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Abstract

By using the Inverse Scattering Transform we construct an explicit soliton solution formula for the Hirota

equation. The formula obtained allows one to get, as a particular case, the N-soliton solution, the breather

solution and, most relevantly, a new class of solutions called multipole soliton solutions. By adapting the

Sym-Pohlmeyer reconstruction formula to the Hirota equation, we use these exact solutions to study the

motion of a vortex filament in an incompressible Euler fluid with nonzero axial velocity.

1 Introduction

In 1973 Hirota [38] considered the following equation

iqt + 3iα|q|2qx + ρqxx + iσqxxx + δ|q|2q = 0 , (1.1)

where subscripts denote partial derivatives, q is a scalar function, (x, t) ∈ R2, i is the imaginary unit, and
α, ρ, σ, δ are real constants which satisfy αρ = σδ. In his paper [38] Hirota, applying the method which takes
his name [39], obtained the N -soliton solutions for this equation. Equation (1.1) can be written as

iqt − α2

[

qxx + 2|q|2q
]

+ iα3

[

qxxx + 6|q|2qx
]

= 0 , (1.2)

where we have chosen α = 2α3, δ = −2α2, ρ = −α2 and σ = α3 in such a way that the constraint αρ = σδ is
satisfied. We observe that for α2 = −1, α3 = 0 we get the focusing Nonlinear Schrödinger (NLS) equation and
for α2 = 0, α3 = 1 equation (1.2) reduces to the modified Korteweg-de Vries (mKdV) equation. Equation (1.2)
is integrable because it is the sum of the commuting integrable flows given by NLS and mKdV PDEs which
belong to the same hierarchy. In 1991 Fukumoto and Miyazaki [32] showed the relevance of the Hirota equation
(1.2) in the modeling of the vortex string motion for a three dimensional Euler incompressible fluid. A complete
analytic study of this problem is at the moment technically impossible and some approximation is necessary.
The classical one is the local induction approximation (LIA) developed in [22, 13]. In the LIA it is assumed
that the main contribution to the self-interaction of the vortex string in a point is given by a finite length of the
string about the point. In the case of constant vorticity and null velocity inside the vortex core the resulting
model is equivalent, by means of the Hasimoto map [37], to the focusing nonlinear Schrödinger equation (NLS).
In [32] the authors extended the LIA to a 2–fields PDE system equivalent to (1.2) by means of the Hasimoto
map. The new term proportional to α3 encodes the correction to the LIA due to the (constant) axial velocity
α3 along the vortex filament.

The first topic of this paper is to find explicit solutions for equation (1.2) in order to allow a straight
evaluation of the contribution of axial velocity in the vortex string motion. Even though the paper is devoted
to the explicit study of solutions without gradient catastrophes, we hope that the method developed here can
be extended to other classes of (nonsoliton) solutions where typical catastrophe oscillations of the vortex string
appear [35, 36].

We will construct exact soliton solutions for (1.2) by following the procedure of the Inverse Scattering
Transform (IST). The IST is a powerful method (see [3, 6, 7, 17, 31] for details) which allows one to solve the
initial value problem for a class of Nonlinear Partial Differential Equations (NPDE) called integrable equations.
The IST has already been applied to many significant nonlinear evolution equations such as the Korteweg-de
Vries equation [33], the NLS equation [46], the mKdV equation [45], and many other equations (see, for example,
[5, 15, 23]).
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We recall that an AKNS pair (see [21] for a detailed development of this subject) consists of two matrix
functions X and T which depend on position, time, and the spectral variable λ not depending on x and t such
that

ψx = Xψ ψt = Tψ . (1.3)

The compatibility condition ψxt = ψtx leads to the zero-curvature representation

Xt − Tx +XT − TX = 0

of a particular NPDE.
For the equation (1.2) the situation is quite clear. In fact, we can look at this equation as a combination of

the NLS equation and the mKdV equation. Both of these equations are integrable and have, associated with
them, the same operator (the so-called Zakharov-Shabat system (ZS) [4, 46])

iσ3
∂X

∂x
(λ, x) − V (x)X(λ, x) = λX(λ, x), (1.4)

where

σ3 =

(

1 0
0 −1

)

, V (x) = iQ(x) = i

(

0 q(x)
r(x) 0

)

, (1.5)

λ is the spectral parameter and q(x), r(x) are the potentials which, from now on, are supposed to belong to
L1(R). Also, the Hirota equation will have associated to it the Zakharov-Shabat system. Although the usual
scattering theory of (1.4) has been developed for q(x), r(x) ∈ L1(R) (cf. [7, 21]), the Hamiltonian formulation
of the Hirota equation requires that q(x), r(x) also belong to the first Sobolev Space. By using this information,
we are able to construct the scattering matrix and discover the form of the Marchenko equations. In this article
we consider only the so-called focusing case where r(x) = q(x)∗ (star denotes complex conjugate). In order
to apply the IST to equation (1.2) we need to know how the scattering data thus obtained evolve in time. In
Section 2 we will show how to discover which is the PDE satisfied by the Marchenko integral kernel of the
corresponding Marchenko equations (which encloses the scattering data). This is enough to solve the inverse
scattering problem leading to the solution of equation (1.2).

To get the explicit (soliton) solution formula for (1.2) we apply the algebraic method recently developed
and presented in [9, 10, 11, 25, 26, 27, 28, 20]. The basic idea behind this method consists of representing the
kernels of the Marchenko equations in a factorized form by using a triplet of matrices

(

A,B,C
)

and the matrix
exponential in such a way that the Marchenko equations have separated variables. Then, these equations can
be solved explicitly and their solutions are related to the solution of (1.2) (see formula (2.17)). Many authors
studied the reflectionless solution of the Hirota equation. In the seminal paper [38] Hirota discovered the fact
that the equation is bilinear and applied his method to find soliton solutions. In [18] the author studied the
soliton solutions of the Hirota equations by means of the (iterative) Darboux transformation method and also
rewrote the solution in the vortex filament context. Finally, in a recent paper [44], the authors extended the
study to rogue waves solutions. However, at the best of our knowledge, there is no systematic analysis of these
solutions. We provide, with this work, a complete solution formula using the IST method which is noniterative.

The second topic of this work is to find explicit time evolutions of a vortex filament associated with a specific
soliton solution of (1.2). The standard Hasimoto map connects these soliton solutions to the curvature and
torsion of the curve but does not give the extrinsic motion of the curve as a map in R

3. Therefore, adapting to
the Hirota equation, the Sym-Pohlmeyer reconstruction formula [43, 42, 16] (see also [40, 18] and [34] for closed
filaments), we associate to a solution obtained via the IST procedure the explicit three dimensional motion
of a vortex filament. We study explicitly some significant cases such as, for instance, soliton solutions whose
behavior is like a breather solution.

This paper is organized as follows: In Section 2 we briefly recall how the direct and inverse scattering problem
for the Zakharov-Shabat system is usually studied in the literature. In Section 3 we derive a solution formula
for equation (1.2) [in fact, formula (3.9)] when the reflection coefficient vanishes (soliton solution) by using the
IST method. In Section 4, we discuss some (new) type of soliton solution obtained from formula (3.9) and plot
their corresponding graphs. Finally, in Section 5 we get the explicit parametric equation of the surface of the
vortex filament associated with a breather solution or a two soliton solution of (1.2). In Appendix A we give
an independent proof of the validity of the formula found in Section 3.
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2 Direct and inverse scattering theory for ZS system

In this section we recall the basic facts on the direct and inverse scattering theory of the ZS system and the IST
method. The interested reader can find the proofs of the results presented here in [21] or, with slightly different
notations, in [4, 31].

