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Abstract. We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with

half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymp-

totics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an
eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically

some conjectures arising from numerical evidences in preexisting literature. The proof relies on an

Almgren-type monotonicity argument for magnetic operators together with a sharp blow-up analysis.

1. Introduction

The aim of this paper is to investigate the behavior of the eigenvalues of Aharonov-Bohm operators
with moving poles. For a = (a1, a2) ∈ R2 and α ∈ R \ Z, we consider the vector potential

Aαa (x) = α

(
−(x2 − a2)

(x1 − a1)2 + (x2 − a2)2
,

x1 − a1

(x1 − a1)2 + (x2 − a2)2

)
, x = (x1, x2) ∈ R2 \ {a},

which generates the Aharonov-Bohm magnetic field in R2 with pole a and circulation α; such a field is
produced by an infinitely long thin solenoid intersecting perpendicularly the plane (x1, x2) at the point
a, as the radius of the solenoid goes to zero and the magnetic flux remains constantly equal to α (see e.g.
[5, 6, 26]).

In this paper we will focus on the case of half-integer circulation, so we will assume α = 1/2 and denote

Aa(x) = A1/2
a (x) = A0(x− a), where A0(x1, x2) =

1

2

(
− x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

)
.

In the spirit [8], [27] and [28], we are interested in studying the dependence on the pole a of the spectrum
of Schrödinger operators with Aharonov-Bohm vector potentials, i.e. of operators (i∇+ Aa)2 acting on
functions u : R2 → C as

(i∇+Aa)2u = −∆u+ 2iAa · ∇u+ |Aa|2u.

The interest in Aharonov-Bohm operators with half-integer circulation α = 1/2 is motivated by the
fact that nodal domains of eigenfunctions of such operators are strongly related to spectral minimal
partitions of the Dirichlet laplacian with points of odd multiplicity, see [10, 28]. We refer to papers
[9, 11, 15, 16, 17, 18, 19, 20, 21] for details on the deep relation between behavior of eigenfunctions,
their nodal domains, and spectral minimal partitions. Furthermore, the investigation carried out in
[8, 24, 27, 28] highlighted a strong connection between nodal properties of eigenfunctions and the critical
points of the map which associates eigenvalues of the operator Aa to the position of pole a. Motivated by
this, in the present paper we deepen the investigation started in [8, 27] about the dependence of eigenvalues
of Aharonov-Bohm operators on the pole position, aiming at proving sharp asymptotic estimates for the
convergence of eigenvalues associated to operators with a moving pole.

Let Ω ⊂ R2 be a bounded, open and simply connected domain. For every a ∈ Ω, we introduce the
space H1,a(Ω,C) as the completion of {u ∈ H1(Ω,C) ∩ C∞(Ω,C) : u vanishes in a neighborhood of a}
with respect to the norm

‖u‖H1,a(Ω,C) =

(
‖∇u‖2L2(Ω,C2) + ‖u‖2L2(Ω,C) +

∥∥∥ u

|x− a|

∥∥∥2

L2(Ω,C)

)1/2
.
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It is easy to verify that H1,a(Ω,C) =
{
u ∈ H1(Ω,C) : u

|x−a| ∈ L
2(Ω,C)

}
. We also observe that, in view

of the Hardy type inequality proved in [23] (see (17)), an equivalent norm in H1,a(Ω,C) is given by

(1)
(
‖(i∇+Aa)u‖2L2(Ω,C2) + ‖u‖2L2(Ω,C)

)1/2
.

We also consider the space H1,a
0 (Ω,C) as the completion of C∞c (Ω \ {a},C) with respect to the norm

‖ · ‖H1
a(Ω,C), so that H1,a

0 (Ω,C) =
{
u ∈ H1

0 (Ω,C) : u
|x−a| ∈ L

2(Ω,C)
}

.

For every a ∈ Ω, we consider the eigenvalue problem

(Ea)

{
(i∇+Aa)2u = λu, in Ω,

u = 0, on ∂Ω,

in a weak sense, i.e. we say that λ ∈ R is an eigenvalue of problem (Ea) if there exists u ∈ H1,a
0 (Ω,C)\{0}

(called eigenfunction) such that∫
Ω

(i∇u+Aau) · (i∇v +Aav) dx = λ

∫
Ω

uv dx for all v ∈ H1,a
0 (Ω,C).

From classical spectral theory, the eigenvalue problem (Ea) admits a sequence of real diverging eigenvalues
{λak}k≥1 with finite multiplicity; in the enumeration λa1 ≤ λa2 ≤ · · · ≤ λaj ≤ . . . , we repeat each eigenvalue
as many times as its multiplicity. We are interested in the behavior of the function a 7→ λaj in a
neighborhood of a fixed point b ∈ Ω. Up to a translation, it is not restrictive to consider b = 0.
Thus, we assume that 0 ∈ Ω.

In [8, Theorem 1.1] and [24, Theorem 1.2] it is proved that, for all j ≥ 1,

(2) the function a 7→ λaj is continuous in Ω.

A strong improvement of the regularity (2) holds under simplicity of the eigenvalue. Indeed in [8, Theorem
1.3] it is proved that, if there exists n0 ≥ 1 such that

(3) λ0
n0

is simple,

then the function a 7→ λan0
is of class C∞ in a neighborhood of 0; this regularity result is improved in [24,

Theorem 1.3], where, in the more general setting of Aharonov-Bohm operators with many singularities,
it is shown that, under assumption (3) the function a 7→ λan0

is analytic in a neighborhood of 0. Then
the question of what is the leading term in the asymptotic expansion of such a function (at least on a
single straight path around the limit point 0) naturally arises. The main purpose of the present paper is
to answer such a question. This may also shed some light on the nature of 0 as a critical point for the
map a 7→ λa when the limit eigenfunction has in 0 a zero of order k/2 with k ≥ 3 odd.

At a deep insight into the problem, papers [8] and [28] suggest a high reliability of the behavior of the
eigenvalue λan0

on the structure of the nodal lines of the eigenfunction relative to λ0
n0

. In order to enter
into the issue, let us establish the setting and some notation.

Let us assume that there exists n0 ≥ 1 such that (3) holds and denote λ0 = λ0
n0

and, for any a ∈ Ω,

λa = λan0
. From (2) it follows that, if a→ 0, then λa → λ0. Let ϕ0 ∈ H1,0

0 (Ω,C)\{0} be an eigenfunction

of problem (E0) associated to the eigenvalue λ0 = λ0
n0

, i.e. solving

(4)

{
(i∇+A0)2ϕ0 = λ0ϕ0, in Ω,

ϕ0 = 0, on ∂Ω,

such that

(5)

∫
Ω

|ϕ0(x)|2 dx = 1.

In view of [13, Theorem 1.3] (see also Proposition 2.1 below) we have that

(6) ϕ0 has at 0 a zero of order
k

2
for some odd k ∈ N,

see [8, Definition 1.4]. We recall from [13, Theorem 1.3] and [28, Theorem 1.5] that (6) implies that the
eigenfunction ϕ0 has got exactly k nodal lines meeting at 0 and dividing the whole angle into k equal
parts.

A first result relating the rate of convergence of λa to λ0 with the order of vanishing of ϕ0 at 0 can be
found in [8], where the following estimate is proved.

Theorem 1.1 ([8], Theorem 1.7). If assumptions (3) and (6) with k ≥ 3 are satisfied, then

|λa − λ0| ≤ C|a|
k+1

2 as a→ 0

for a constant C > 0 independent of a.
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As already mentioned, the latter theorem pursue the idea that the asymptotic expansion of the function
a 7→ λa has to do with the nodal properties of the related limit eigenfunction.

The main result of the present paper establishes the exact order of the asymptotic expansion of λa−λ0

along a suitable direction as |a|k, where k is the number of nodal lines of ϕ0 at 0 which coincides with
twice the order of vanishing of ϕ0 in assumption (6). In addition, we detect the sharp coefficient of the
asymptotics, which can be characterized in terms of the limit profile of a blow-up sequence obtained by
a suitable scaling of approximating eigenfunctions.

In order to state our main result, we need to recall some known facts and to introduce some additional
notation. By [13, Theorem 1.3] (see Proposition 2.1 below), if ϕ0 is an eigenfunction of (i∇+A0)2 on Ω
satisfying assumption (6), there exist β1, β2 ∈ C such that (β1, β2) 6= (0, 0) and

(7) r−k/2ϕ0(r(cos t, sin t))→ β1e
i t2 cos

(k
2
t
)

+ β2e
i t2 sin

(k
2
t
)

in C1,τ ([0, 2π],C)

as r → 0+ for any τ ∈ (0, 1).
Let s0 be the positive half-axis s0 = {(x1, x2) ∈ R2 : x2 = 0 and x1 ≥ 0}. We observe that, for

every odd natural number k, there exists a unique (up to a multiplicative constant) function ψk which is
harmonic on R2 \ s0, homogeneous of degree k/2 and vanishing on s0. Such a function is given by

(8) ψk(r cos t, r sin t) = rk/2 sin

(
k

2
t

)
, r ≥ 0, t ∈ [0, 2π].

Let s := {(x1, x2) ∈ R2 : x2 = 0 and x1 ≥ 1} and R2
+ = {(x1, x2) ∈ R2 : x2 > 0)}. We denote as D1,2

s (R2
+)

the completion of C∞c (R2
+ \ s) under the norm (

∫
R2

+
|∇u|2 dx)1/2. From the Hardy type inequality proved

in [23] (see (17)) and a change of gauge, it follows that functions in D1,2
s (R2

+) satisfy the following Hardy
type inequality: ∫

R2

|∇ϕ(x)|2 dx ≥ 1

4

∫
R2

|ϕ(x)|2

|x− e|2
dx, for all ϕ ∈ D1,2

s (R2
+),

where e = (1, 0). Then D1,2
s (R2

+) =
{
u ∈ L1

loc(R2
+\s) : ∇u ∈ L2(R2

+), u
|x−e| ∈ L

2(R2
+), and u = 0 on s

}
.

The functional

(9) Jk : D1,2
s (R2

+)→ R, Jk(u) =
1

2

∫
R2

+

|∇u(x)|2 dx−
∫
∂R2

+\s
u(x1, 0)

∂ψk
∂x2

(x1, 0) dx1,

is well-defined on the space D1,2
s (R2

+); we notice that ∂ψk
∂x2

vanishes on ∂R2
+ \ s0, so that∫

∂R2
+\s

u(x1, 0)
∂ψk
∂x2

(x1, 0) dx1 =

∫ 1

0

u(x1, 0)
∂ψk
∂x2

(x1, 0) dx1.

By standard minimization methods, Jk achieves its minimum over the whole space D1,2
s (R2

+) at some
function wk ∈ D1,2

s (R2
+), i.e. there exists wk ∈ D1,2

s (R2
+) such that

(10) mk = min
u∈D1,2

s (R2
+)
Jk(u) = Jk(wk).

We note that

(11) mk = Jk(wk) = −1

2

∫
R2

+

|∇wk(x)|2 dx = −1

2

∫ 1

0

∂+ψk
∂x2

(x1, 0)wk(x1, 0) dx1 < 0,

where, for all x1 > 0, ∂+ψk
∂x2

(x1, 0) = limt→0+
ψk(x1,t)−ψk(x1,0)

t = k
2x

k
2−1
1 .

We are now in a position to state our main theorem.

Theorem 1.2. Let Ω ⊂ R2 be a bounded, open and simply connected domain such that 0 ∈ Ω and
let n0 ≥ 1 be such that the n0-th eigenvalue λ0 = λ0

n0
of (i∇ + A0)2 on Ω is simple with associated

eigenfunctions having in 0 a zero of order k/2 with k ∈ N odd. For a ∈ Ω let λa = λan0
be the n0-th

eigenvalue of (i∇+Aa)2 on Ω. Let r be the half-line tangent to a nodal line of eigenfunctions associated
to λ0 ending at 0. Then, as a→ 0 with a ∈ r,

(12)
λ0 − λa
|a|k

→ −4
(
|β1|2 + |β2|2

)
mk

with (β1, β2) 6= (0, 0) being as in (7) and mk being as in (10)–(11).

Remark 1.3. Due to the analyticity of the function a 7→ λa established in [24, Theorem 1.3], from
Theorem 1.2 it follows that

λ0 − λa
|a|k

→ 4
(
|β1|2 + |β2|2

)
mk
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0 a
r

Figure 1. a approaches 0 along the tangent r to a nodal line of ϕ0.

as a → 0 along the half-line opposite to the tangent to a nodal line of ϕ0. In particular, we have that
the restriction of the function λ0− λa on the straight line tangent to a nodal line of ϕ0 changes sign at 0
(is positive on the side of the nodal line of ϕ0 and negative on the opposite side). Hence, if λ0 is simple,
then 0 cannot be an extremal point of the map a 7→ λa.

We remark that Theorem 1.2 is significant not only from a pure “analytic” point of view (detecting
of sharp asymptotics), but also from a quite theoretical point of view. Indeed Theorem 1.2 and the
consequent Remark 1.3 allow completing some results of papers [8, 27, 28] concerning the investigation
of critical and extremal points of the map a 7→ λa. It is worth recalling from [8, Corollary 1.2] that the
function a 7→ λa must have an extremal point in Ω. More precisely, in [8] the following result is proved.

Proposition 1.4 ([8], Corollary 1.8). Fix any j ∈ N. If 0 is an extremal point of a 7→ λaj , then either

λ0
j is not simple, or the eigenfunction of (i∇ + A0)2 associated to λ0

j has at 0 a zero of order k/2 with
k ≥ 3 odd.

