We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymptotics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically some conjectures arising from numerical evidences in preexisting literature. The proof relies on an Almgren-type monotonicity argument for magnetic operators together with a sharp blow-up analysis.
Abatangelo, L., Felli, V. (2015). Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 54(4), 3857-3903 [10.1007/s00526-015-0924-0].
Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles
ABATANGELO, LAURA;FELLI, VERONICA
2015
Abstract
We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymptotics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically some conjectures arising from numerical evidences in preexisting literature. The proof relies on an Almgren-type monotonicity argument for magnetic operators together with a sharp blow-up analysis.File | Dimensione | Formato | |
---|---|---|---|
abatangelo_felli_revised_CalcVarPDE.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Dimensione
506.73 kB
Formato
Adobe PDF
|
506.73 kB | Adobe PDF | Visualizza/Apri |
CalcPDE.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.