Direct Scattering Theory of the ZS system. The direct scattering problem consists of constructing
the scattering matrix S(λ) which contains part of the scattering data. To this end, let us introduce the 2 × 1
columns known as Jost functions from the right ψ(λ, x) and ψ(λ, x), the 2-component vectors known as Jost
functions from the left φ(λ, x) and φ(λ, x), and the 2× 2 matrices called Jost matrices Ψ(λ, x) and Φ(λ, x) from
the right and the left as those solutions to the matrix the ZS system (1.4) satisfying the asymptotic conditions

Ψ(λ, x) =
(

ψ(λ, x) ψ(λ, x)
)

= e−iλσ3x[I2 + o(1)], x→ +∞, (2.1a)

Φ(λ, x) =
(

φ(λ, x) φ(λ, x)
)

= e−iλσ3x[I2 + o(1)], x→ −∞. (2.1b)

where I2 is the identity matrix of order 2. Using (2.1a) and (2.1b), we get the Volterra integral equations

Ψ(λ, x) = e−iλσ3x + iσ3

∫ ∞

x

dy eiλσ3(y−x)V (y)Ψ(λ, y), (2.2a)

Φ(λ, x) = e−iλσ3x − iσ3

∫ x

−∞

dy e−iλσ3(x−y)V (y)Φ(λ, y). (2.2b)

The system of equations (1.4) being first order, we have

Φ(λ, x) = Ψ(λ, x)ar(λ), Ψ(λ, x) = Φ(λ, x)al(λ). (2.3)

We shall call al(λ) and ar(λ) transition matrices from the left and the right, respectively; they are each others
inverses. From equations (2.1) and (2.2), we get

Ψ(λ, x) =e−iλσ3x [al(λ) + o(1)] , x→ −∞, (2.4)

Φ(λ, x) =e−iλσ3x [ar(λ) + o(1)] , x→ +∞. (2.5)

It is more convenient to use the matrix representations

al(λ) =

(

al1(λ) al2(λ)
al3(λ) al4(λ)

)

, ar(λ) =

(

ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)

,

where (cf [31, 7, 21]) al1(λ) and ar4(λ) are continuous in λ ∈ C+, are analytic in λ ∈ C+, and tend to 1 as
|λ| → +∞ from within C+. Here C± is the open upper/lower complex plane. In the same way we see that
ar1(λ) and al4(λ) are continuous in λ ∈ C−, are analytic in λ ∈ C−, and tend to 1 as |λ| → +∞ from within
C−. The remaining elements al2(λ), al3(λ), ar2(λ), and ar3(λ) are continuous in λ ∈ R and vanish as λ→ ±∞.

The zeros λ ∈ C+ of al1(λ) and ar4(λ), are exactly the discrete eigenvalues of the system (1.4) in C+. On
the other hand, the zeros λ ∈ C− of ar1(λ) and al4(λ) are exactly the discrete eigenvalues of (1.4) in C−. We
call λ ∈ R a spectral singularity if it is a zero of, at least, one of the diagonal elements al1(λ), al4(λ), ar1(λ),
and ar4(λ). In the sequel we assume that there are no spectral singularities. In that case, elementary complex
analysis implies that the number of discrete eigenvalues of the system (1.4) is finite.

It is well-known ([7, 21]) that for each x ∈ R the Jost functions e−iλxψ(λ, x) and eiλxφ(λ, x) are continuous

in λ ∈ C+, are analytic in λ ∈ C+, and behave as

(

0
1

)

and as

(

1
0

)

respectively, for |λ| → +∞ from within

C+. Analogously, for each x ∈ R the Jost functions eiλxψ(λ, x) and e−iλxφ(λ, x) are continuous in λ ∈ C−, are

analytic in λ ∈ C−, and converge to

(

1
0

)

and to

(

0
1

)

respectively, as |λ| → +∞ from within C−. The above

analyticity properties imply that for each x ∈ R the modified Jost matrices F±(λ, x) defined by

F+(λ, x) =
(

φ(λ, x) ψ(λ, x)
)

eiλxσ3 , F−(λ, x) =
(

ψ(λ, x) φ(λ, x)
)

eiλxσ3 , (2.6)

are continuous in λ ∈ C±, are analytic in C±, and converge to I2 as |λ| → +∞ from within C±. The two
modified Jost matrices are related as follows:

F−(λ, x) = F+(λ, x)σ3S(λ)σ3, F+(λ, x) = F−(λ, x)σ3S̃(λ)σ3, (2.7)
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where the scattering matrices S(λ) and S̃(λ) are each other’s inverses. By writing them as

S(λ) =

(

T (λ) L(λ)
R(λ) T (λ)

)

, S̆(λ) =

(

T̆ (λ) R̆(λ)

L̆(λ) T̆ (λ)

)

,

we obtain the reflection coefficients R(λ) and R̆(λ) from the right, the reflection coefficients L(λ) and L̆(λ) from
the left, the transmission coefficient T̆ (λ) (which is meromorphic in λ ∈ C+), and the transmission coefficient
T (λ) (which is meromorphic in λ ∈ C

−). Moreover, it is easily verified that

S(λ) = σ3S(λ)σ3, for λ ∈ R .

Under the assumption that there are no spectral singularities, we also have

R(λ) =

∫ ∞

−∞

dy e−iλyρ(y), L(λ) =

∫ ∞

−∞

dy eiλyℓ(y), (2.8a)

where ρ, ℓ belong to L1(R). Furthermore, R̆(λ) and L̆(λ) have analogous representations where ρ̆ = −ρ(y)∗, ℓ̆ =
−ℓ(y)∗ replace ρ, ℓ. The scattering data associated with (1.4) consists of one reflection coefficient, the discrete
eigenvalues of (1.4) and a suitable set of positive constants associated to them (the so-called norming constants).
The construction of the norming constants can be found in [7] (where the case when all the eigenvalues have
algebraic multiplicity one is considered) or in [24, 29, 14, 11] (where the more general case is treated).