In view of Theorem 1.2 and Remark 1.3, we can exclude the second alternative in Proposition 1.4,
obtaining the following result.

Corollary 1.5. Fix any j ∈ N. If 0 is an extremal point of a 7→ λaj , then λ0
j is not simple.

The simulations in [8] suggest that extremal points of the map a 7→ λa are generally attained at points
where the function itself is not differentiable. Taking into account Corollary 1.5, we may conjecture that
the missed differentiability is produced by the dropping of assumption (3).

Furthermore, several numerical simulations presented in [8] are validated and confirmed by Theorem
1.2. Indeed, Theorem 1.2 proves that the asymptotic expansion of λ0 − λa has a leading term of odd
degree, hence, if k ≥ 3, 0 is a stationary inflexion point along k directions (corresponding to the nodal
lines of ϕ0), as experimentally predicted by numerical simulations in [8, Section 7]. More precisely, as a
consequence of Theorem 1.2 and Remark 1.3 we can state the following result.

Corollary 1.6. Under assumptions (3) and (6) with k ≥ 3, 0 is a saddle point for the map a 7→ λa. In
particular, 0 is a stationary and not extremal point.

On the other hand, under assumptions (3) and (6) with k = 1, Theorem 1.2 implies that the gradient
of the function a 7→ λa in 0 is different from zero, then 0 is not a stationary point, a fortiori not even an
extremal point; we then recover a result stated in [28, Corollary 1.2].

The proof of Theorem 1.2 is based on the Courant-Fisher minimax characterization of eigenvalues.
The asymptotics for eigenvalues is derived by combining estimates from above and below of the Rayleigh
quotient. To obtain sharp estimates, we construct proper test functions for the Rayleigh quotient by
suitable manipulation of eigenfunctions. In this way, we obtain upper and lower bounds whose limit as
a → 0 can be explicitly computed taking advantage of a fine blow-up analysis for scaled eigenfunctions.
More precisely, we prove (see Theorem 8.2) that the blow-up sequence

(13)
ϕa(|a|x)

|a|k/2

converges as |a| → 0+, a ∈ r, to a limit profile, which can be identified, up to a phase and a change of
coordinates, with wk + ψk, being wk and ψk as in (10) and (8) respectively. The proof of the energy
estimates for the blow-up sequence uses a monotonicity argument inspired by [7], based on the study
of an Almgren-type frequency function given by the ratio of the local magnetic energy over mass near
the origin; see [13, 22, 27] for Almgren-type monotonicity formulae for elliptic operators with magnetic
potentials. We mention that a similar approach based on estimates of the Rayleigh quotient, blow-up
analysis and monotonicity formula was used in [3] to prove a sharp control of the rate of convergence of the
eigenvalues and eigenfunctions of the Dirichlet laplacian in a perturbed domain (obtained by attaching
a shrinking handle to a smooth region) to the relative eigenvalue and eigenfunction in the limit domain
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(see also [4, 14] for blow-up analysis and monotonicity formula); however, in [4, 3, 14] only the particular
case of limit eigenfunctions having at the singular point the lowest vanishing order (corresponding to the
case k = 1 in our setting) was considered. In the present paper we do not prescribe any restriction on the
order of the zero of the limit eigenfunction: this produces significant additional difficulties with respect
to [3], the main of which relies in the identification of the limit profile of the blow-up sequence (13). Such
a difficulty is overcome here by fine energy estimates of the difference between approximating and limit
eigenfunctions, performed exploiting the invertibility of an operator associated to the limit eigenvalue
problem.

From Theorem 1.2, it follows that, under the assumptions of Theorem 1.2, the Taylor polynomials of
the function a 7→ λ0 − λa with center 0 and degree strictly smaller than k vanish, since by Theorem 1.2
they vanish on the k independent directions corresponding to the nodal lines of ϕ0 (see [2, Lemma 1.1]
and [8, Lemma 6.6]). Then we obtain the following Taylor expansion at 0:

λ0 − λa = P (a) + o(|a|k), as |a| → 0+,

for some

P 6≡ 0, P (a) = P (a1, a2) =

k∑
j=0

αja
k−j
1 aj2

homogeneous polynomial of degree k. The detection of the exact value of all coefficients of the polynomial
(and hence the sharp asymptotics along any direction) is studied in the subsequent paper [2]. In the
asymptotic analysis along any direction performed in [2], we will not be able to construct explicitly the
limit profile of blown-up eigenfunctions as done in the present paper for directions of nodal lines; such
difficulty is treated in [2] studying the dependence of the limit profile on the position of the pole and
the symmetry/periodicity properties of the homogeneous polynomial P . The complete classification of
homogeneous k-degree polynomials with such periodicity/symmetry invariances (which will allow us to
determine explicitly the polynomial P in [2]) requires the result of Theorem 1.2 as a crucial ingredient;
in particular the information that the limit in (12) is strictly positive is the starting point in [2], since
it provides, besides the exact degree of the polynomial P , informations about locations of zeroes and
factorization.

The paper is organized as follows. Sections 2 and 3 are devoted to set up the framework, recall some
useful known facts, introduce notation and prove some basic inequalities. Section 4 contains the construc-
tion of a suitable limit profile which will be used to describe the limit of the blowed-up sequence. The
study of the behavior of such a blow-up sequence can proceed thanks to the Almgren-type monotonicity
argument which is presented in section 5. Via the energy estimates proved within section 5, in section 6
we present some preliminary upper and lower bounds for the difference λ0−λa, relying on the well-known
minimax characterization for eigenvalues. Section 7 contains energy estimates of the difference between
approximating and limit eigenfunctions which are used to identify the limit profile in the sharp blow-up
analysis which is performed in section 8. Finally, section 9 concludes the proof of Theorem 1.2.

1.1. Notation and review of known formulas. We list below some notation used throughout the
paper.

• For r > 0 and a ∈ R2, Dr(a) = {x ∈ R2 : |x− a| < r} denotes the disk of center a and radius r.
• For all r > 0, Dr = Dr(a) denotes the disk of center 0 and radius r.
• For every complex number z ∈ C, z denotes its complex conjugate.
• For z ∈ C, Re z denotes its real part and Im z its imaginary part.
• For R > 0, let ηR : R2 → R be a smooth cut-off function such that

(14) ηR ≡ 0 in DR/2, ηR ≡ 1 on R2 \DR, 0 ≤ ηR ≤ 1 and |∇ηR| ≤ 4/R in R2.

• For every b = (b1, b2) ∈ R2, we denote as θb the function θb : R2 \ {b} → [0, 2π) defined as

(15) θb(x1, x2) =



arctan x2−b2
x1−b1 , if x1 > b1, x2 ≥ b2,

π
2 , if x1 = b1, x2 > b2,

π + arctan x2−b2
x1−b1 , if x1 < b1,

3
2π, if x1 = b1, x2 < b2,

2π + arctan x2−b2
x1−b1 , if x1 > b1, x2 < b2,

so that θb(b+ r(cos t, sin t)) = t for all r > 0 and t ∈ [0, 2π).

We also recall the Courant-Fisher minimax characterization of eigenvalues which will be used to estimate
the eigenvalue variation in section 6. The Rayleigh quotient associated to the eigenvalue problem (Ea) is

Ra : H1,a
0 (Ω,C)→ R, Ra(u) =

∫
Ω
|(i∇+Aa)u|2dx∫

Ω
|u|2 dx

.
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It is well-known from classical spectral theory that the eigenvalues λa1 ≤ λa2 ≤ · · · ≤ λaj ≤ . . . of problem
(Ea) admit the following variational characterization:

(16) λaj =min

{
max

u∈F\{0}
Ra(u) : F is a subspace of H1,a

0 (Ω,C) with dimF = j

}
.

2. Preliminaries

2.1. Diamagnetic and Hardy inequalities. We recall from [23] (see also [13, Lemma 3.1 and Remark
3.2]) the following Hardy type inequality

(17)

∫
Dr(a)

|(i∇+Aa)u|2 dx ≥ 1

4

∫
Dr(a)

|u(x)|2

|x− a|2
dx,

which holds for all r > 0, a ∈ R2 and u ∈ H1,a(Dr(a),C).
We also recall the well-known diamagnetic inequality (see e.g. [25] or [13, Lemma A.1] for a proof): if

a ∈ Ω and u ∈ H1,a(Ω,C), then

(18) |∇|u|(x)| ≤ |i∇u(x) +Aa(x)u(x)| for a.e. x ∈ Ω.

2.2. Approximating eigenfunctions. For all a ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) \ {0} be an eigenfunction of

problem (Ea) associated to the eigenvalue λa, i.e. solving

(19)

{
(i∇+Aa)2ϕa = λaϕa, in Ω,

ϕa = 0, on ∂Ω,

such that

(20)

∫
Ω

|ϕa(x)|2 dx = 1 and

∫
Ω

e
i
2 (θ0−θa)(x)ϕa(x)ϕ0(x) dx is a positive real number,

where ϕ0 is as in (4–5) and θa, θ0 are defined in (15); we observe that, given an eigenfunction v of (Ea)
associated to λa, to obtain an eigenfunction ϕa satisfying the normalization conditions (20) it is enough

to consider (
∫

Ω
|v|2 dx)−1eiϑv where ϑ = arg

[( ∫
Ω
|v|2 dx

)( ∫
Ω
ei(θ0−θa)/2vϕ0 dx

)−1
]
. Using (3), (4), (19),

(20), and standard elliptic estimates, it is easy to prove that

(21) ϕa → ϕ0 in H1(Ω,C) and in C2
loc(Ω \ {0},C)

and

(22)

∫
Ω

|(i∇+Aa)ϕa(x)|2 dx→
∫

Ω

|(i∇+A0)ϕ0(x)|2 dx

as a→ 0. We notice that (21) and (22) imply that

(23) (i∇+Aa)ϕa → (i∇+A0)ϕ0 in L2(Ω,C).

2.3. Local asymptotics of eigenfunctions. We recall from [13] the description of the asymptotics
at the singularity of solutions to elliptic equations with Aharonov-Bohm potentials. In the case of
Aharonov-Bohm potentials with circulation 1

2 , such asymptotics is described in terms of eigenvalues and
eigenfunctions of the following operator L acting on 2π-periodic functions

(24) Lψ = −ψ′′ + iψ′ +
1

4
ψ.

It is easy to verify that the eigenvalues of L are
{
j2

4 : j ∈ N, j is odd
}

; moreover each eigenvalue j2

4 has

multiplicity 2 and an L2((0, 2π),C)-orthonormal basis of the eigenspace associated to the eigenvalue j2

4
is formed by the functions

(25) ψj,1(t) =
ei
t
2

√
π

cos
( j

2
t
)
, ψj,2(t) =

ei
t
2

√
π

sin
( j

2
t
)
.

Proposition 2.1 ([13], Theorem 1.3). Let Ω ⊂ R2 be a bounded open set, b ∈ Ω and h ∈ L∞loc(Ω \ {0},C)

such that |h(x)| = O(|x|−2+ε
) as |x| → 0 for some ε > 0. Let u ∈ H1,b(Ω,C) be a nontrivial weak solution

to

(26) (i∇+Ab)
2u = hu, in Ω,

i.e.

(27)

∫
Ω

(i∇u+Abu) · (i∇v +Abv) dx =

∫
Ω

huv dx for all v ∈ H1,b
0 (Ω,C).
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Then there exists an odd j ∈ N such that

(28) lim
r→0+

r
∫
Dr(b)

(
|(i∇+Ab)u(x)|2 − (Reh(x)) |u(x)|2

)
dx∫

∂Dr(b)
|u|2 ds

=
j

2
.

Furthermore,

(29) r−j/2u(b+ r(cos t, sin t))→
√
πβj,1(b, u, h)ψj,1(t) +

√
πβj,2(b, u, h)ψj,2(t) in C1,α([0, 2π],C)

as r → 0+ for any α ∈ (0, 1), where, for ` = 1, 2,

(30) βj,`(b, u, h) =
1√
π

∫ 2π

0

[
(R−

j
2u(b+R(cos t, sin t))

+

∫ R

0

h(b+ s(cos t, sin t))u(b+ s(cos t, sin t))

j

(
s1− j2 − s1+ j

2

Rj

)
ds

]
ψj,`(t) dt

for all R > 0 such that {x ∈ R2 : |x− b| ≤ R} ⊂ Ω and (βj,1(b, u, h), βj,2(b, u, h)) 6= (0, 0).

From Proposition 2.1 we have that, under assumption (6),

r−k/2ϕ0(r(cos t, sin t))→ ei
t
2

(
βk,1(0, ϕ0, λ0) cos

(
k
2 t
)

+ βk,2(0, ϕ0, λ0) sin
(
k
2 t
))

in C1,α([0, 2π],C) as r → 0+ for any α ∈ (0, 1) with

(31) (βk,1(0, ϕ0, λ0), βk,2(0, ϕ0, λ0)) 6= (0, 0),

where βk,`(0, ϕ0, λ0) are defined as in (30). We observe that, from [16] (see also [8, Lemma 2.3]), the

function e−i
t
2ϕ0(r(cos t, sin t)) is a multiple of a real-valued function and therefore

(32) either βk,1(0, ϕ0, λ0) = 0 or
βk,2(0,ϕ0,λ0)
βk,1(0,ϕ0,λ0) is real.

