We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymptotics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically some conjectures arising from numerical evidences in preexisting literature. The proof relies on an Almgren-type monotonicity argument for magnetic operators together with a sharp blow-up analysis.
Citazione: | Abatangelo, L., & Felli, V. (2015). Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 54(4), 3857-3903. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Presenza di un coautore afferente ad Istituzioni straniere: | No |
Titolo: | Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles |
Autori: | Abatangelo, L; Felli, V |
Autori: | |
Data di pubblicazione: | 2015 |
Lingua: | English |
Rivista: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS |
Digital Object Identifier (DOI): | 10.1007/s00526-015-0924-0 |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
abatangelo_felli_revised_CalcVarPDE.pdf | Post-print | N/A | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.