Inverse Scattering Theory of the ZS system. The inverse scattering problem consists of the (re)-
construction of the (unique) potential q(x) if the scattering data are given. Following [31, 11, 25], we formulate
and solve this problem by using the Marchenko method (see also [46, 41]). Writing the Fourier representations

Ψ(λ, x) =
(

ψ(λ, x) ψ(λ x)
)

= e−iλσ3x +

∫ ∞

x

dy αl(x, y)e
−iλσ3y, (2.9a)

Φ(λ, x) =
(

φ(λ, x) φ(λ x)
)

= e−iλσ3x +

∫ x

−∞

dy αr(x, y)e
−iλσ3y, (2.9b)

we obtain, in a well-known way [7, 21], the Marchenko integral equations

αl(x, y) + ωl(x+ y) +

∫ ∞

x

dz αl(x, z)ωl(z + y) = 02×2, (2.10a)

αr(x, y) + ωr(x + y) +

∫ x

−∞

dz αr(x, z)ωr(z + y) = 02×2, (2.10b)

where, for later use, we introduced the notations

αl(x, y) =
(

K(x, y) K(x, y)
)

, αr(x, y) =
(

M(x, y) M(x, y)
)

(2.11)

and K(x, y),K(x, y),M(x, y),M(x, y) are column vectors of length two (up and down will denote the first and
second components of such column vectors). Furthermore, ωl(x + y), ωr(x + y) are called the left and right
Marchenko kernels, respectively. These kernels anticommute with σ3 in the sense that

σ3ωl(y + z) = −ωl(y + z)σ3, σ3ωr(y + z) = −ωr(y + z)σ3,

and satisfy ωl/r(y + z)† = σ3ωl/r(y + z)σ3, where the † denotes matrix transpose conjugation. It is well known
that these kernels are given by

ωl(x) =















0 −ρ(x)∗ −

N̆
∑

j=1

j
∑

s=0

xs

s!
e−xλ∗

j [Cl]
∗
js

ρ(x) +

N
∑

j=1

j
∑

s=0

xs

s!
e−xλj [Cl]js 0















, (2.12)

ωr(x) =















0 ℓ(x) +

N
∑

j=1

j
∑

s=0

xs

s!
exλj [Cr]js

−ℓ(x)∗ −
N̆
∑

j=1

j
∑

s=0

xs

s!
exλ

∗
j [Cr]

∗
js 0















, (2.13)
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where λj are the discrete eigenvalues belonging to the upper (lower) half plane, and [Clr ]js are the norming
constants associated with the discrete eigenvalues.

In general, for q ∈ L1(R) ∩ L2(R) the potential q(x) is related to the Marchenko solutions αl(x, y) and
αr(x, y) as follows [cf. (A.2) and (A.4) in [20]]:

αl(x, x) = −
1

2







∫ ∞

x

dz |q(z)|2 q(x)

−q(x)∗
∫ ∞

x

dz |q(z)|2






, (2.14a)

αr(x, x) = −
1

2









∫ x

−∞

dz |q(z)|2 −q(x)

q(x)∗
∫ x

−∞

dz |q(z)|2









. (2.14b)

As a result, we can recover the potential q(x) following the three steps indicated below:

a. Suppose that the reflection coefficient R(λ), the discrete eigenvalues {λj}
N
j=1 and the norming constants

{

{Cjs}
nj−1
s=0

}N

j=1

}

are given, where N denotes the number of discrete eigenvalues, while nj is the multi-

plicity of λj . By using the scattering data we introduce the function

Ωl(y)
def

= −ρ†(y) +

N
∑

j=1

nj−1
∑

s=0

cjs
ys

s!
eiλjy , (2.15)

where ρ(y) = 1
2π

∫∞

−∞
R(λ)eiλydλ is the inverse Fourier transform of R(λ).

b. Solve the following integral equation Marchenko

Kup(x, y)− Ωl(x+ y)† +

∫ ∞

x

dz

∫ ∞

x

dsKup(x, z)Ωl(z + s)Ωl(s+ y)† = 0, (2.16)

where y > x.

c. Finally, the potential q(x) is obtained by using the following formula:

q(x) = −2Kup(x, x). (2.17)

An analogous procedure can be followed by using the right Marchenko kernel.
Time evolution of the scattering data. If one knows the operatorsX and T in the compatibility problem

(1.3) related to the Hirota equation, it is easy to find the scattering data and their time evolution (see [3]).
As underlined in the introduction, the Hirota equation can be considered as the sum of two flows belonging to
the same hierarchy. The matrix X generally depends only on the hierarchy but not on the particular equation.
Therefore, for the Hirota equation, the matrix X is the same one which appears in the NLS compatibility
problem. We determine the matrix T as follows. Let us denote with T (1) (T (2)) the matrix related to the time
evolution operators of the NLS (mKdV) equation given, respectively, by

X = −iλσ3 +Q, (2.18)

T (1) = −2iλ2σ3 + 2λQ+ iσ3(Qx −Q2), (2.19)

T (2) = −4iλ3σ3 + 4λ2Q+ 2iλσ3(Qx −Q2) + (−Qxx + 2Q3 + [Qx, Q]). (2.20)

where

σ3 =

(

1 0
0 −1

)

, Q =

(

0 q

−q∗ 0

)

. (2.21)

Of course, we have
{

ψ
(s)
x = Xψ(s)

ψ
(s)
t = T (s)ψ(s)

(2.22)
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for s = 1 or s = 2 and the case s = 1 (s = 2) refer to the AKNS pair of the NLS (mKdV) equation. Furthermore,
we get the following zero-curvature conditions

Xt − T (1)
x = XT (1) − T (1)X , (2.23)

Xt − T (2)
x = XT (2) − T (2)X , (2.24)

where (2.23) is the zero-curvature condition for the NLS equation, while (2.24) is the zero-curvature condition
for the mKdV equation. Defining T as

T = −α2T
(1) + α3T

(2) , (2.25)

where α2 and α3 are real constants, and rescaling the time variable as τ =
t

−α2 + α3
we arrive at the following

zero-curvature condition

Xτ − Tx = XT − TX , (2.26)

where α2, α3 appear in (1.2). It is worth noting that the two main special cases (focusing NLS and mKdV)
satisfy α3 − α2 = 1 where the time rescaling is not necessary.

We are interested in constructing soliton solutions. This type of solution is characterized by the condition
R(λ) = 0. So, the kernel which appears in the Marchenko equation (2.16) when we take into account the
evolution of the scattering data, is given by

Ωl(y; t) =

N
∑

j=1

nj−1
∑

s=0

cjs(t)
ys

s!
eiλjy. (2.27)

In the literature the time evolution of the kernel Ω(y, t) for both NLS and mKdV is well-known. By using the
ideas present in e.g. [21] it is easy to see that the construction of the kernel is linear in the transmission and
reflection coefficients, as a result, taking into account (2.25), we obtain

Ωlt − 4iα2Ωlyy + 8α3Ωlyyy = 0. (2.28)

Inverse Scattering Transform. Having presented the direct and inverse scattering problems correspond-
ing to the ZS system and the time evolution of the scattering data, we can discuss how the IST allows us to
obtain the solution to the initial value problem for (1.2).

Using the initial condition q(x, 0) as a potential in the system (1.4), we develop the direct scattering theory
as shown above and build the scattering data. Successively, let the initial scattering data evolve in time in
agreement with equation (2.28). The solution of the Hirota equation is then obtained by solving the Marchenko
equation (2.16) where the kernel Ωl(y) is replaced by Ωl(y; t) and then using relation (2.17).

3 Soliton solutions of the Hirota equation

In this Section we construct an explicit soliton solution formula for equation (1.2). We apply the same technique
successfully used in [11, 9, 25] to solve, respectively, the NLS, the sine-Gordon, and the mKdV equation. The
basic idea behind this method is to represent the kernel appearing in the Marchenko equation in a separated
form. This leads to explicitly solvable Marchenko equations and then, by using equation (2.17), we can derive
an explicit solution formula for equation (1.2).