Since (31) and (32) hold, the function

t 7→ βk,1(0, ϕ0, λ0) cos
(
k
2 t
)

+ βk,2(0, ϕ0, λ0) sin
(
k
2 t
)

has exactly k zeroes t1, t2, . . . , tk in [0, 2π). Up to a change of coordinates in R2, it is not restrictive to
assume that 0 ∈ {t1, t2, . . . , tk}, i.e. to assume that

(33) βk,1(0, ϕ0, λ0) = 0.

Remark 2.2. Condition (33) can be interpreted as a suitable change of the cartesian coordinate system
(x1, x2) in R2: we rotate the axes in such a way that the positive x1-axis is tangent to one of the k nodal
lines of ϕ0 ending at 0 (see [28, Theorem 1.5] for the description of nodal lines of eigenfunctions near
the pole). It is easy to verify that, besides the alignment of a nodal line of ϕ0 along the x1-axis, such
a change of coordinates has also the effect of rotating the vector (βk,1(0, ϕ0, λ0), βk,2(0, ϕ0, λ0)); hence,
since in the asymptotics stated in Theorem 1.2 only the norm of such a vector is involved, it is enough
to prove the theorem for βk,1(0, ϕ0, λ0) = 0.

By Proposition 2.1, under conditions (31) and (33), βk,2(0, ϕ0, λ0) 6= 0 can be also characterized as

(34) βk,2(0, ϕ0, λ0) =
1

π
lim
r→0+

r−k/2
∫ 2π

0

ϕ0(r(cos t, sin t))e−i
t
2 sin

(
k
2 t
)
dt.

2.4. Fourier coefficients of angular components of solutions. Let U ⊆ R2 be an open set, b ∈ U
and u ∈ H1,b(U,C) be a weak solution (in the sense of (27)) to the problem

(35) (i∇+Ab)
2u = λu, in U, for some λ ∈ R.

If b ∈ R2 is of the form b = (|b|, 0), letting θb as in (15), we have that θb ∈ C∞(R2 \ ([|b|,+∞)×{0}) and

∇θb can be extended to be in C∞(R2 \ {b}) with ∇
(
θb
2

)
= Ab in R2 \ {b}.

Let b = (|b|, 0) ∈ U and let u ∈ H1,b(U,C) be a weak solution to (35). Let R > 0 be such that R > |b|
and DR ⊂ U . For ` ∈ {1, 2} and j odd natural number we define, for all r ∈ (|b|, R),

(36) vj,`(r) :=

∫ 2π

0

u(r(cos t, sin t))e−
i
2 θb(r cos t,r sin t)ei

t
2ψj,`(t) dt.

We note that {vj,`(r)}j,` are the Fourier coefficients of the function

t 7→ u(r(cos t, sin t))e−
i
2 (θb−θ0)(r cos t,r sin t)
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with respect to the orthonormal basis of the space of periodic-L2((0, 2π),C) functions given in (25). Since

the function w = ue−
i
2 θb solves −∆w = λw in R2 \ {(x1, 0) : x1 ≥ |b|} and jumps to its opposite across

the crack {(x1, 0) : x1 ≥ |b|} (as well as its derivative ∂w
∂x2

), we have that vj,` is a solution to the equation

(37) −
(
r1+j

(
r−

j
2 vj,`

)′)′
= λ r1+ j

2 vj,`, in (|b|, R).

3. Poincaré type inequalities

In this section we establish some Poincaré type inequalities uniformly with respect to varying poles.

Lemma 3.1 (Poincaré inequality). Let r > 0 and a ∈ Dr. For any u ∈ H1,a(Ω,C) the following
inequality holds true

(38)
1

r2

∫
Dr

|u|2 dx ≤ 1

r

∫
∂Dr

|u|2 ds+

∫
Dr

|(i∇+Aa)u|2 dx.

Proof. From the Divergence Theorem, the Young inequality, and the diamagnetic inequality (18), it
follows that

2

r2

∫
Dr

|u|2 dx =
1

r2

∫
Dr

(
div(|u|2x)− 2|u|∇|u| · x

)
dx =

1

r

∫
∂Dr

|u|2 ds− 2

r2

∫
Dr

|u|∇|u| · x dx

≤ 1

r

∫
∂Dr

|u|2 ds+

∫
Dr

|∇|u||2 dx+
1

r2

∫
Dr

|u|2 dx

≤ 1

r

∫
∂Dr

|u|2 ds+

∫
Dr

|(i∇+Aa)u|2 dx+
1

r2

∫
Dr

|u|2 dx

which yields the conclusion. �

For every b ∈ D1 we define

(39) mb := inf
v∈H1,b(D1,C)

v 6≡0

∫
D1
|(i∇+Ab)v|2 dx∫
∂D1
|v|2 ds

.

Lemma 3.2. For every b ∈ D1, the infimum mb defined in (39) is attained and mb > 0.

Proof. Let vn be a minimizing sequence such that∫
∂D1

|vn|2 dx = 1 and

∫
D1

|(i∇+Ab)vn|2 = mb + o(1) as n→∞.

Then, by Lemma 3.1, we have that {vn}n∈N is bounded in H1,b(D1,C). Hence there exists a subsequence
vnk converging to some v ∈ H1,b(D1,C) weakly in H1,b(D1,C) and (by compactness of the trace embed-
ding H1,b(D1,C) ↪→ L2(∂D1,C)) strongly in L2(∂D1,C). Strong convergence in L2(∂D1,C) implies that∫
∂D1
|v|2 dx = 1, so that v 6≡ 0; moreover weak lower semicontinuity of the H1,b(D1,C)-norm implies

that v attains mb.
If, by contradiction, mb = 0, then, via the diamagnetic inequality (18),

0 =

∫
D1

|(i∇+Ab)v|2 dx ≥
∫
D1

|∇ |v||2 dx

which implies that |v| ≡ C, being C ≥ 0 a real constant. Since v 6≡ 0, we have that C > 0 and then∫
D1

|v|2
|x−b|2 dx = +∞, thus contradicting the fact that v ∈ H1,b(D1,C). �

Lemma 3.3. Let r > 0 and a ∈ Dr. Then

(40)
ma/r

r

∫
∂Dr

|u|2 ds ≤
∫
Dr

|(i∇+Aa)u|2 dx for all u ∈ H1,a(Dr,C),

with ma/r as in (39) with b = a
r .

Proof. It follows from (39) and a standard dilation argument. �

Lemma 3.4. The function b 7→ mb, with mb defined in (39), is continuous in D1. Moreover m0 = 1
2 .

Proof. The proof that mb is continuous follows by classical compactness arguments; we omit it for the
sake of brevity and refer to [1] for details. To prove that m0 = 1

2 , we observe that from Lemma 3.2, the

infimum m0 is attained by a function v0 ∈ H1,0(D1,C) \ {0}, which weakly solves (i∇ + A0)2v0 = 0 in
D1 in the sense of (27). From [13, Lemma 5.4], we have that

N(v0, r) :=
r
∫
Dr
|(i∇+A0)v0|2 dx∫
∂Dr
|v0|2 ds

is monotone nondecreasing w.r.t. r;
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furthermore (see Proposition 2.1) limr→0+ N(v0, r) ≥ 1
2 . Hence m0 = N(v0, 1) ≥ 1

2 . It is easy to verify

that, letting ṽ(r cos t, r sin t) = r1/2ei
t
2 sin( t2 ), we have that ṽ ∈ H1,0(D1,C) and

1

2
=

∫
D1
|(i∇+A0)ṽ|2 dx∫
∂D1
|ṽ|2 ds

≥ m0,

thus implying m0 = 1
2 . The proof is thereby complete. �

As a direct consequence of Lemma 3.4, we obtain the following result which provides a Poincaré type
inequality with a control on the best constant which is uniform with respect to the variation of the pole.

Corollary 3.5. For any δ ∈ (0, 1
2 ), there exists some sufficiently large µδ > 1 such that mb ≥ 1

2 − δ for

every b ∈ D1 with |b| < 1
µδ

.

Proof. The proof is a straightforward consequence of Lemma 3.4. �

4. Limit profile

In the present section we construct the profile which will be used to describe the limit of blowed-up
sequences of eigenfunctions with poles approaching 0 along the half-line tangent to a nodal line of ϕ0.

Lemma 4.1. For every odd natural number k there exists Φk ∈
⋃
R>0H

1(D+
R) (where D+

R denotes the

half-disk {(x1, x2) ∈ DR(0) : x2 > 0}) such that Φk − ψk ∈ D1,2
s (R2

+),

−∆Φk = 0, in R2
+ in a distributional sense,

Φk = 0 on s, and ∂Φk
∂ν = 0 on ∂R2

+ \ s, where ν = (0,−1) is the outer normal unit vector on ∂R2
+.

Proof. The function wk ∈ D1,2
s (R2

+) minimizing the functional Jk defined in (9) weakly solves

(41)


−∆wk = 0, in R2

+,

wk = 0, on s,
∂wk
∂ν = −∂ψk∂ν , on ∂R2

+ \ s.

Taking

(42) Φk = ψk + wk

we reach the conclusion. �

From now on, with a little abuse of notation, Φk will denote the even extension of the function Φk in
the previous Lemma 4.1 on the whole R2, i.e. Φk(x1,−x2) = Φk(x1, x2). Let us now set e = (1, 0) and
define, for every odd natural number k,

(43) Ψk = ei
θe
2 Φk,

where θe is as in (15) (with b = e) and Φk is the extension (even in x2) of the function in Lemma 4.1.

We denote as H1,e
loc (R2,C) the space of functions belonging to H1,e(Dr,C) for all r > 0, as D1,2

s (R2)

the completion of C∞c (R2 \ s) with respect to the norm (
∫
R2 |∇u|2 dx)1/2 and as D1,2

e (R2) the completion

of C∞c (R2 \ {e}) with respect to the norm (
∫
R2 |(i∇+Ae)u|2 dx)1/2.

Proposition 4.2. The functions Ψk defined in (43) satisfies the following properties:

Ψk ∈ H1,e
loc (R2,C);(44)

(i∇+Ae)2Ψk = 0 in R2 in a weak H1,e-sense;(45) ∫
R2

∣∣(i∇+Ae)(Ψk − eiθe/2ψk)
∣∣2 dx < +∞;(46)

ei
θe(x)

2 wk = Ψk(x)− ei
θe(x)

2 ψk(x) = O(|x|−1/2), as |x| → +∞.(47)

Proof. Statements (44–45) follow by direct calculations together with the asymptotic expansion of solu-
tions to elliptic problems with cracks which is proved in [12] and which yields that Φk(e+r(cos t, sin t)) =
O(r1/2) as r → 0+. (46) follows from Lemma 4.1 and direct calculations.

To prove (47), we write

Ψk = ei
θe
2 ψk + v

where v = ei
θe
2 (Φk − ψk). We note that wk = Φk − ψk ∈ D1,2

s (R2) and hence v ∈ D1,2
e (R2). Since wk

weakly solves −∆wk = 0 in R2 \ s0, its Kelvin transform w̃k(x) = wk( x
|x|2 ) weakly solves −∆w̃k = 0 in

D1 \ {(x1, 0) : 0 ≤ x1 < 1} and vanishes on {(x1, 0) : 0 ≤ x1 < 1}. From the asymptotics of solutions to
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elliptic problems with cracks proved in [12] it follows that |w̃k(x)| = O(|x|1/2) as |x| → 0+, which yields
|wk(x)| = O(|x|−1/2) as |x| → +∞. Therefore we have that

(48) |v(x)| = O(|x|−1/2) as |x| → +∞,
thus proving (47). �

The following result establishes that Ψk is the unique function satisfying (44), (45), and (46).

Proposition 4.3. If Φ ∈ H1,e
loc (R2) weakly satisfies

(49) (i∇+Ae)2Φ = 0, in R2,

and

(50)

∫
R2

|(i∇+Ae)(Φ− e i2 θeψk)|2 < +∞,

then Φ = Ψk, with Ψk being the function defined in (43).

Proof. Suppose that Φ ∈ H1,e
loc (R2) satisfies (49) and (50). Then, in view of (45), the difference Ψ = Φ−Ψk

weakly solves (i∇+Ae)2Ψ = 0 in R2. Moreover from (46) and (50) it follows that

(51)

∫
R2

|(i∇+Ae)Ψ(x)|2dx < +∞,

which, in view of (17), implies that

(52)

∫
R2

|Ψ(x)|2

|x− e|2
dx < +∞.

For R > 1, let ηR : R2 → R as in (14). Testing the equation for Ψ by (1− ηR)2Ψ we obtain that∫
R2

(1− ηR)2|(i∇+Ae)Ψ|2 dx = −2i

∫
R2

(1− ηR)Ψ(i∇+Ae)Ψ · ∇ηR dx

≤ 1

2

∫
R2

(1− ηR)2|(i∇+Ae)Ψ|2 dx+ 2

∫
R2

|Ψ|2|∇ηR|2 dx

which implies that∫
DR/2

|(i∇+Ae)Ψ|2 dx ≤
∫
R2

(1− ηR)2|(i∇+Ae)Ψ|2 dx ≤ 4

∫
R2

|Ψ|2|∇ηR|2 dx

≤ 64

R2

∫
DR\DR/2

|Ψ|2dx ≤ 64
(R+ 1)2

R2

∫
DR\DR/2

|Ψ|2

|x− e|2
dx→ 0

as R→ +∞ thanks to (52). It follows that
∫
R2 |(i∇+Ae)Ψ|2 dx = 0 and then

∫
R2 |x−e|−2|Ψ(x)|2 dx = 0

in view of (17). Hence Ψ ≡ 0 in R2 and Φ = Ψk. �

The following lemma establishes a deep relation between the function Ψk and the constant mk in (10).

