-sectional samples, e.g. retrieved from publicly available databases, and individual-level models that reveal the clonal evolutionary history in single cancer patients, when multiple samples, e.g. multiple biopsies or single-cell sequencing data, are available. The resulting models can provide key hints for uncovering the evolutionary trajectories of cancer, especially for precision medicine or personalized therapy.

De Sano, L., Caravagna, G., Ramazzotti, D., Graudenzi, A., Mauri, G., Mishra, B., et al. (2016). TRONCO: An R package for the inference of cancer progression models from heterogeneous genomic data. BIOINFORMATICS, 32(12), 1911-1913 [10.1093/bioinformatics/btw035].

TRONCO: An R package for the inference of cancer progression models from heterogeneous genomic data

CARAVAGNA, GIULIO
Secondo
;
RAMAZZOTTI, DANIELE;GRAUDENZI, ALEX;MAURI, GIANCARLO;ANTONIOTTI, MARCO
Ultimo
2016

Abstract

Motivation: We introduce TRanslational ONCOlogy (TRONCO), an open-source R package that implements the state-of-the-art algorithms for the inference of cancer progression models from (epi)genomic mutational profiles. TRONCO can be used to extract population-level models describing the trends of accumulation of alterations in a cohort of cross-sectional samples, e.g. retrieved from publicly available databases, and individual-level models that reveal the clonal evolutionary history in single cancer patients, when multiple samples, e.g. multiple biopsies or single-cell sequencing data, are available. The resulting models can provide key hints for uncovering the evolutionary trajectories of cancer, especially for precision medicine or personalized therapy.
Articolo in rivista - Articolo scientifico
Cancer; Bioinformatics; Machine Learning
English
19-feb-2016
2016
32
12
1911
1913
reserved
De Sano, L., Caravagna, G., Ramazzotti, D., Graudenzi, A., Mauri, G., Mishra, B., et al. (2016). TRONCO: An R package for the inference of cancer progression models from heterogeneous genomic data. BIOINFORMATICS, 32(12), 1911-1913 [10.1093/bioinformatics/btw035].
File in questo prodotto:
File Dimensione Formato  
2016 De Sano Bioinformatics.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 284.26 kB
Formato Adobe PDF
284.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/100189
Citazioni
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 23
Social impact