We recall that we want to investigate the case R(λ) = 0. Then the general expression for Ωl(y; 0) is given by
(2.27). The discrete eigenvalues terms can be written in the form (see [25] for more details on this representation
of the scattering data)

Ωl(y) =

N
∑

j=1

nj−1
∑

s=0

cjs(t)
ys

s!
eiλjy = Ce−yAB, (3.1)

where λ1, . . . , λN are the discrete eigenvalues, nj are the orders of the poles of the transmission coefficient at
the discrete eigenvalues iλj , and cjs are the so-called norming constants. Here (A,B,C) is a triplet of matrices
of order p× p, p× 1, p× 1, respectively, where p is a positive integer number. Moreover, for reasons which will
be clear later, we need to put some suitable properties on this class of triplets. In fact, we require that
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1. All the eigenvalues of the the matrix A have positive real parts;

2. The triplet (A,B,C) provides a minimal representation for the kernel Ωl(y), which means that

+∞
⋂

r=1

kerCAr−1 =
+∞
⋂

r=1

kerB†(A†)r−1 = {0},

(we refer to [12, 30] for more details on minimal representations).

On the other hand, the evolved kernel Ωl(y; t) has to satisfy equation (2.28). It is easy to verify that taking
Ωl(y; t) as

Ωl(y; t) = Ce−yAe−iφ(iA)tB , (3.2)

where
φ(z) = 4α2z

2 − 8α3z
3 , (3.3)

equation (2.28) is satisfied. Then equations (3.2)-(3.3) give us the time evolution of the kernel Ωl(y; t).
In order to derive our soliton solution formula, we have to solve the Marchenko equation (2.16) where Ωl(y)

is replaced by Ωl(y; t). Substituting the expression (3.2) in equation (2.16) and looking for a solution in the
form

Kup(x, y; t) = H(x, t)e−A†y+iφ(−iA†)tC† , (3.4)

we arrive at the equation

H(x; t) +H(x; t)×

×

∫ ∞

x

dz

∫ ∞

x

ds e−A†z+iφ(−iA†)tC†Ce−Az−iφ(iA)te−AsBB†e−A†s = B†e−A†x. (3.5)

Introducing the p× p matrices Q and N as

Q =

∫ ∞

0

ds e−A†sC†Ce−As, N =

∫ ∞

0

dr e−ArBB†e−A†r , (3.6)

after some easy calculations we obtain

H(x, t)Γ(x, t) = B†e−A†x , (3.7)

where
Γ(x, t) = Ip + e−A†x+iφ(−iA†)tQe−2Ax−iφ(iA)tNe−A†x , (3.8)

and Ip the identity matrix of order p. Finally, by using equation (3.4) and relation (2.17) we get the following
soliton solution formula for equation (1.2)

q(x, t) = −2B†e−A†xΓ−1(x, t)e−A†x+iφ(−iA†)tC† . (3.9)

In Appendix A we give another independent proof that the function q(x, t) given by equation (3.9) satisfies the
Hirota equation (1.2).

We observe that our solution formula depends only on the matrix triplet used as input. In fact, given the
triplet of matrices, we can build the matrices Q,N and Γ(x, t) by using formulas (3.6) and (3.8), respectively,
and then we can easily write the solution formula (3.9). However, we observe that the solution (3.9) exists only
if for all (x, t) ∈ R2 the integrals (3.6) converge and the matrix Γ(x, t) is invertible. So we have to establish
when the integrals (3.6) converge and the matrix Γ(x, t) is invertible. To do so, let us introduce the following
notations:

P (x, t) =

∫ ∞

x

ds e−A†s+iφ(−iA†)tC†Ce−As−iφ(iA)t, (3.10)

P (x) =

∫ ∞

x

dr e−ArBB†e−A†r . (3.11)

Then

Γ(x, t) = Ip + P (x, t)P (x). (3.12)

The following proposition justifies the requirement that all the eigenvalues of matrix A have positive real parts:

7



Proposition 3.1 The matrices P (x; t) and P (x) defined in (3.10) and (3.11), respectively, satisfy

P (x; t) = e−A†x+iφ(−iA†)tQe−Ax−iφ(iA)t, P (x) = e−AxNe−A†x

and the integrals in (3.10) and (3.11) converge for all (x, t) ∈ R, provided the eigenvalues of A have positive
real parts.

Proof. Replacing the time factor e−4iA2t with eiφ(−iA)t where φ(−iA) is given by (3.3), the proof of this
proposition can be obtained by repeating the proof of Proposition 4.1 in [11] verbatim.

Moreover, we also have

Proposition 3.2 Suppose that all the eigenvalues of the matrix A have positive real parts. Then, for every
(x, t) ∈ R the matrices P (x, t), P (x) and Γ(x, t) satisfy the following properties:

a) The matrices P (x, t), P (x) are selfadjoint;

b) The matrix Γ(x, t) is invertible.

c) The matrices P (x, t), P (x) are the unique solutions of the Lyapunov equations

A†P (x, t) + P (x, t)A = eiφ(−iA†)tC†Ce−iφ(iA)t , (3.13)

AP + PA† = BB† (3.14)

Proof. The proof of the points a) and b) of this proposition is identical to the proof of Theorem 4.2 in
[11]. A proof of c) can be found in [30].

The following proposition shows why it is important to make the hypothesis of minimality on the triplet
(A,B,C).

Proposition 3.3 Suppose that all the eigenvalues of the matrix A have positive real parts and that the triplet
(A,B,C) is a minimal triplet. Then, for each fixed t, Γ(x; t)−1 → Ip as x → +∞ and Γ(x; t)−1 → 0 as
x→ −∞.

Proof. The proof of this proposition is identical to the proof of Proposition 4.6 in [11].

We remark that the proof of the statement Γ(x; t)−1 → 0 as x→ −∞ requires the hypothesis of minimality of
the triplet. Proposition 3.3 is important because from it we immediately get the following

Proposition 3.4 Suppose that all the eigenvalues of the matrix A have positive real parts and that the triplet
(A,B,C) is minimal. Then the scalar function q(x, t) decays exponentially for each fixed t as x→ ±∞.

It is natural to look for a larger class of triplets of matrices in such a way that the formula (3.9) holds, which
means that the integrals in (3.6) converge and the inverse of the matrix Γ(x, t) exists for all (x, t) ∈ R2. This
was accomplished in [8] where the so-called admissible class of matrix triplets has been introduced. Without
giving the details, the main result is synthesized by the next proposition which allows us to understand the
“canonical way” to choose the triplet (A,B,C) in (3.9).

Two triplets (Ã, B̃, C̃) and (A,B,C) in the admissible class are called equivalent if they lead to the same
potential q(x, t) (given by formula (3.9)).