Lemma 4.4. Let Ψk be the function defined in (43). Then

(53) π −
∫ 2π

0

Ψk(cos t, sin t)e−
i
2 θe(cos t,sin t) sin

(
k
2 t
)
dt =

4

k
mk

with mk as in (10).

Proof. Let wk be the function introduced in (10) and (41), extended evenly in x2 to the whole R2 (i.e.
wk(x1,−x2) = wk(x1, x2)); from (41) we have that wk is harmonic on R2 \ s0. Taking into account (25),
(42), and (8), we have that

− 1√
π

(
π −

∫ 2π

0

Ψk(cos t, sin t)e−
i
2 θe(cos t,sin t) sin

(
k
2 t
)
dt

)
=

∫ 2π

0

wk(cos t, sin t)ei
t
2ψk,2(t) dt = ω(1)

where ω(r) :=
∫ 2π

0
wk(r cos t, r sin t)ei

t
2ψk,2(t) dt. As observed in §2.4, ω(r) satisfies, for some Cω ∈ C,(

r−k/2ω(r)
)′

= Cωr
−(1+k), for r > 1. Integrating the previous equation over (1, r) we obtain that

ω(r)

rk/2
− ω(1) =

Cω
k

(
1− 1

rk

)
, for all r ≥ 1.

From (47) it follows that ω(r) = O(r−1/2) as r → +∞, hence, letting r → +∞ in the previous identity,
we obtain that necessarily Cω = −kω(1) and then

(54) ω(r) = ω(1)r−k/2, ω′(r) = −k
2
ω(1)r−

k
2−1, for all r ≥ 1.
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On the other hand,

(55) ω′(r) =
r−

k
2−1

√
π

∫
∂Dr

∂wk
∂ν

ψk ds.

Combining (54) and (55) we obtain that

(56) ω(1) = − 2

k
√
π

∫
∂D1

∂wk
∂ν

ψk ds.

Multiplying the equation −∆wk = 0 (which is weakly satisfied in R2 \ s0) by ψk and integrating by parts
on D1 \ s0, we obtain that

(57)

∫
∂D1

∂wk
∂ν

ψk ds =

∫
D1

∇wk · ∇ψk dx,

whereas multiplying −∆ψk = 0 (which is weakly satisfied in R2 \ s0) by wk and integrating by parts on
D1 \ s0 we obtain that

(58)

∫
∂D1

∂ψk
∂ν

wk ds− 2

∫ 1

0

∂+ψk
∂x2

(x1, 0)wk(x1, 0) dx1 =

∫
D1

∇wk · ∇ψk dx.

Collecting (57) and (58) we have that∫
∂D1

∂wk
∂ν

ψk ds =

∫
∂D1

∂ψk
∂ν

wk ds− 2

∫ 1

0

∂+ψk
∂x2

(x1, 0)wk(x1, 0) dx1.

Since
∫
∂D1

∂ψk
∂ν wk ds = k

√
π

2 ω(1), (56) now reads ω(1) = −ω(1) + 4
k
√
π

∫ 1

0
∂+ψk
∂x2

(x1, 0)wk(x1, 0) dx1 and

thus

ω(1) =
2

k
√
π

∫ 1

0

∂+ψk
∂x2

(x1, 0)wk(x1, 0) dx1.

Letting mk as in (10), in view of (11) we conclude that ω(1) = − 4
k
√
π
mk, thus proving (53). �

5. Monotonicity formula and energy estimates for blow-up sequences

In this section we prove some energy estimates for eigenfunctions using an adaption of the Almgren
monotonicity argument inspired by [27, Section 5] and [13].

Definition 5.1. Let λ ∈ R, b ∈ R2, and u ∈ H1,b(Dr,C). For any r > |b|, we define the Almgren-type
frequency function as

N(u, r, λ,Ab) =
E(u, r, λ,Ab)

H(u, r)
,

where

E(u, r, λ,Ab) =

∫
Dr

|(i∇+Ab)u|2 dx− λ
∫
Dr

|u|2 dx, H(u, r) =
1

r

∫
∂Dr

|u|2 ds.

When we study the quotient N = E/H for any magnetic eigenfunction, we find several specific relations
to hold true. We are interested in the derivative of such a quotient, since it provides some information
about the possible vanishing behavior of eigenfunctions near the pole of the magnetic potential.

For all 1 ≤ j ≤ n0 and a ∈ Ω, let ϕaj ∈ H
1,a
0 (Ω,C)\{0} be an eigenfunction of problem (Ea) associated

to the eigenvalue λaj , i.e. solving

(59)

{
(i∇+Aa)2ϕaj = λajϕ

a
j , in Ω,

ϕaj = 0, on ∂Ω,

such that

(60)

∫
Ω

|ϕaj (x)|2 dx = 1 and

∫
Ω

ϕaj (x)ϕa` (x) dx = 0 if j 6= `.

For j = n0, we choose

(61) ϕan0
= ϕa,

with ϕa as in (19)–(20). We observe that, since a ∈ Ω 7→ λaj admits a continuous extension on Ω as
proved in [8, Theorem 1.1], we have that

(62) Λ := sup
a∈Ω

1≤j≤n0

λaj ∈ (0,+∞).

Lemma 5.2.

(i) There exists R0 ∈ (0, (5Λ)−1/2) such that DR0
⊂ Ω and, if |a| < R0, H(ϕaj , r) > 0 for all r ∈ (|a|, R0)

and 1 ≤ j ≤ n0.
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(ii) There exist C0 > 0 and α0 ∈ (0, R0) such that H(ϕaj , R0) ≥ C0 for all a with |a| < α0 and
1 ≤ j ≤ n0.

Proof. To prove (i) we argue by contradiction and assume that, for all n sufficiently large, there exist
an ∈ Ω with |an| < 1

n , rn ∈
(
|an|, 1

n

)
, and jn ∈ {1, . . . , n0} such that H(ϕanjn , rn) = 0, i.e. ϕanjn ≡ 0 on

∂Drn . Testing (59) with ϕanjn and integrating on Drn , in view of Lemma 3.1 we obtain

0 =

∫
Drn

(
|(i∇+Aan)ϕanjn |

2 − λanjn |ϕ
an
jn
|2
)
dx ≥ (1− Λr2

n)

∫
Drn

|(i∇+Aan)ϕanjn |
2 dx.

Since rn → 0, for n large 1−Λr2
n > 0 and hence the above inequality yields

∫
Drn
|(i∇+Aan)ϕanjn |

2 dx = 0.

Lemma 3.1 then implies that ‖ϕanjn ‖H1,an (Drn ,C) = 0 and hence ϕanjn ≡ 0 in Drn . From the unique

continuation principle (see [13, Corollary 1.4]) we conclude that ϕanjn ≡ 0 in Ω, a contradiction.

To prove (ii), we argue by contradiction and assume that, for all n sufficiently large, there exist an ∈ Ω
with an → 0 and jn ∈ {1, . . . , n0} such that limn→∞H(ϕanjn , R0) = 0. Letting ϕn := ϕanjn and λn := λanjn ,

using (59) and (60) it is easy to prove that, along a subsequence, λnk → λ0
j0

for some j0 ∈ {1, . . . , n0}
and ϕnk → ϕ weakly in H1(Ω,C) for some ϕ ∈ H1,0

0 (Ω,C) satisfying (i∇+A0)2ϕ = λ0
j0
ϕ in a weak sense

in Ω and
∫

Ω
|ϕ(x)|2 dx = 1. In particular ϕ 6≡ 0. Furthermore, by compactness of the trace embedding

H1(DR0 ,C) ↪→ L2(∂DR0 ,C), we have that

0 = lim
k→∞

1

R0

∫
∂DR0

|ϕnk |2 ds =
1

R0

∫
∂DR0

|ϕ|2 ds,

which implies that ϕ = 0 on ∂DR0
. Testing (i∇+A0)2ϕ = λ0

j0
ϕ with ϕ and integrating on DR0

, in view
of Lemma 3.1 we obtain

0 =

∫
DR0

(
|(i∇+A0)ϕ|2 − λ0

j0 |ϕ|
2
)
dx ≥ (1− ΛR2

0)

∫
DR0

|(i∇+A0)ϕ|2 dx.

Since 1 − ΛR2
0 > 0, we deduce that

∫
DR0
|(i∇ + A0)ϕ|2 dx = 0. Lemma 3.1 then implies that ϕ ≡ 0 in

DR0 . From the unique continuation principle (see [13, Corollary 1.4]) we conclude that ϕ ≡ 0 in Ω, thus
giving rise to a contradiction. �

We notice that, thanks to Lemma 5.2, the function r 7→ N(ϕaj , r, λ
a
j , Aa) is well defined in (|a|, R0).

Lemma 5.3. Let 1 ≤ j ≤ n0, a ∈ Ω, and ϕaj ∈ H
1,a
0 (Ω,C) be a solution to (59)–(60). Then r 7→ H(ϕaj , r)

is smooth in (|a|, R0) and

d

dr
H(ϕaj , r) =

2

r
E(ϕaj , r, λ

a
j , Aa).

Proof. Since the proof is similar to that of [27, Lemma 5.2], we omit it. �

Lemma 5.4. For δ ∈ (0, 1/4), let µδ be as in Corollary 3.5. Let r0 ≤ R0 and j ∈ {1, . . . , n0}. If
µδ|a| ≤ r1 < r2 ≤ r0 and ϕaj is a solution to (59)–(60), then

H(ϕaj , r2)

H(ϕaj , r1)
≥ e− 5

2 Λr2
0

(
r2

r1

)1−2δ

.

Proof. Combining Lemma 3.1 with Lemma 3.3 and Corollary 3.5 we obtain that, for every µδ|a| < r < R0,

1

r2

∫
Dr

∣∣ϕaj ∣∣2 dx ≤ (1 +
2

1− 2δ

)∫
Dr

∣∣(i∇+Aa)ϕaj
∣∣2 dx < 5

∫
Dr

∣∣(i∇+Aa)ϕaj
∣∣2 dx.

From above, Lemma 5.3, Lemma 3.3, recalling that R0 < (5Λ)−1/2, for every µδ|a| < r < r0 we have that

d

dr
H(ϕaj , r) =

2

r

∫
Dr

(∣∣(i∇+Aa)ϕaj
∣∣2 − λaj ∣∣ϕaj ∣∣2) dx ≥ 2

r

(
1− 5Λr2

) ∫
Dr

∣∣(i∇+Aa)ϕaj
∣∣2 dx

≥ 2

r

(
1− 5Λr2

)
ma/rH(ϕaj , r) ≥

2

r

(
1− 5Λr2

)(1

2
− δ
)
H(ϕaj , r),

so that, in view of Lemma 5.2,

d

dr
logH(ϕaj , r) ≥

1− 2δ

r
− Λ(5− 10δ)r ≥ 1− 2δ

r
− 5Λr.

Integrating between r1 and r2 we obtain the desired inequality. �
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Lemma 5.5. For 1 ≤ j ≤ n0 and a ∈ Ω, let ϕaj ∈ H
1,a
0 (Ω,C) be a solution to (59)–(60). Then, for all

|a| < r < R0, we have that

(63)
d

dr
E(ϕaj , r, λ

a
j , Aa) = 2

∫
∂Dr

∣∣(i∇+Aa)ϕaj · ν
∣∣2 ds− 2

r

(
Ma
j + λaj

∫
Dr

∣∣ϕaj ∣∣2 dx)
where ν(x) = x

|x| denotes the unit normal vector to ∂Dr and

(64) Ma
j =

1

4

(
a1(c2a,j − d2

a,j) + 2a2ca,jda,j

)
,

with a = (a1, a2), ca,j =
√
πβ1,1(a, ϕaj , λ

a
j ), and da,j =

√
πβ1,2(a, ϕaj , λ

a
j ), being β1,1(a, ϕaj , λ

a
j ) and

β1,2(a, ϕaj , λ
a
j ) the coefficients defined in (30). Furthermore, letting µδ as in Corollary 3.5,

|Ma
j |

H(ϕaj , µδ|a|)
≤ Cδ,

for some Cδ > 0 independent of a.

Proof. Since the proof is similar to that of [27, Lemmas 5.6, 5.7, 5.8, 5.9], we omit it. �

Lemma 5.6. For 1 ≤ j ≤ n0 and a ∈ Ω, let ϕaj ∈ H
1,a
0 (Ω,C) be a solution to (59)–(60). Let δ ∈ (0, 1/4),

µδ as in Corollary 3.5 and r0 ≤ R0. Then there exists cδ,r0 > 0 such that, for all µ > µδ, |a| < r0
µ ,

µ|a| ≤ r < r0, and 1 ≤ j ≤ n0,

(65) e
Λr2

1−Λr0
2
(
N(ϕaj , r, λ

a
j , Aa) + 1

)
≤ e

Λr0
2

1−Λr0
2
(
N(ϕaj , r0, λ

a
j , Aa) + 1

)
+

cδ,r0
µ1−2δ

and

(66) N(ϕaj , r, λ
a
j , Aa) + 1 > 0.

