By using the Inverse Scattering Transform we construct an explicit soliton solution formula for the Hirota equation. The formula obtained allows one to get, as a particular case, the N-soliton solution, the breather solution and, most relevantly, a new class of solutions called multipole soliton solutions. We use these exact solutions to study the motion of a vortex filament in an incompressible Euler fluid with nonzero axial velocity.

Demontis, F., Ortenzi, G., Van Der Mee, C. (2015). Exact solutions of the Hirota equation and vortex filaments motion. PHYSICA D-NONLINEAR PHENOMENA, 313, 61-80 [10.1016/j.physd.2015.09.009].

Exact solutions of the Hirota equation and vortex filaments motion

ORTENZI, GIOVANNI
;
2015

Abstract

By using the Inverse Scattering Transform we construct an explicit soliton solution formula for the Hirota equation. The formula obtained allows one to get, as a particular case, the N-soliton solution, the breather solution and, most relevantly, a new class of solutions called multipole soliton solutions. We use these exact solutions to study the motion of a vortex filament in an incompressible Euler fluid with nonzero axial velocity.
Articolo in rivista - Articolo scientifico
Inverse Scattering Transform; Soliton solutions; Vortex filaments; Condensed Matter Physics; Statistical and Nonlinear Physics
English
61
80
20
Demontis, F., Ortenzi, G., Van Der Mee, C. (2015). Exact solutions of the Hirota equation and vortex filaments motion. PHYSICA D-NONLINEAR PHENOMENA, 313, 61-80 [10.1016/j.physd.2015.09.009].
File in questo prodotto:
File Dimensione Formato  
Exact-solutions-of-the-Hirota-equation-and-vortex-filaments-motion-PhysD2015.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 929.91 kB
Formato Adobe PDF
929.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Hirota13.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/97928
Citazioni
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
Social impact