Proposition 3.5 Starting from (Ã, B̃, C̃) in the admissible class, it is possible to associate to this triplet an
equivalent triplet (A,B,C) where A has the Jordan canonical form with each Jordan block containing a distinct
eigenvalue having a positive real part, the column B consists of zeros and ones, and C has real entries. More
specifically, for some appropriate positive integer m, we have

A =











A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am











, B =











B1

B2

...
Bm











, C =
(

C1 C2 · · · Cm

)

, (3.15)
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where in the case of a real (positive) eigenvalue ωj of Aj the corresponding blocks are given by

Aj :=



















ωj −1 0 · · · 0 0
0 ωj −1 · · · 0 0
0 0 ωj · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ωj −1
0 0 0 · · · 0 ωj



















, Bj :=











0
...
0
1











,

Cj :=
(

cjnj
· · · cj2 cj1

)

,

(3.16)

Aj having size nj × nj , Bj size nj × 1, Cj size 1× nj , and the constant cjnj
is nonzero. In the case of complex

eigenvalues, which must appear in pairs as αj ± iβj with αj > 0, the corresponding blocks are given by

Aj :=



















Λj −I2 0 . . . 0 0
0 Λj −I2 . . . 0 0
0 0 Λj . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Λj −I2
0 0 0 . . . 0 Λj



















, Bj :=











0
...
0
1











,

Cj :=
(

γjnj
ǫjnj

. . . γj1 ǫj1
)

,

(3.17)

where γjs and ǫjs for s = 1, . . . , nj are real constants with (γ2jnj
+ ǫ2jnj

) > 0, each column vector Bj has 2nj

components, each Aj has size 2nj × 2nj , and the 2× 2 matrix Λj is defined as

Λj :=

(

αj βj

−βj αj

)

. (3.18)

Proof. The triplet (A,B,C) can be chosen as in Section 3 of [11].

4 Examples

In Proposition 3.5 we have classified the possible inequivalent classes of triplets (A,B,C) used for the construc-
tion of the soliton solutions in (3.9). Such classes are expressed in terms of the component blocks Aj appearing
in 3.16. To any block corresponds a qualitatively different behavior of the solution as shown in table 4.

In this section we concentrate our attention on the two-poles solution for the Hirota equation. At the best
of our knowledge this is a new solution in the context of vortex filament motion studied in the next section. We
reproduce also the standard two soliton solutions in order to stress the qualitative differences with the two-pole
soliton solutions which can be regarded as a limiting case of the soliton behavior.

In all these examples, to get the explicit expressions of the solutions we write (3.9) in the following way:

q(x, t) =
−2B† [cofac∆(x; t)]

[

Ce−2xAetA
]†

det∆(x; t)
, (4.1)

where
∆(x; t)

def

= e−xA†

Γ(x; t)exA
†

= I2 + e−2xA†

etA
†

Qe−2xAetAN, A = 4iα2A
2 + 8α3A

3,

while Q and N are the solutions of the Lyapunov equations (3.14). In other words, we need to calculate
det∆(x, t) and the inverse of ∆(x, t).

2-soliton solution. Let

A =

(

2 0
0 1

)

, B =

(

3
2

)

, C =
(

3 −2
)

.
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Block Aj in (3.15) Solution behavior

1× 1 real matrix 1-soliton solution
with |q(x, t)| = f(x)

1× 1 complex matrix 1-soliton solution
with |q(x, t)| = f(x− V t)

2× 2 matrix with 1-breather solution
complex conjugate eigenvalues (“2-particle bound state”)

Jordan block (3.16) of order s Multipole solution

Table 1: Examples of soliton behavior as a function of the matrix A in the triplet (A,B,C).

Then it is easily verified that

Q =

(

9
4 −2
−2 2

)

, N =

(

9
4 2
2 2

)

,

are the unique solutions to the Lyapunov equations

A†Q+QA = C†C, AN +NA† = BB†.

Let us compute the time factor etA where

A = 4iα2A
2 + 8α3A

3 =

(

16iα2 + 64α3 0
0 4iα2 + 8α3

)

.

Then

e−2xAetA =

(

e−4(x−dt) 0

0 e−2(x−et)

)

, e−2xA†

etA
†

=

(

e−4(x−d∗t) 0

0 e−2(x−e∗t)

)

,

where d = 4iα2 + 16α3 and e = 2iα2 + 4α3. Therefore,

e−2xA†

etA
†

Q =

(

9
4e

−4(x−d∗t) −2e−4(x−d∗t)

−2e−2(x−e∗t) 2e−2(x−e∗t)

)

, e−2xAetAN =

(

9
4e

−4(x−dt) 2e−4(x−dt)

2e−2(x−et) 2e−2(x−et)

)

.

As a result,

∆(x; t) = I2 + e−2xA†

etA
†

Qe−2xAetAN

=

(

1 + 81
16e

−8(x−16α3t) − 4e−6(x−f∗t) 9
2e

−8(x−16α3t) − 4e−6(x−f∗t)

− 9
2e

−6(x−ft) + 4e−4(x−4α3)t 1− 4e−6(x−ft) + 4e−4(x−4α3t)

)

,

where f = 1
6 (4d+ 2e∗) = 2iα2 + 12α3. Consequently,

det Γ(x; t) = 1 + 81
16e

−8(x−16α3t) + 4e−4(x−4α3t) − 8e−6(x−12α3t) cos(12α2t) +
1

4
e−12(x−12α3t),

which obviously exceeds 1.
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Next,

[det Γ(x; t)]q(x, t) = −2B†[cofac∆(x; t)]
[

Ce−2xAetA
]†

= −18e−4(x−d∗t)
[

1− 4e−6(x−ft) + 4e−4(x−4α3t)
]

+ 12e−4(x−d∗t)
[

−9
2 e

−6(x−ft) + 4e−4(x−4α3t)
]

+ 8e−2(x−e∗t)
[

1 + 81
16e

−8(x−16α3t) + 8e−6(x−f∗t)
]

− 12e−2(x−e∗t)
[

9
2e

−8(x−16α3t) − 4e−6(x−f∗t)
]

.

We remark that choosing α2 = −1 and α3 = 0, i.e., when the Hirota equation reduces at the focusing NLS
equation, we get the solution

q(x, t) =
8e4it

(

9e−4x + 16e4x
)

− 32e16it
(

4e−2x + 9e2x
)

−128 cos(12t) + 4e−6x + 16e6x + 81e−2x + 64e2x
.

This solution coincides exactly with the 2-soliton solution obtained in [8] for the NLS equation by using the
same triplet of matrices

A =

(

2 0
0 1

)

, B =

(

3
2

)

, C =
(

3 −2
)

. (4.2)

A plot of the solution can be found in figure 4.1.

Figure 4.1: An example of a two soliton solution in the case α2 = −1, α3 = 0.1. The matrix triplet is given by
(4.2)

Double pole solution.
Let

A =

(

1 −1
0 1

)

, B =

(

0
1

)

, C =
(

1 0
)

. (4.3)

Then it is easily verified that

Q = 1
4

(

2 1
1 1

)

, N = 1
4

(

1 1
1 2

)

,

are the unique solutions to the Lyapunov equations. Clearly,

e−2xA = e−2x

(

1 2x
0 1

)

, e−2xA†

= e−2x

(

1 0
2x 1

)

.

Let us calculate the time factor etA, where

A = 4iα2A
2 + 8α3A

3 = (4iα2 + 8α3)I2 − (8iα2 + 24α3)

(

0 1
0 0

)

.
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Then

etA = e(4iα2+8α3)t

(

1 −(8iα2 + 24α3)t
0 1

)

,

etA
†

= e(−4iα2+8α3)t

(

1 0
−(−8iα2 + 24α3)t 1

)

.

Putting d = 2iα2 + 4α3 and e = 4iα2 + 12α3 (so that d+d∗

2 = 4α3 and e+e∗

2 = 12α3), we get

e−2xAetA = e−2(x−dt)

(

1 2(x− et)
0 1

)

,

e−2xA†

etA
†

= e−2(x−d∗t)

(

1 0
2(x− e∗t) 1

)

.