Proof. By direct computations and Schwarz inequality (see [27, Lemma 5.11]), we obtain that, for all
|a| < r < R0,

dN(ϕaj , r, λ
a
j , Aa)

dr

=

2
r

(( ∫
∂Dr
|(i∇+Aa)ϕaj · ν|2 ds

)( ∫
∂Dr
|ϕaj |2 ds

)
−
(
i
∫
∂Dr

(i∇+Aa)ϕaj · ν ϕaj ds
)2)

H2(ϕaj , r)

− 2

rH(ϕaj , r)

(
Ma
j + λaj

∫
Dr

∣∣ϕaj ∣∣2 dx) ≥ − 2

rH(ϕaj , r)

(
|Ma

j |+ λaj

∫
Dr

∣∣ϕaj ∣∣2 dx).
Via Lemmas 5.4 and 5.5 we estimate, for all µδ|a| ≤ r < r0,

2|Ma
j |

H(ϕaj , r)
= 2

|Ma
j |

H(ϕaj , µδ|a|)
H(ϕaj , µδ|a|)
H(ϕaj , r)

≤ constδ

(
|a|
r

)1−2δ

,

where constδ > 0 is independent of a (but depends on δ). On the other hand, by Lemma 3.1 we have
that, for all µδ|a| ≤ r < r0,

1− Λr2

r2

∫
Dr

∣∣ϕaj ∣∣2 ≤ H(ϕaj , r) + E(ϕaj , r, λ
a
j , Aa)

which implies
2λaj

rH(ϕaj , r)

∫
Dr

|ϕaj |2 dx ≤
2Λr

1− Λr0
2

(
N(ϕaj , r, λ

a
j , Aa) + 1

)
.

Therefore (66) follows. Moreover, for all µδ|a| ≤ r < r0,

dN(ϕaj , r, λ
a
j , Aa)

dr
≥ −constδ

|a|1−2δ

r2−2δ
− 2Λr

1− Λr0
2

(
N(ϕaj , r, λ

a
j , Aa) + 1

)
which is read as (

e
Λr2

1−Λr0
2
(
N(ϕaj , r, λ

a
j , Aa) + 1

))′
e
− Λr2

1−Λr0
2 ≥ −constδ

|a|1−2δ

r2−2δ
.

Letting r ∈ [µδ|a|, r0) and integrating from r to r0 we obtain

e
Λr2

1−Λr0
2
(
N(ϕaj , r, λ

a
j , Aa) + 1

)
≤ e

Λr0
2

1−Λr0
2
(
N(ϕaj , r0, λ

a
j , Aa) + 1

)
+ e

Λr0
2

1−Λr0
2

constδ
1− 2δ

(
|a|
r

)1−2δ

.

Letting µ>µδ, |a|< r0
µ , µ|a|≤r<r0, and taking cδ,r0 = e

Λr0
2

1−Λr0
2 constδ

1−2δ , the above estimates yields (65). �
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A first consequence of Lemma 5.6 is the following estimate of the Almgren quotient of ϕa at radii of
size |a| in terms of the order of vanishing of ϕ0 at the pole.

Lemma 5.7. For a ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) be a solution to (19-20). For every δ ∈ (0, 1/4) there exist

rδ > 0 and Kδ > µδ > 0 such that, if µ ≥ Kδ, |a| < rδ
µ , and µ|a| ≤ r < rδ, then N(ϕa, r, λa, Aa) ≤ k

2 + δ.

Proof. Let p > 0 be sufficiently small so that p(2 + k
2 + p

2 ) < 1
2 . Let δ ∈ (0, 1

4 ). Since, in view of
Proposition 2.1,

lim
r→0+

N(ϕ0, r, λ0, A0) =
k

2
,

we can choose rδ > 0 sufficiently small so that rδ < min
{
R0, (5Λ)−1/2

}
, e

Λrδ
2

1−Λrδ
2 ≤ 1 + δp, and

N(ϕ0, rδ, λ0, A0) < k
2 + δp.

Since, in view of (21) and (23), N(ϕa, rδ, λa, Aa) → N(ϕ0, rδ, λ0, Aa) as |a| → 0, there exists some
αδ > 0 such that if |a| < αδ then N(ϕa, rδ, λa, Aa) < k

2 + δp. From Lemma 5.6 it follows that, if µ > µδ,
|a| < min{ rδµ , αδ}, and µ|a| ≤ r < rδ, then

N(ϕa, r, λa, Aa) + 1 ≤ (1 + δp)
(
k
2 + δp+ 1

)
+

cδ,rδ
µ1−2δ

= 1 +
k

2
+ δ
(

2p+ p
k

2
+ δp2

)
+

cδ,rδ
µ1−2δ

< 1 +
k

2
+

1

2
δ +

cδ,rδ
µ1−2δ

.

If Kδ > max
{
µδ,
( 2cδ,rδ

δ

) 1
1−2δ , rδ/αδ

}
, we conclude that, if µ ≥ Kδ, |a| < rδ

µ , and µ|a| ≤ r < rδ, then

N(ϕa, r, λa, Aa) < k
2 + δ, thus concluding the proof. �

A second consequence of Lemma 5.6 is the following estimate of the energy of eigenfunctions ϕaj in
disks of radius of order |a|.

Lemma 5.8. For 1 ≤ j ≤ n0 and a ∈ Ω, let ϕaj ∈ H
1,a
0 (Ω,C) be a solution to (59)–(60). Let R0 be as in

Lemma 5.2. For every δ ∈ (0, 1/4), there exist K̃δ > 1 and C̃δ > 0 such that, for all µ ≥ K̃δ, a ∈ Ω with
|a| < R0

µ , and 1 ≤ j ≤ n0, ∫
∂Dµ|a|

|ϕaj |2 ds ≤ C̃δ(µ|a|)2−2δ,(67) ∫
Dµ|a|

|(i∇+Aa)ϕaj |2 dx ≤ C̃δ(µ|a|)1−2δ,(68) ∫
Dµ|a|

|ϕaj |2 dx ≤ C̃δ(µ|a|)3−2δ.(69)

Proof. Let us fix δ ∈ (0, 1/4) and let µδ be as in Corollary 3.5. From Lemma 5.6 it follows that, if µ > µδ
and |a| < R0

µ then, for all 1 ≤ j ≤ n0,

(70) N(ϕaj , µ|a|, λaj , Aa) ≤ e
ΛR0

2

1−ΛR0
2
(
N(ϕaj , R0, λ

a
j , Aa) + 1

)
+

cδ,R0

µ1−2δ
δ

− 1.

From (59), (60), and (62) we deduce that

(71)

∫
DR0

∣∣(i∇+Aa)ϕaj
∣∣2 dx ≤ ∫

Ω

∣∣(i∇+Aa)ϕaj
∣∣2 dx = λaj ≤ Λ,

therefore, in view of Lemma 5.2, if |a| < α0,

(72) N(ϕaj , R0, λ
a
j , Aa) =

∫
DR0
|(i∇+Aa)ϕaj |2 dx− λaj

∫
DR0
|ϕaj |2 dx

H(ϕaj , R0)
≤ Λ

C0
.

Combining (70) and (72) we obtain that, if µ ≥ K̃δ with K̃δ > max{µδ, R0/α0} and |a| < R0

µ , then∫
Dµ|a|

|(i∇+Aa)ϕaj |2 dx− λaj
∫
Dµ|a|

|ϕaj |2 dx ≤ constδH(ϕaj , µ|a|)

for some positive constδ > 0 depending on δ. Hence, from Lemma 3.1,

(1− Λµ2|a|2)

∫
Dµ|a|

|(i∇+Aa)ϕaj |2 dx− Λ(µ|a|)2H(ϕaj , µ|a|) ≤ constδH(ϕaj , µ|a|)

which implies

(73)

∫
Dµ|a|

|(i∇+Aa)ϕaj |2 dx ≤
ΛR2

0 + constδ
1− ΛR2

0

H(ϕaj , µ|a|).
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From Lemma 5.4 it follows that, if µ ≥ K̃δ and |a| < R0

µ ,

(74) H(ϕaj , µ|a|) ≤ e
5
2 ΛR2

0

(
µ|a|
R0

)1−2δ

H(ϕaj , R0).

On the other hand, Lemma 3.3, Corollary 3.5, and (71) yield

(75) H(ϕaj , R0) ≤ 1

ma/R0

∫
DR0

∣∣(i∇+Aa)ϕaj
∣∣2 dx ≤ 2Λ

1− 2δ
.

Estimate (67) follows combining (74), and (75), whereas estimate (68) follows from (73), (74), and (75).
Finally, (69) can be deduced from (67), (68) and Lemma 3.1. �

We blow-up the family of eigenfunctions {ϕa} with a = (|a|, 0) as |a| → 0, i.e. we introduce the family
of functions

(76) ϕ̃a(x) :=
ϕa(|a|x)√
H(ϕa,Kδ|a|)

, a = (|a|, 0) = |a|e,

with Kδ being as in Lemma 5.7 for some fixed δ ∈ (0, 1/4). We observe that ϕ̃a weakly solves

(77) (i∇+Ae)2ϕ̃a = |a|2λaϕ̃a, in 1
|a|Ω = {x ∈ R2 : |a|x ∈ Ω},

and

(78)
1

Kδ

∫
∂DKδ

|ϕ̃a|2 ds = 1.

In section 8 we will prove that ϕ̃a converges to a limit profile which is a multiple of the function Ψk

introduced in (43). To this aim, the energy estimates below will play a crucial role.

Theorem 5.9. For all R ≥ Kδ,

(79) the family of functions
{
ϕ̃a : a = |a|e, |a| < rδ

R

}
is bounded in H1,e(DR,C).

In particular, for all R ≥ Kδ,∫
DR|a|

|(i∇+Aa)ϕa|2 dx = O(H(ϕa,Kδ|a|)), as |a| → 0+,(80) ∫
∂DR|a|

|ϕa|2dx = O(|a|H(ϕa,Kδ|a|)), as |a| → 0+,(81) ∫
DR|a|

|ϕa|2dx = O(|a|2H(ϕa,Kδ|a|)), as |a| → 0+.(82)

Proof. For δ ∈ (0, 1/4) fixed, let rδ > 0 and Kδ > µδ be as in Lemma 5.7, so that Lemma 5.7 yields

(83) N(ϕa, R|a|, λa, Aa) ≤ k

2
+ δ, for all R ≥ Kδ and |a| < rδ

R
.

Let us observe that, by a standard change of variables in the integrals and (83),

N(ϕa, R|a|, λa, Aa) =
R|a|

(∫
DR|a|

|(i∇+Aa)ϕa|2 dx− λa
∫
DR|a|

|ϕa|2 dx
)

∫
∂DR|a|

|ϕa|2 ds
(84)

=
R
(∫

DR
|(i∇+Ae)ϕ̃a|2 dx− |a|2λa

∫
DR
|ϕ̃a|2 dx

)
∫
∂DR
|ϕ̃a|2 ds

≤ k

2
+ δ.

Thus, via Corollary 3.5, Lemma 3.1 and (84), for all R ≥ Kδ and |a| < rδ
R there holds

(85) (1− 5Λr2
δ)

∫
DR

|(i∇+Ae)ϕ̃a|2 dx ≤
(

1− λa|a|2R2(1 +m−1
e/R)

)∫
DR

|(i∇+Ae)ϕ̃a|2 dx

≤
∫
DR

|(i∇+Ae)ϕ̃a|2 dx− |a|2λa
∫
DR

|ϕ̃a|2 dx ≤ H(ϕ̃a, R)
(k

2
+ δ
)

=
H(ϕa, R|a|)
H(ϕa,Kδ|a|)

(
k

2
+ δ

)
.

From Lemmas 5.3 and 5.7, there holds that, if R ≥ Kδ and |a| < rδ
R ,

(86)
1

H(ϕa, r)

d

dr
H(ϕa, r) =

2

r
N(ϕa, r, λa, Aa) ≤ 2

r

(
k

2
+ δ

)
for all Kδ|a| ≤ r ≤ rδ,

hence integration between Kδ|a| and R|a| yields

(87) H(ϕ̃a, R) =
H(ϕa, R|a|)
H(ϕa,Kδ|a|)

≤
(
R

Kδ

)k+2δ

.
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From (85) and (87) we obtain that, if R ≥ Kδ and |a| < rδ
R ,

(88)

∫
DR

|(i∇+Ae)ϕ̃a|2 dx ≤
1

1− 5Λr2
δ

(
k

2
+ δ

)(
R

Kδ

)k+2δ

.

Moreover (87) yields

(89)

∫
∂DR

|ϕ̃a|2 ds ≤ R
(
R

Kδ

)k+2δ

.

Estimates (88) and (89) together with Lemma 3.1 imply (79). To conclude, we observe that (88) yields
(80), (87) imply (81), while (82) follows from (80) and (81) in view of Lemma 3.1. �

6. Preliminary estimates for the difference of eigenvalues

To obtain both upper and lower estimates for the eigenvalue variation λ0−λa, we will use the following
technical lemma.

Lemma 6.1. For every a = (|a|, 0) ∈ Ω let us consider a quadratic form

Qa : Cn0 → R, Qa(z1, z2, . . . , zn0
) =

n0∑
j,n=1

Mj,n(a)zjzn,

with Mj,n(a) ∈ C such that Mj,n(a) = Mn,j(a). Let us assume that there exist α ∈ (0,+∞), a 7→ σ(a) ∈ R
with σ(a) ≥ 0 and σ(a) = O(|a|2α) as |a| → 0+, and a 7→ µ(a) ∈ R with µ(a) = O(1) as |a| → 0+, such
that the coefficients Mj,n(a) satisfy the following conditions:

Mn0,n0
(a) = σ(a)µ(a),(90)

for all j < n0 Mj,j(a)→Mj as |a| → 0+ for some Mj ∈ R, Mj < 0,(91)

for all j < n0 Mj,n0
(a) = Mn0,j(a) = O(|a|α

√
σ(a)) as |a| → 0+,(92)

for all j, n < n0 with j 6= n Mj,n(a) = O(|a|2α) as |a| → 0+,(93)

there exists M ∈ N such that |a|(2+M)α = o(σ(a)) as |a| → 0+.(94)

Then

max
z∈Cn0

‖z‖=1

Qa(z) = σ(a)
(
µ(a) + o(1)

)
as |a| → 0+,

where ‖z‖ = ‖(z1, z2, . . . , zn0)‖ =
(∑n0

j=1 |zj |2
)1/2

.