We obtain

e−2xA†

etA
†

Q =
e−2(x−d∗t)

4

(

2 1
4(x− e∗t) + 1 2(x− e∗t) + 1

)

,

e−2xAetAN =
e−2(x−dt)

4

(

2(x− et) + 1 4(x− et) + 1
1 2

)

.

Therefore,

∆(x; t) = I2 + e−2xA†

etA
†

Qe−2xAetAN

= I2 +
e−4(x−4α3t)

16

(

4(x− et) + 3 8(x− et) + 4
8|x− et|2 + 2(x− et) + 6(x− e∗t) + 2 16|x− et|2 + 4(x− et) + 8(x− e∗t) + 3

)

.

Consequently,

det Γ(x; t) = 1 +
e−4(x−4α3t)

16

{

16|x− et|2 + 8(x− et) + 8(x− e∗t) + 6
}

+
e−8(x−4α3t)

256

= 1 + e−4(x−4α3t)
{

(x− 12α3t+
1
2 )

2 + 16α2
2t

2 + 1
8

}

+
e−8(x−4α3t)

256
,

which is larger than 1.
Next,

[det Γ(x; t)]q(x, t) = −2B†[cofac∆(x; t)]
[

Ce−2xAetA
]†

= −4e−2(x−d∗t)
{

x− e∗t− 1
16 (x− et+ 1)e−4(x−4α3t)

}

.

Consequently,

q(x, t) = −4e−2(x−d∗t) x− e∗t− 1
16 (x − et+ 1)e−4(x−4α3t)

1 + e−4(x−4α3t)
{

(x− 12α3t+
1
2 )

2 + 16α2
2t

2 + 1
8

}

+
e−8(x−4α3t)

256

,

where d∗ = −2iα2 + 4α3, e = 4iα2 + 12α3, and e
∗ = −4iα2 + 12α3. The solution is plotted in figure 4.2

5 Vortex Filaments

In this section we apply the results so far obtained to write down explicitly the equation of the surface described
by a vortex filament associated with a (specific) soliton solution of the Hirota equation.

We recall that [43, 42, 16] the cartesian components xi(x, t), (for i = 1, 2, 3) of the curve (for a fixed t)
described by a vortex filament associated with a specific solutions of the Hirota equation [i.e., (3.9) for a specific
choice of the triplet (A,B,C)] can be found from

γl(λ, x, t)|λ=0 ≡ Ψ−1(x, λ; t)
∂

∂λ
Ψ(x, λ; t)|λ=0 = −i

3
∑

i=1

xi(x, t)σi (5.1)
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Figure 4.2: An example of a double pole solution in the case α2 = −1, α3 = 0.1. The matrix triplet given by
(4.3).

where σi are the Pauli’s matrices.
It is well known that (see [1, 2] where this fact is proved in general when the flows commute) for (x, λ, t) ∈ R3

the (matrix) Jost solution Ψ(x, λ; t) belongs to the unitary group SU(2) and then the components xi(x, t) can
be uniquely determined from (5.1). We furnish a proof (based only on the concepts introduced in this paper)
of (5.1) in the Appendix B.

We observe that there is no loss of generality in evaluating the left hand side of equation (5.1) for λ = 0 .
In fact, let us take η real and put

V [η](x) = eiηxσ3V (x)e−iηxσ3 .

Then any solution X(λ, x) of the Zakharov-Shabat system with potential V (x) leads to a solution eiηxσ3X(λ+
η, x) of the Zakharov-Shabat system with potential V [η](x). Moreover, if S(λ) is the original matrix, then
S(λ+ η) is the scattering matrix of the dilated ZS system. We now observe that we have shifted the entire ZS
spectrum to the left by a distance of η. In other words, the identity

Tr γl(λ = 0, x, t) ≡ 0

would imply Tr γl(λ, x, t) ≡ 0 if we would apply it to a suitably dilated potential.
Now we can easily discover the differential equations whose solutions are the components of the curve

described by the vortex filament. In order to get these equations, let us define

X (λ, x, t) =

3
∑

j=1

xj(λ, x, t)σj = iΨ(λ, x, t)−1Ψλ(λ, x, t) (5.2)

where Ψ satisfy the Zakharov-Shabat systems1

Ψx = [−iλσ3 + Q̃]Ψ, Φx = [−iλσ3 + Q̃]Φ . (5.3)

The explicit form of Ψ is given in the last appendix (formulas (C.4,C.5)).
In eq. (5.3), we have

Q̃(x) = −iσ3V (x) =

(

0 q

−q∗ 0

)

= i {(Im q)σ1 + (Re q)σ2} . (5.4)

1The Zakharov-Shabat system can be written as in (5.3) multiplying (1.4) by −iσ3.
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We can now easily compute (subscripts denote partial derivatives)

Xx = i
(

Ψ−1(λ, x, t)
)

x
Ψλ(λ, x, t) + iΨ−1(λ, x, t)Ψλx(λ, x, t)

= i
[

−Ψ−1(λ, x, t)Ψx(λ, x, t)Ψ
−1(λ, x, t)Ψλ(λ, x, t) + Ψ−1(λ, x, t)(Ψx(λ, x, t))λ

]

= i[−Ψ−1(λ, x, t)(−iλσ3 + Q̃)Ψ(λ, x, t)Ψ−1(λ, x, t)Ψλ(λ, x, t) + Ψ−1(λ, x, t)σ3Ψ(λ, x, t)

+ Ψ−1(λ, x, t)(−iλσ3 + Q̃)Ψλ(λ, x, t))] = Ψ−1(λ, x, t)σ3Ψ(λ, x, t), (5.5)

where X (λ, x, t) ∼ σ3x as x → ∞ (see (5.2)). This equation is most useful in situations where Ψ(λ, x, t) is
known, as in multisoliton cases. The basic idea is now to express the quantity Ψ−1(λ, x, t)σ3Ψλ(λ, x, t) in terms
of triplet matrices as done before for the multisoliton solutions of the Hirota equation. In particular, we use the
results presented in Appendix C.

It is convenient to write the matrix Ψ(λ, x, t) as Ψ(λ, x, t) =

(

ψ
(up)

ψ(up)

ψ
(dn)

ψ(dn)

)

. Since Ψ(λ, x, t) belongs to

SU(2) for λ ∈ R, we have Ψ−1(λ, x, t) = Ψ†(λ, x, t) for λ ∈ R (we have to replace λ with λ∗ in the right-hand
side if λ ∈ C) and then we get

Ψ−1σ3Ψ =

(

(ψ
(up)

)†ψ
(up)

− (ψ
(dn)

)†ψ
(dn)

(ψ
(up)

)†ψ(up) − (ψ
(dn)

)†ψ(dn)

(ψ(up))†ψ
(up)

− (ψ(dn))†ψ
(dn)

(ψ(up))†ψ(up) − (ψ(dn))†ψ(dn)

)

(5.6)

where we have omitted the dependence on (λ, x; t). The explicit form of Ψ−1σ3Ψ can be easily obtained by
means of (C.4) and (C.5).