Proof. For every a let z(a) = (z1(a), . . . , zn0
(a)) ∈ Cn0 be such that

(95) ‖z(a)‖ = 1 and Qa(z(a)) = max
z∈Cn0

‖z‖=1

Qa(z).

From

(96) Mn0,n0
(a) ≤

n0∑
j,n=1

Mj,n(a)zj(a)zn(a)

it follows that (
1− |zn0(a)|2

)(
Mn0,n0(a)−max

j<n0

Mj,j(a)
)
≤

n0∑
j,n=1
j 6=n

Mj,n(a)zj(a)zn(a)

and hence, by (90) and (91),

(97)
(
1− |zn0(a)|2

)(
−max
j<n0

Mj + o(1)
)
≤

n0∑
j,n=1
j 6=n

Mj,n(a)zj(a)zn(a),

as |a| → 0+. Due to (92), (93) and the assumption σ(a) = O(|a|2α) we then have

(98) 1− |zn0
(a)|2 = O(|a|2α) as |a| → 0+.

Since 1− |zn0
(a)|2 =

∑
j<n0

|zj(a)|2, we also have that

(99) |zj(a)|2 = O(|a|2α), for all j < n0,
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as |a| → 0+. We claim that

(100)

n0∑
j,n=1
j 6=n

Mj,n(a)zj(a)zn(a) = o
(
σ(a))

as |a| → 0+. To prove (100) it is enough to show that

(101)

{
for every sequence al = |al|e→ 0 there exists a subsequence alp such that∑
j 6=nMj,n(alp)zj(alp)zn(alp) = o

(
σ(alp)) as p→ +∞.

Let al = |al|e→ 0. From (92), (93), (99), and the assumption σ(a) = O(|a|2α) we deduce that

n0∑
j,n=1
j 6=n

Mj,n(a)zj(a)zn(a)

=

n0−1∑
j,n=1
j 6=n

Mj,n(a)zj(a)zn(a) +

n0−1∑
j=1

Mj,n0
(a)zj(a)zn0

(a) +

n0−1∑
j=1

Mn0,j(a)zn0
(a)zj(a)

= O(|a|4α) +O(|a|2α
√
σ(a)) = O(|a|3α)

as a = al, l→∞. If |al|3α = o(σ(al)), we have proved claim (101); if not, there holds

(102) σ(a) = O(|a|3α)

along a subsequence of al (still denoted as al). Hence estimate (99) is improved as

(103) |zj(a)|2 = O(|a|3α), for all j < n0,

along the subsequence. We now perform a recursive argument, improving the previous estimates step by
step. Proceeding as above and exploiting the improved estimates (102) and (103), together with (92) and
(93), along the subsequence we have

n0∑
j,n=1
j 6=n

Mj,n(a)zj(a)zn(a)

=

n0−1∑
j,n=1
j 6=n

Mj,n(a)zj(a)zn(a) +

n0−1∑
j=1

Mj,n0
(a)zj(a)zn0

(a) +

n0−1∑
j=1

Mn0,j(a)zn0
(a)zj(a)

= O(|a|5α) +O
(
|a| 52α

√
σ(a)

)
= O(|a|4α).

If |a|4α = o(σ(a)) along the subsequence, we have proved claim (101); if not, up to passing to a subsequence
again, there holds

(104) σ(a) = O(|a|4α).

Hence we improve estimate (103) as

(105) |zj(a)|2 = O(|a|4α), for all j < n0,

along the subsequence. Repeating the above argument M times with M as in (94), we obtain that, along
a subsequence,

n0∑
j,n=1
j 6=n

Mj,n(a)zj(a)zn(a) = O
(
|a|α(2+M)

)
= o(σ(a)),

thus proving (101) and then (100).
From (97) and (100), it follows that

(106) |zn0(a)|2 = 1 + o(σ(a)) and |zj(a)|2 = o(σ(a)) for all j < n0,

as |a| → 0+. From (90), (91), (95), (100), and (106), we obtain the conclusion. �
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6.1. Upper bound for λ0 − λa: the Rayleigh quotient for λ0. We are now going to estimate the
Rayleigh quotient for λ0. Let R > 2. Being R0 as in Lemma 5.2, for every a = (|a|, 0) with |a| < R0/R
we define the functions vj,R,a as follows:

vj,R,a =

{
vextj,R,a, in Ω \DR|a|,

vintj,R,a, in DR|a|,
j = 1, . . . , n0,

where

(107) vextj,R,a := e
i
2 (θ0−θa)ϕaj in Ω \DR|a|,

with ϕaj as in (59)–(61) and θa, θ0 as in (15) (notice that e
i
2 (θ0−θa) is smooth in Ω \ DR|a|), so that it

solves {
(i∇+A0)2vextj,R,a = λaj v

ext
j,R,a, in Ω \DR|a|,

vextj,R,a = e
i
2 (θ0−θa)ϕaj on ∂(Ω \DR|a|),

whereas vintj,R,a is the unique solution to the minimization problem

(108)

∫
DR|a|

|(i∇+A0)vintj,R,a(x)|2 dx

= min

{∫
DR|a|

|(i∇+A0)u(x)|2 dx : u ∈ H1,0(DR|a|,C), u = e
i
2 (θ0−θa)ϕaj on ∂DR|a|

}
,

so that it solves

(109)

{
(i∇+A0)2vintj,R,a = 0, in DR|a|,

vintj,R,a = e
i
2 (θ0−θa)ϕaj , on ∂DR|a|.

It is easy to verify that

(110) dim
(

span{v1,R,a, . . . , vn0,R,a}
)

= n0.

Lemma 6.2. For δ ∈ (0, 1/4), let K̃δ > 1 be as in Lemma 5.8 and let R0 be as in Lemma 5.2. For all

R > max{2, K̃δ}, a = (|a|, 0) ∈ Ω with |a| < R0

R , and 1 ≤ j ≤ n0, let vintj,R,a be defined in (108)-(109).

Then there exists Ĉδ > 0 (depending only on δ) such that∫
DR|a|

|(i∇+A0)vintj,R,a|2 dx ≤ Ĉδ(R|a|)1−2δ,(111) ∫
∂DR|a|

|vintj,R,a|2 ds ≤ Ĉδ(R|a|)2−2δ,(112) ∫
DR|a|

|vintj,R,a|2 dx ≤ Ĉδ(R|a|)3−2δ.(113)

Proof. Let η|a|R be as in (14). From (108) it follows that∫
DR|a|

|(i∇+A0)vintj,R,a(x)|2 dx ≤
∫
DR|a|

∣∣∣(i∇+A0)
(
e
i
2 (θ0−θa)ϕaj η|a|R

)
(x)
∣∣∣2 dx(114)

≤ 2

∫
DR|a|\DR|a|

2

∣∣∣(i∇+A0)
(
e
i
2 (θ0−θa)ϕaj

)
(x)
∣∣∣2 dx+ 2

∫
DR|a|

|ϕaj (x)|2|∇η|a|R(x)|2 dx

≤ 2

∫
DR|a|\DR|a|

2

∣∣(i∇+Aa)ϕaj (x)
∣∣2 dx+

32

R2|a|2

∫
DR|a|

|ϕaj (x)|2 dx,

which yields (111) in view of estimates (68) and (69). Estimate (112) follows directly from (109) and (67).
We finally conclude by observing that (113) follows from Lemma 3.1 and estimates (111) and (112). �

For all R > 2 and a = (|a|, 0) ∈ Ω with |a| < R0

R , we define

ZRa (x) :=
vintn0,R,a

(|a|x)√
H(ϕa,Kδ|a|)

.(115)

Lemma 6.3. For all R > 2,

(116) the family of functions
{
ZRa : a = |a|e, |a| < rδ

R

}
is bounded in H1,0(DR,C).
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In particular, for all R > 2,∫
DR|a|

∣∣(i∇+A0)vintn0,R,a

∣∣2 dx = O(H(ϕa,Kδ|a|)), as |a| → 0+,(117) ∫
∂DR|a|

|vintn0,R,a|
2dx = O(|a|H(ϕa,Kδ|a|)), as |a| → 0+,(118) ∫

DR|a|

|vintn0,R,a|
2dx = O(|a|2H(ϕa,Kδ|a|)), as |a| → 0+.(119)

Proof. We notice that ZRa solves {
(i∇+A0)2ZRa = 0, in DR

ZRa = e
i
2 (θ0−θe)ϕ̃a, on ∂DR,

and, by the Dirichlet principle and Theorem 5.9,∫
DR

|(i∇+A0)ZRa |2dx ≤
∫
DR

∣∣∣(i∇+A0)
(
ηR e

i
2 (θ0−θe)ϕ̃a)

)∣∣∣2 dx(120)

≤ 2

∫
DR

|∇ηR|2|ϕ̃a|2dx+ 2

∫
DR\DR/2

η2
R

∣∣(i∇+Ae)ϕ̃a
∣∣2dx ≤ CR,

for some CR > 0 and ηR being as in (14). Then, taking into account (17), we obtain (116). Estimate
(117) follows directly from (120) and (115) while (118) is a direct consequence of the definition of vintn0,R,a

(see (109)) and (81). (119) follows from (117) and (118) in view of Lemma 3.1. �

Lemma 6.4. There exists R̃ > 2 such that for all R > R̃ and a = (|a|, 0) ∈ Ω with |a| < R0

R ,

λ0 − λa
H(ϕa,Kδ|a|)

≤ fR(a)

where

fR(a) =

∫
DR

|(i∇+A0)ZRa |2 dx−
∫
DR

|(i∇+Ae)ϕ̃a|2 dx+ o(1), as |a| → 0+,(121)

fR(a) = O(1), as |a| → 0+,

with ϕ̃a and ZRa defined in (76) and (115) respectively.

Proof. Let K̃δ > 1 be as in Lemma 5.8 and fix R > max{2, K̃δ}.
In (16) with j = n0 and a = 0, we choose F as the space of functions {ṽj,R,a} which result from

{vj,R,a} by a Gram–Schmidt process, that is

ṽj,R,a :=
v̂j,R,a

‖v̂j,R,a‖L2(Ω,C)
, j = 1, . . . , n0,

where v̂n0,R,a := vn0,R,a and

v̂j,R,a := vj,R,a −
n0∑

`=j+1

∫
Ω
vj,R,av̂`,R,a dx

‖v̂`,R,a‖2L2(Ω,C)

v̂`,R,a for j = 1, . . . , n0 − 1.

For notation convenience we also set

dR,a`,j :=

∫
Ω
vj,R,av̂`,R,a dx

‖v̂`,R,a‖2L2(Ω,C)

.

From (60), Lemmas 5.8 and 6.2, and an induction argument, il follows that

(122) ‖v̂j,R,a‖2L2(Ω,C) = 1 +O(|a|3−2δ) and dR,a`,j = O(|a|3−2δ) for ` 6= j

as |a| → 0+. Furthermore, from (60), (82), and (119) we deduce that

(123) ‖v̂n0,R,a‖2L2(Ω,C) = ‖vn0,R,a‖2L2(Ω,C) = 1 +O
(
|a|2H(ϕa,Kδ|a|)

)
as |a| → 0+,

and

(124) dR,an0,j
= O

(
|a| 52−δ

√
H(ϕa,Kδ|a|)

)
as |a| → 0+, for all j < n0.

From (16) and (110) it follows that

λ0 ≤ max
(α1,...,αn0

)∈Cn0∑n0
j=1 |αj |

2=1

∫
Ω

∣∣∣∣(i∇+A0)

( n0∑
j=1

αj ṽj,R,a

)∣∣∣∣2dx.
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Hence

(125) λ0 − λa ≤ max
(α1,...,αn0

)∈Cn0∑n0
j=1 |αj |

2=1

n0∑
j,n=1

ma,R
j,n αjαn,

where

ma,R
j,n =

∫
Ω

(i∇+A0)ṽj,R,a · (i∇+A0)ṽn,R,a dx− λaδjn,

with δjn = 1 if j = n and δjn = 0 if j 6= n. We will show that the quadratic form with coefficients ma,R
j,n

satisfies the assumptions of Lemma 6.1 with σ(a) = H(ϕa,Kδ|a|), µ(a) = fR(a) and α = 1
2 − δ.

To this aim, we first observe that integration of (86) over the interval (Kδ|a|, rδ) yields

(126) H(ϕa,Kδ|a|) ≥ Cδ|a|k+2δ, if |a| < rδ
Kδ

,

for some Cδ > 0 independent of a, thus yielding (94) if M is such that 1 + M
2 − (2 + M)δ > k + 2δ.

Estimate (67) implies that

(127) H(ϕa,Kδ|a|) = O(|a|1−2δ) as |a| → 0.