It could be better to describe the curve (for a fixed t) described by a vortex filament associated with a
specific solution of the Hirota equation in terms of its curvature and torsion. In fact, curvature and torsion can
be easily obtained as follows [22]

κ = |u|2, τ =
1

2i

(

ux

u
−
u∗x
u∗

)

.

On the other hand, formula (3.9) allows us to produce the explicit soliton solutions of the Hirota equation. Below
(see figs (5.1) and (5.2)) we plot the graphics of curvature and torsion of an interesting new case corresponding
to the double-pole solution whose triplet is the same considered in the second example of the preceding section,
i.e.

A =

(

1 −1
0 1

)

, B =

(

0
1

)

, C =
(

1 0
)

.
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A Independent proof of formula (3.9)

We prove that the function q(x, t) expressed by (3.9) satisfies equation (1.2) by simply computing the quantities
qt, qx, qxx, qxxx, 6|q|

2qx, 2|q|
2q and substituting their expression in (3.9). Similar calculations have already

done in [11] for the NLS equation, and in [25] for the mKdV. We need some preliminary definitions and results.

Definition A.1 Let us define Γ̂(x; t) = Γ(x; t)† = Ip + P (x)P (x; t) (where P (x, t), P (x) and Γ(x; t) are given
by equations (3.10), (3.11), (3.12), respectively) and

Xn = (A†)n + (−1)nP (x, t)AnP (x). (A.1)
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Figure 5.1: An example of a two poles solution in the NLS case (dotted line, α2 = −1, α3 = 0) versus the Hirota
case (solid line, α2 = −1, α3 = 0.1). The matrix triplet used here is the same as in the previous section. We
plot here the curvature κ = |q|. For the sake of simplicity we take an example where the torsion is not affected
by the axial velocity. The time sequence is: First row t = −20, t = −1, t = −0.3; Second row t = −0.1, t = 0,
t = 0.2; Third row t = 0.3, t = 2, t = 20. The effect of the axial velocity is to move the support of the solution
in time.

From now on, for the sake of convenience we neglect the dependence of q, Γ, P , P on (x, t). We have

Lemma A.2
(A†P + PA)Γ̂−1(AP + PA†) = X2 −X1Γ

−1
X1. (A.2)

Proof. Using that (see [11] for details on these formulas)

P Γ̂−1 = Γ−1P , Γ̂−1P = PΓ−1,

PPΓ−1 = Γ−1PP = Ip − Γ−1, Γ̂−1 = Ip − PΓ−1P ,

we get

(A†P + PA)Γ̂−1(AP + PA†) = A†Γ−1PAP + PAPΓ−1A†

+A†(I − Γ−1)A† + PAΓ̂−1AP

= [(A†)2 + PA2P ]− (A† − PAP )Γ−1(A† − PAP )

= X2 −X1Γ
−1

X1,

which completes the proof.
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Figure 5.2: For sake of completeness we display also the torsion evolution related to the double pole solution
presented in the previous section (α2 = −1, α3 = 0.1). We recall that in this particular example the torsion
is not affected by the axial velocity. The time sequence is: First row t = −20, t = −2, t = −0.3; Second row
t = −0.1, t = 0.001, t = 0.2; Third row t = 0.3, t = 2, t = 20.

Lemma A.3 The time derivative of q(x, t) is given by

qt = −2iB†e−xA†

Γ−1 [−4α2X2 − 8iα3X3] Γ
−1e−xA†

eiφ(−iA†)tC† . (A.3)

Proof. A direct computation gives us

qt = 2B†e−xA†

Γ−1 ∂Γ

∂t
Γ−1e−xA†

eiφ(−iA†)tC†

− 2B†e−xA†

Γ−1e−xA†

(iφ(−iA†))eiφ(−iA†)tC†.

Taking into account that

∂Γ

∂t
= iφ(−iA†) (Γ− Ip) + P (−iφ(iA)P ,

φ(−iA†) + iP (−iφ(iA))P = −4α2X2 − 8iα3X3 ,

equation (A.3) is easily obtained.
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Lemma A.4 We have

qx =4B†e−xA†

Γ−1
X1Γ

−1e−xA†

eiφ(−iA†)tC† , (A.4)

qxx =− 8B†e−xA†

Γ−1
(

2X1Γ
−1

X1 −X2

)

Γ−1e−xA†

eiφ(−iA†)tC† , (A.5)

qxxx =16B†exA
†

Γ−1
(

6X1Γ
−1

X1Γ
−1

X1 − 3X1Γ
−1

X2

− 3X2Γ
−1

X1 +X3

)

× Γ−1e−xA†

eiφ(−iA†)tC† . (A.6)

Proof. By using the formula
∂Γ−1

∂x
= −Γ−1∂Γ

∂x
Γ−1 and equations (3.13), (3.14), we easily get

(

e−xA†

Γ−1e−xA†
)

x
= −2e−xA†

Γ−1
X1Γ

−1e−xA†

, (A.7)
(

exA
†

X1e
xA†
)

x
= 2exA

†

X2e
xA†

, (A.8)
(

exA
†

X2e
xA†
)

x
= 2exA

†

X3e
xA†

. (A.9)

To calculate qx we write

qx = −2B†
(

e−xA†

Γ−1e−xA†
)

x
eiφ(−iA†)tC† ,

and applying formula (A.7) we obtain equation (A.4). To prove equation (A.5), it is enough to observe that

qxx = 4B†
(

e−xA†

Γ−1e−xA†

exA
†

X1e
xA†

e−xA†

Γ−1e−xA†
)

x
eiφ(−iA†)tC†

and by using formula (A.7) (twice) and formula (A.8), we arrive at equation (A.5). Finally, since one has

qxxx = −16B†
(

e−xA†

Γ−1
X1Γ

−1
X1Γ

−1e−xA†
)

x
eiφ(−iA†)tC†

+ 8B†
(

e−xA†

Γ−1
X2Γ

−1e−xA†
)

x
eiφ(−iA†)tC†

with the help of (A.7), (A.8) and (A.9), it is immediate to prove (A.5).

Lemma A.5 The following identities hold

2|q|2q = −8B†e−xA†

Γ−1
(

−2X1Γ
−1

X1 + 2X2

)

Γ−1e−xA†

eiφ(−iA†)tC† , (A.10)

6|q|2qx = 16B†e−xA†

Γ−1
(

−6X1Γ
−1

X1Γ
−1

X1 + 3X1Γ
−1

X2 + 3X2Γ
−1

X1

)

· Γ−1e−xA†

eiφ(−iA†)tC† . (A.11)

Proof. To prove formula (A.10) we, first of all, observe that 2|q|2q = 2qq†q. Substituting (3.9) in the right
hand side of the preceding equation and taking into account formulas (3.13), (3.14) and (A.2) we easily derive
(A.10). The proof of (A.11) proceeds in a similar direct way after we have written 6|q|2qx = 3qq†qx +3qxq

†q.

We are ready to establish the following

Theorem A.6 Given a triplet of matrices (A,B,C) in the admissible class, the function

q(x, t) = −2B†e−A†xΓ−1(x, t)e−A†x+iφ(−iA†)tC† , (A.12)

satisfies the Hirota equation (1.2). Moreover, this solution is globally defined in the xt-plane and decays expo-
nentially as x→ ±∞ for each fixed t.

Proof. Substituting the right hand side of equations (A.3), (A.5), (A.6), (A.10), (A.11) in the Hirota
equation (1.2), we get 0 = 0. The properties of our function follow from Propositions 3.2 and 3.4.
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B Proof of formula (5.1)

For sake of completeness, in this appendix we prove that the matrix γl(λ, x, t) = Ψ−1(λ, x, t)
[

∂Ψ
∂λ

]

leads to the
representation given by (5.1). The (different) original proof of this formula has been given by Sym in [43].

First of all we need the following well-known [19, Thm. I.7.3]

Proposition B.1 Suppose A(s) is a continuous n×n matrix function. Then any classical n×n matrix solution
ψ(s) of the differential equation

dψ

ds
= A(s)ψ(s)

satisfies the scalar differential equation

d

ds
[detψ(s)] = [TrA(s)] detψ(s).

Let us now define

γl(λ, x, t) = Ψ−1(λ, x, t)

[

∂Ψ

∂λ

]

where Ψ(λ, x, t) is the Jost matrix from the right. Then Ψ(λ, x, t) satisfies the differential equation

∂Ψ

∂λ
= Ψ(λ, x, t)γl(λ, x, t). (B.1)

According to the proposition B.1, we obtain

∂ detΨ

∂λ
= [Tr γl(λ, x, t)] detΨ(λ, x, t).

Using that detΨ(λ, x, t) = 1,2 we obtain
Tr γl(λ, x, t) ≡ 0.

We now observe that in the focusing case, for λ ∈ R the Jost matrix from the right Ψ(λ, x, t) is unitary.
Thus Ψ−1(λ, x, t) = Ψ†(λ, x, t). If we now apply the conjugate to Eq. (B.1) after having it rewritten as

[Ψ−1]λ = γ
†
l Ψ

−1, we get
∂Ψ

∂λ
= −Ψ(λ, x, t)γ†l (λ, x, t). (B.2)

Comparing Eqs. (B.1) and (B.2), we see that γl(λ, x, t) is a skew-hermitian matrix with zero trace. We may
therefore write

γl(λ, x, t) = i

3
∑

j=1

xj(λ, x, t)σj ,

where σ1, σ2, σ3 are the Pauli matrices and the coefficients xj(λ, x, t) are real functions.
Replacing the Jost matrix from the right Φ(λ, x, t) by the Jost matrix from the left Φ(λ, x, t), we obtain

instead of (B.1)
∂Φ

∂λ
= Φ(λ, x, t)γr(λ, x, t), (B.3)

where

γr(λ, x, t) = i

3
∑

j=1

yj(λ, x, t)σj

for certain real coefficients yj(λ, x, t).

2We also have, from Ψx =
(

−iλ q

−q∗ iλ

)

Ψ, that [detΨ]x =
[

Tr
(

−iλ q

−q∗ iλ

)]

detΨ = 0, whereas Ψ(λ, x, t) ∼ e−iλxσ3 as x → +∞.

Thus detΨ ≡ 1.
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C Expression of the Jost solutions in terms of the triplet matrices

In this Section we obtain the explicit expressions for the matrix Ψ(x, λ) and its inverse Ψ†(x, λ) in terms of the
matrix triplet introduced in Section 3 to solve the Marchenko equations. To do so, we start by recalling the
notation introduced

αl(x, y) =
(

K(x, y) K(x, y)
)

=

(

K
(up)

(x, y) K(up)(x, y)

K
(dn)

(x, y) K(dn)(x, y)

)

,

and write the Marchenko equations (2.10a) in scalar form as follows:

K(x, y)+

(

0
1

)

Ωl(x+ y) +

∫ ∞

x

dz K(x, z)Ωl(z + y) = 02×1, (C.1a)

K(x, y)+

(

1
0

)

Ω̆l(x+ y) +

∫ ∞

x

dz K(x, z)Ω̆l(z + y) = 02×1, (C.1b)

where Ωl(y) = Ce−xAe−iφ(iA)tB and Ω̆l(y) = −B†e−yA†

eiφ(−iA†)tC†.
By following the same procedure shown in Section 3 we easily get the solutions of the Marchenko equations

(C.1) and they read as follows:

K(up)(x, y; t) = B†e−xA†

Γ−1(x; t)e−yA†

eiφ(−iA†)tC†, (C.2a)

K(dn)(x, y; t) = −Ce−xAP (x)Γ−1(x; t)e−yA†

eiφ(−iA†)tC†, (C.2b)

K
(up)

(x, y; t) = −B†e−xA†

P (x; t)(Γ−1(x; t))†e−yAe−iφ(iA)tB, (C.2c)

K
(dn)

(x, y; t) = −Ce−xA(Γ−1(x; t))†e−yAe−iφ(iA)tB, (C.2d)

where Γ, P and P have been introduced in (3.12), (3.10) and (3.11) while Q and N have been introduced in

(3.6). The relationship between the functions K(up)(x, y),K
(up)

(x, y),K(dn)(x, y) and K
(dn)

(x, y) and the Jost
solutions are given by (2.9a) and (2.9b) which can be written as

ψ
(up)

(λ, x; t) = e−iλx +

∫ ∞

x

dyK
(up)

(x, y; t)e−iλy , (C.3a)

ψ
(dn)

(λ, x; t) =

∫ ∞

x

dyK
(dn)

(x, y; t)e−iλy , (C.3b)

ψ(up)(λ, x; t) =

∫ ∞

x

dyK(up)(x, y; t)eiλy , (C.3c)

ψ(up)(λ, x; t) = eiλx +

∫ ∞

x

dyK(dn)(x, y; t)eiλy . (C.3d)

Substituting (C.2) into (C.3) we have

ψ
(up)

(λ, x; t) = e−iλx
[

1 + iB†e−xA†

P (x)(Γ†(x))−1(λIp − iA)−1e−xAe−iφ(iA)tB
]

, (C.4a)

ψ
(dn)

(λ, x; t) = e−iλx
[

iCe−xA(Γ†(x))−1(λIp − iA)−1e−xAe−iφ(iA)tB
]

, (C.4b)

ψ(up)(λ, x; t) = eiλx
[

iB†e−xA†

Γ−1(x)(λIp + iA†)−1e−xA†

eiφ(−iA†)tC†
]

, (C.4c)

ψ(dn)(λ, x; t) = eiλx
[

1− iCe−xAP (x)Γ−1(x)(λIp + iA†)−1e−xA†

eiφ(−iA†)tC†
]

, (C.4d)

and easy calculations also give us

(ψ
(up)

(λ, x))† = eiλx
[

1− iB†eiφ(−iA†)te−xA†

(λIp + iA†)−1Γ−1(x)P (x)e−xAB
]

, (C.5a)

(ψ
(dn)

(λ, x))† = eiλx
[

−iB†eiφ(−iA†)te−xA†

(λIp + iA†)−1Γ−1(x)e−xA†

C†
]

, (C.5b)

(ψ(up)(λ, x))† = e−iλx
[

−iCe−iφ(iA)te−xA(λIp − iA)−1(Γ†(x))−1e−xAB
]

, (C.5c)

(ψ(dn)(λ, x))† = e−iλx
[

1 + iCe−iφ(iA)te−xA(λIp − iA)−1(Γ†(x))−1P (x)e−xA†

C†
]

. (C.5d)
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