From (123), (115), (76), Theorem 5.9, and Lemma 6.3 we deduce that

ma,R
n0,n0

=
λa(1− ‖vn0,R,a‖2L2(Ω,C))

‖vn0,R,a‖2L2(Ω,C)

+

(∫
DR|a|

∣∣(i∇+A0)vintn0,R,a

∣∣2dx− ∫
DR|a|

∣∣(i∇+Aa)ϕa
∣∣2dx)

‖vn0,R,a‖2L2(Ω,C)

(128)

= H(ϕa,Kδ|a|)
(∫

DR

|(i∇+A0)ZRa |2 dx−
∫
DR

|(i∇+Ae)ϕ̃a|2 dx+ o(1)

)
,

as |a| → 0+, thus yielding (90). From [8, Theorem 1.1] (which ensures that λaj → λ0
j as |a| → 0), (122),

(59), (60), and Lemmas 5.8 and 6.2, we obtain that, if j < n0,

ma,R
j,j = −λa +

1

‖v̂j,R,a‖2L2(Ω,C)

(
λaj −

∫
DR|a|

∣∣(i∇+Aa)ϕaj
∣∣2 dx+

∫
DR|a|

∣∣(i∇+A0)vintj,R,a

∣∣2 dx)

+
1

‖v̂j,R,a‖2L2(Ω,C)

∫
Ω

∣∣∣∣(i∇+A0)
(∑
`>j

dR,a`,j v̂`,R,a

)∣∣∣∣2dx
− 2

‖v̂j,R,a‖2L2(Ω,C)

Re

(∫
Ω

(i∇+A0)vj,R,a · (i∇+A0)
(∑
`>j

dR,a`,j v̂`,R,a

)
dx

)
= (λ0

j − λ0) + o(1) as |a| → 0.

so that (91) is satisfied. From (122), (124), (59), (60), (80), Lemmas 5.8 and 6.2, and (117), it follows
that, for all j < n0,

‖v̂j,R,a‖L2(Ω,C)‖v̂n0,R,a‖L2(Ω,C)m
a,R
j,n0

=

∫
DR|a|

(
(i∇+A0)vintj,R,a · (i∇+A0)vintn0,R,a

− (i∇+Aa)ϕaj · (i∇+Aa)ϕa

)
dx

−
∫

Ω

(i∇+A0)
(∑
`>j

dR,a`,j v̂`,R,a

)
· (i∇+A0)vn0,R,a dx = O

(
|a| 12−δ

√
H(ϕa,Kδ|a|)

)
.

Hence, by (122) and (123), we have that

ma,R
j,n0

= O
(
|a| 12−δ

√
H(ϕa,Kδ|a|)

)
and ma,R

n0,j
= ma,R

j,n0
= O

(
|a| 12−δ

√
H(ϕa,Kδ|a|)

)
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as |a| → 0+, thus yielding (92). From (122), (59), (60), and Lemmas 5.8 and 6.2, we deduce that, for all
j, n < n0 with j 6= n,

‖v̂j,R,a‖L2(Ω,C)‖v̂n,R,a‖L2(Ω,C)m
a,R
j,n

=

∫
DR|a|

(
(i∇+A0)vintj,R,a · (i∇+A0)vintn,R,a − (i∇+Aa)ϕaj · (i∇+Aa)ϕan

)
dx

+

∫
Ω

(i∇+A0)
(∑
`>j

dR,a`,j v̂`,R,a
)
· (i∇+A0)

(∑
h>n

dR,ah,n v̂h,R,a
)
dx

−
∫

Ω

(i∇+A0)
(∑
`>j

dR,a`,j v̂`,R,a
)
· (i∇+A0)vn,R,a dx

−
∫

Ω

(i∇+A0)vj,R,a · (i∇+A0)
(∑
h>n

dR,ah,n v̂h,R,a
)
dx = O(|a|1−2δ) as |a| → 0.

Hence, in view of (122),

ma,R
j,n = O(|a|1−2δ) as |a| → 0,

so that also (93) is verified. Then we can apply Lemma 6.1 to deduce that

max
(α1,...,αn0 )∈Cn0∑n0

j=1 |αj |
2=1

n0∑
j,n=1

ma,R
j,n αjαn = H(ϕa,Kδ|a|)

(∫
DR

|(i∇+A0)ZRa |2 dx−
∫
DR

|(i∇+Ae)ϕ̃a|2 dx+ o(1)

)

as |a| → 0+, which, in view of (125), yields λ0−λa
H(ϕa,Kδ|a|) ≤ fR(a) with fR as in (121). We notice that, from

Theorem 5.9 and Lemma 6.3, for all R > R̃, fR(a) = O(1) as |a| → 0+. The proof is now complete. �

As a direct consequence of Lemma 6.4 the following corollary holds.

Corollary 6.5. There exists positive constants C∗, r∗ > 0 such that, for all a = (|a|, 0) ∈ Ω with |a| < r∗,

λ0 − λa ≤ C∗H(ϕa,Kδ|a|).

6.2. Lower bound for λ0−λa: the Rayleigh quotient for λa. Being R0 as in Lemma 5.2, for every
R > 2 and a = (|a|, 0) ∈ Ω with |a| < R0/R we define the functions wj,R,a as

wj,R,a =

{
wextj,R,a, in Ω \DR|a|,

wintj,R,a, in DR|a|,
j = 1, . . . , n0,

where wextj,R,a := e
i
2 (θa−θ0)ϕ0

j in Ω \DR|a|, with ϕ0
j as in (59)–(61) with a = 0, so that it solves{

(i∇+Aa)2wextj,R,a = λ0
jw

ext
j,R,a, in Ω \DR|a|,

wextj,R,a = e
i
2 (θa−θ0)ϕ0

j on ∂(Ω \DR|a|),

whereas wintj,R,a is the unique solution to the minimization problem∫
DR|a|

|(i∇+Aa)wintj,R,a(x)|2 dx = min
u∈H1,a(DR|a|,C)

u=e
i
2

(θa−θ0)ϕ0
j on ∂DR|a|

∫
DR|a|

|(i∇+Aa)u(x)|2 dx,

thus solving (i∇+Aa)2wintj,R,a = 0 in DR|a| with wintj,R,a = e
i
2 (θa−θ0)ϕ0

j on ∂DR|a|. It is easy to verify that

(129) dim
(

span{w1,R,a, . . . , wn0,R,a}
)

= n0.

As a direct consequence of [13, Theorem 1.3] (see also Proposition 2.1), there exists some K̃ > 0 such
that, for every R > 2, a = (|a|, 0) ∈ Ω with |a| < R0

R , and 1 ≤ j ≤ n0,∫
∂DR|a|

|ϕ0
j |2 ds ≤ K̃(R|a|)2,

∫
DR|a|

|(i∇+A0)ϕ0
j |2 dx ≤ K̃(R|a|),

∫
DR|a|

|ϕ0
j |2 dx ≤ K̃(R|a|)3.(130)

Arguing as in the proof of Lemma 6.2 (using estimates (130) instead of (67)–(69)) we obtain (up to

enlarging the constant K̃) that, for every R > 2, a = (|a|, 0) ∈ Ω with |a| < R0

R , and 1 ≤ j ≤ n0,∫
DR|a|

|(i∇+Aa)wintj,R,a|2 dx ≤ K̃(R|a|),(131) ∫
∂DR|a|

|wintj,R,a|2 ds ≤ K̃(R|a|)2,

∫
DR|a|

|wintj,R,a|2 dx ≤ K̃(R|a|)3.(132)
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For all R > 2 and a = (|a|, 0) ∈ Ω with |a| < R0

R , we define

URa (x) :=
wintn0,R,a

(|a|x)

|a|k/2
, Wa(x) :=

ϕ0(|a|x)

|a|k/2
.(133)

Under assumptions (6) and (33), from [13, Theorem 1.3 and Lemma 6.1] we have that

(134) Wa → βe
i
2 θ0ψk as |a| → 0

in H1,0(DR,C) for every R > 1, where ψk is defined in (8) and

(135) β := βk,2(0, ϕ0, λ0)

with βk,2(0, ϕ0, λ0) as in (30) and (34).
We also denote as wR the unique solution to the minimization problem∫
DR

|(i∇+Ae)wR(x)|2 dx = min

{∫
DR

|(i∇+Ae)u(x)|2 dx : u ∈ H1,e(DR,C), u = e
i
2 θeψk on ∂DR

}
,

which then solves

(136)

{
(i∇+Ae)2wR = 0, in DR,

wR = e
i
2 θeψk, on ∂DR.

By the Dirichlet principle and (134), we have that∫
DR

∣∣(i∇+Ae)(URa − βwR)
∣∣2 dx ≤ ∫

DR

∣∣∣(i∇+Ae)
(
ηR e

i
2 (θe−θ0)(Wa − βe

i
2 θ0ψk

)∣∣∣2 dx
≤ 2

∫
DR

|∇ηR|2
∣∣Wa − βe

i
2 θ0ψk

∣∣2dx+ 2

∫
DR\DR/2

η2
R

∣∣(i∇+A0)(Wa − βe
i
2 θ0ψk)

∣∣2dx = o(1)

as |a| → 0+, where ηR : R2 → R is a smooth cut-off function as in (14). Hence, for all R > 2,

(137) URa → βwR, in H1,e(DR,C),

as |a| → 0, where β is defined in (135).

Lemma 6.6. For every r > 1, wR → Ψk in H1,e(Dr,C) as R→ +∞.

Proof. Let r > 2. For every R > r, by the Dirichlet Principle, (46), and (47) we have that, letting ηR as
in (14), ∫

Dr

|(i∇+Ae)(wR −Ψk)(x)|2 dx ≤
∫
DR

|(i∇+Ae)(ηR(e
i
2 θeψk −Ψk))(x)|2 dx

≤ 2

∫
R2\DR/2

|(i∇+Ae)(e
i
2 θeψk −Ψk)|2 dx+

32

R2

∫
DR\DR/2

|e i2 θeψk −Ψk|2 dx = o(1)

as R→ +∞. �

Lemma 6.7. For a = (|a|, 0) ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) solve (19-20) and ϕ0 ∈ H1,0

0 (Ω,C) be a solution to

(4–5). If (3) and (6) hold and (33) is satisfied, then, for all R > R̃ and a = (|a|, 0) ∈ Ω, λ0−λa
|a|k ≥ gR(a)

where lim|a|→0 gR(a) = i|β|2κ̃R, with β as in (135) and

(138) κ̃R =

∫
∂DR

(
e−

i
2 θe(i∇+Ae)wR · ν − (i∇)ψk · ν

)
ψk ds

being ψk as in (8).

Proof. In (16) with j = n0 we choose F as the space of functions {w̃j,R,a} which result from {wj,R,a} by
a Gram–Schmidt process, that is

w̃j,R,a :=
ŵj,R,a

‖ŵj,R,a‖L2(Ω,C)
, j = 1, . . . , n0,

where ŵn0,R,a := wn0,R,a,

ŵj,R,a := wj,R,a −
n0∑

`=j+1

cR,a`,j ŵ`,R,a for j = 1, . . . , n0 − 1, cR,a`,j :=

∫
Ω
wj,R,aŵ`,R,a dx

‖ŵ`,R,a‖2L2(Ω,C)

.

From (60), (130), and (132) and an induction argument, it follows that

(139) ‖ŵj,R,a‖2L2(Ω,C) = 1 +O(|a|3) and cR,a`,j = O(|a|3) for ` 6= j

as |a| → 0+. Furthermore, from (60), (134), and (137) we deduce that

(140) ‖ŵn0,R,a‖2L2(Ω,C) = ‖wn0,R,a‖2L2(Ω,C) = 1 +O
(
|a|2+k)

)
as |a| → 0+,
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and

(141) cR,an0,j
= O

(
|a| 52 + k

2 )
)

as |a| → 0+, for all j < n0.

From (16) and (129) it follows that

λa ≤ max
(α1,...,αn0

)∈Cn0∑n0
j=1 |αj |

2=1

∫
Ω

∣∣∣∣(i∇+Aa)

( n0∑
j=1

αjw̃j,R,a

)∣∣∣∣2dx.
Hence

(142) λa − λ0 ≤ max
(α1,...,αn0 )∈Cn0∑n0

j=1 |αj |
2=1

n0∑
j,n=1

pa,Rj,n αjαn,

where pa,Rj,n =
∫

Ω
(i∇+Aa)w̃j,R,a·(i∇+Aa)w̃n,R,a dx−λ0δjn. By (133), (134), (137), (140), and integration

by parts we obtain that

pa,Rn0,n0
=
λ0(1− ‖wn0,R,a‖2L2(Ω,C))

‖wn0,R,a‖2L2(Ω,C)

+
|a|k
( ∫

DR
|(i∇+Ae)URa |2 dx−

∫
DR
|(i∇+A0)Wa|2 dx

)
‖wn0,R,a‖2L2(Ω,C)

= |a|k|β|2
(∫

DR

|(i∇+Ae)wR|2 dx−
∫
DR

|∇ψk|2 dx+ o(1)

)
= −i|a|k|β|2

(
κ̃R + o(1)

)
,

as |a| → 0, with κ̃R as in (138). From (130), (131), and (139), we have that, for all j < n0,

pa,Rj,j = −λ0 +
1

‖ŵj,R,a‖2L2(Ω,C)

(
λ0
j −

∫
DR|a|

∣∣(i∇+A0)ϕ0
j

∣∣2 dx+

∫
DR|a|

∣∣(i∇+Aa)wintj,R,a

∣∣2 dx)

+
1

‖ŵj,R,a‖2L2(Ω,C)

∫
Ω

∣∣∣∣(i∇+Aa)
(∑
`>j

cR,a`,j ŵ`,R,a

)∣∣∣∣2dx
− 2

‖ŵj,R,a‖2L2(Ω,C)

Re

(∫
Ω

(i∇+Aa)wj,R,a · (i∇+Aa)
(∑
`>j

cR,a`,j ŵ`,R,a

)
dx

)
= (λ0

j − λ0) + o(1) as |a| → 0.

From (130), (131), (134), (137), and (141) it follows that, for all j < n0,

‖ŵj,R,a‖L2(Ω,C)‖ŵn0,R,a‖L2(Ω,C)p
a,R
j,n0

=

∫
DR|a|

(
(i∇+Aa)wintj,R,a · (i∇+Aa)wintn0,R,a

− (i∇+A0)ϕ0
j · (i∇+A0)ϕ0

)
dx

−
∫

Ω

(i∇+Aa)
(∑
`>j

cR,a`,j ŵ`,R,a

)
· (i∇+Aa)wn0,R,a dx = O

(
|a|

k+1
2

)
as |a| → 0,

and hence, in view of (139) and (140),

pa,Rj,n0
= pa,Rn0,j

= O
(
|a|

k+1
2

)
as |a| → 0.

In a similar way, we have that, for all j, n < n0 with j 6= n, pa,Rj,n = O(|a|) as |a| → 0.

Then the quadratic form with coefficients pa,Rj,n satisfies the assumptions of Lemma 6.1 with σ(a) = |a|k

and α = 1
2 . Then Lemma 6.1 implies that

max
(α1,...,αn0 )∈Cn0∑n0

j=1 |αj |
2=1

n0∑
j,n=1

pa,Rj,n αjαn = |a|k
(
− i|β|2κ̃R + o(1)

)
, as |a| → 0,

which, in view of (142), yields λ0−λa
|a|k ≥ gR(a) where lim|a|→0 gR(a) = i|β|2κ̃R. The proof is thereby

complete. �

Lemma 6.8. Let κ̃R be as in (138). Then limR→+∞ κ̃R = 4imk, with mk as in (10).

Proof. We claim that

(143) κ̃R = ik
√
π(
√
π − ξ(1)) + o(1), as R→ +∞,

where

(144) ξ(r) :=

∫ 2π

0

e
i
2 (θ0−θe)(r cos t,r sin t)Ψk(r cos t, r sin t)ψk,2(t) dt, r ≥ 1.
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To prove claim (143), we note that, according to (36) and (37), the function υR defined as

υR(r) :=

∫ 2π

0

wR(r(cos t, sin t))e−
i
2 θe(r cos t,r sin t)ei

t
2ψk,2(t) dt, r ∈ [1, R],

satisfies, for some cR ∈ C,
(
r−k/2υR(r)

)′
= cR

r1+k in (1, R). Integrating the previous equation over (1, r)
we obtain

(145) r−k/2υR(r)− υR(1) =
cR
k

(
1− 1

rk

)
, for all r ∈ (1, R].

We notice that, in view of (25) and (8),

(146) ψk(r cos t, r sin t) =
√
πrk/2e−

i
2 tψk,2(t), for all t ∈ (0, 2π) and r > 0.

Since (136) and (146) imply that υR(R) =
√
πRk/2, from (145) we deduce that cR = k Rk

Rk−1
(
√
π−υR(1))

and then

υR(r) = rk/2υR(1) + rk/2
Rk(
√
π − υR(1))

Rk − 1

(
1− 1

rk

)
= rk/2

Rk
√
π − υR(1)

Rk − 1
− r−k/2R

k(
√
π − υR(1))

Rk − 1
,

for all r ∈ (1, R]. By differentiation of the previous identity, we obtain that

(147) υ′R(R) =
k

2

R
k
2−1

Rk − 1

(
(Rk + 1)

√
π − 2υR(1)

)
.

On the other hand, writing υR as υR(r) = 1
r

∫
∂Dr

wR(x)e−
i
2 (θe−θ0)(x) ψk,2(θ0(x)) ds(x), differentiating

and using (146), we obtain that

(148) υ′R(r) = − i√
π
r−1− k2

∫
∂Dr

e−
i
2 θe(i∇+Ae)wR · ν ψk ds.

Combination of (147) and (148) yields

(149)

∫
∂DR

e−
i
2 θe(i∇+Ae)wR · ν ψk ds =

ik
√
π

2

Rk

Rk − 1

(
(Rk + 1)

√
π − 2υR(1)

)
.

Moreover, (8) directly gives

(150)

∫
∂DR

(i∇)ψk · νψk ds =
k

2
iRkπ.

From (149), (150), and (138), it follows that

κ̃R =
ik
√
π

2

Rk

Rk − 1

(
(Rk + 1)

√
π − 2υR(1)

)
− k

2
iRkπ

=
ik
√
π

2

Rk

Rk − 1

(√
πRk +

√
π − 2υR(1)−

√
π(Rk − 1)

)
=

ik
√
πRk

2(Rk − 1)

(
2
√
π − 2υR(1)

)
=
ik
√
πRk

Rk − 1

(√
π − υR(1)

)
.

Since Lemma 6.6 and (144) imply that limR→+∞ υR(1) = ξ(1), we obtain claim (143). The conclusion
follows by combining (143) and the identity

(151)
√
π − ξ(1) =

4

k
√
π
mk,

which results from Lemma 4.4. �

Combining Lemma 6.7 and Lemma 6.8 we deduce the following result.

Proposition 6.9. For a = (|a|, 0) ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) solve (19-20) and ϕ0 ∈ H1,0

0 (Ω,C) be a
solution to (4–5). If (3) and (6) hold and (33) is satisfied, then

lim inf
|a|→0

λ0 − λa
|a|k

≥ −4|β|2mk > 0

with β as in (135) and mk as in (10-11).

Remark 6.10. As a consequence of Proposition 6.9, we have that, if a ∈ Ω approaches 0 along the
half-line tangent to a nodal line of eigenfunctions associated to the simple eigenvalue λ0, then λa < λ0.

Combining Corollary 6.5 with Proposition 6.9 we obtain the following upper/lower estimates for λ0−λa.
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Proposition 6.11. For a = (|a|, 0) = |a|e ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) solve (19-20) and ϕ0 ∈ H1,0

0 (Ω,C)
be a solution to (4–5). Let (3), (6), and (33) hold. Then there exists a positive constant C∗ > 0 such
that

−4|β|2mk |a|k(1 + o(1)) ≤ λ0 − λa ≤ C∗H(ϕa,Kδ|a|), as |a| → 0,

with β as in (135) and mk < 0 as in (10-11).

7. Energy estimates

To obtain our main result, we aim at proving that the difference of the eigenvalues λ0−λa is estimated
even from above by the rate |a|k, i.e. we have to determine the exact asymptotic behavior of the

normalization term in (76), i.e. of
√
H(ϕa,Kδ|a|). To this purpose, in this section we obtain some

preliminary energy estimates of the difference between approximating and limit eigenfunctions after
blow-up, based on the invertibility of the differential of the function F defined below.

Throughout this section, we will treat the space H1,0
0 (Ω,C) defined in §1 as a real Hilbert space

endowed with the scalar product

(u, v)H1,0
0,R(Ω,C) = Re

(∫
Ω

(i∇+A0)u · (i∇+A0)v dx

)
,

which induces on H1,0
0 (Ω,C) the norm

‖u‖H1,0
0 (Ω,C) =

(∫
Ω

∣∣(i∇+A0)u
∣∣2dx)1/2

which is equivalent to the norm (1) (see Lemma 3.1). To emphasize the fact that here H1,0
0 (Ω,C) is

meant as a vector space over R we denote it as H1,0
0,R(Ω,C). We will denote as (H1,0

0,R(Ω,C))? the real dual

space of H1,0
0,R(Ω,C).

Let us consider the function

F : C×H1,0
0,R(Ω,C) −→ R× R× (H1,0

0,R(Ω,C))?(152)

(λ, ϕ) 7−→
(
‖ϕ‖2

H1,0
0 (Ω,C)

− λ0, Im
( ∫

Ω
ϕϕ0 dx

)
, (i∇+A0)2ϕ− λϕ

)
,

where (i∇+A0)2ϕ− λϕ ∈ (H1,0
0,R(Ω,C))? acts as

(H1,0
0,R(Ω,C))?

〈
(i∇+A0)2ϕ− λϕ, u

〉
H1,0

0,R(Ω,C)
= Re

(∫
Ω

(i∇+A0)ϕ · (i∇+A0)u dx−λ
∫

Ω
ϕudx

)
for all ϕ ∈ H1,0

0,R(Ω,C). In (152) C is also meant as a vector space over R. From (4) and (5) it follows

that F (λ0, ϕ0) = (0, 0, 0).

Lemma 7.1. Under assumptions (3), (4) and (5), the function F defined in (152) is Fréchet-differentiable

at (λ0, ϕ0) and its Fréchet-differential dF (λ0, ϕ0) ∈ L
(
C×H1,0

0,R(Ω,C),R×R×(H1,0
0,R(Ω,C))?

)
is invertible.

Proof. By direct calculations it is easy to verify that F is Fréchet-differentiable at (λ0, ϕ0) and

dF (λ0, ϕ0)(λ, ϕ) =

(
2Re

(∫
Ω

(i∇+A0)ϕ0 · (i∇+A0)ϕdx
)
, Im

(∫
Ω
ϕϕ0 dx

)
, (i∇+A0)2ϕ−λ0ϕ−λϕ0

)
for every (λ, ϕ) ∈ C×H1,0

0,R(Ω,C).

It remains to prove that dF (λ0, ϕ0) : C ×H1,0
0,R(Ω,C) → R × R × (H1,0

0,R(Ω),C)? is invertible. To this

aim, by exploiting the compactness of the map T : H1,0
0,R(Ω,C) → (H1,0

0,R(Ω,C))?, u 7→ λ0u, it is easy

to prove that, if R : (H1,0
0,R(Ω,C))? → H1,0

0,R(Ω,C) is the Riesz isomorphism and I denotes the standard

identification of R × R onto C, then the operator (I × R) ◦ dF (λ0, ϕ0) ∈ L(C ×H1,0
0,R(Ω)) is a compact

perturbation of the identity. Indeed, since by definition

(H1,0
0,R(Ω))?

〈
(i∇+A0)2ϕ, u

〉
H1,0

0,R(Ω)
= Re

(∫
Ω

(i∇+A0)ϕ · (i∇+A0)u dx

)
=
(
ϕ, u

)
H1,0

0,R(Ω,C)
,

we have that R
(
(i∇ + A0)2ϕ − λ0ϕ − λϕ0

)
= ϕ − R(λ0ϕ) − R(λϕ0), being R(λ0ϕ) the image of ϕ

by a compact operator (composition of the Riesz isomorphism and the compact operator T ), as well as
R(λϕ0). Therefore, from the Fredholm alternative, dF (λ0, ϕ0) is invertible if and only if it is injective.

So, to conclude the proof, it is enough to prove that ker(dF (λ0, ϕ0)) = {0, 0}. Let (λ, ϕ) ∈ C×H1,0
0,R(Ω,C)

be such that

(153) Re
(∫

Ω
(i∇+A0)ϕ0 · (i∇+A0)ϕdx

)
= 0, Im

(∫
Ω
ϕϕ0 dx

)
= 0, (i∇+A0)2ϕ−λ0ϕ−λϕ0 = 0.
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The last equation in (153) means that Re
(∫

Ω

(
(i∇+A0)ϕ · (i∇+A0)u− λ0ϕu− λϕ0u

)
dx
)

= 0, for all

u ∈ H1,0
0,R(Ω,C). Plugging u = ϕ0 and u = iϕ0 into the previous identity and recalling (4) and (5), we

obtain Reλ = 0 and Imλ = 0, respectively. Then the last equation in (153) becomes (i∇+A0)2ϕ−λ0ϕ = 0

in (H1,0
0,R(Ω,C))?, which, by assumption (3), implies that ϕ = (α+ iβ)ϕ0 for some α, β ∈ R. The first and

the second equation in (153) imply α = 0 and β = 0, respectively, so that ϕ = 0. Then we conclude that

the only element in the kernel of dF (λ0, ϕ0) is (0, 0) ∈ C×H1,0
0,R(Ω,C). �

Theorem 7.2. For every R > 2 and a = (|a|, 0) ∈ Ω with |a| < R0/R and R0 being as in Lemma 5.2,

let ϕa ∈ H1,a
0 (Ω,C) solve (19-20), ϕ0 ∈ H1,0

0 (Ω,C) be a solution to (4–5) satisfying (3), (6), and (33),

and vn0,R,a be as in §6.1 (see also (107) and (108)). Then ‖vn0,R,a−ϕ0‖H1,0
0 (Ω,C) = O

(√
H(ϕa,Kδ|a|)

)
as |a| → 0+ for every R > 2, with Kδ as in Lemma 5.7 for some fixed δ ∈ (0, 1/4).

Proof. Let R > 2. We first notice that vn0,R,a → ϕ0 in H1,0
0 (Ω,C) as |a| → 0+. Indeed, recalling

definitions (76), (115) and (133), we have that∫
Ω

∣∣(i∇+A0)(vn0,R,a − ϕ0)
∣∣2 dx =

∫
Ω

|e i2 (θ0−θa)(i∇+Aa)ϕa − (i∇+A0)ϕ0|2 dx

+H(ϕa,Kδ|a|)
∫
DR

∣∣∣(i∇+A0)
(
ZRa −

|a|k/2√
H(ϕa,Kδ|a|)

Wa

)∣∣∣2 dx
−H(ϕa,Kδ|a|)

∫
DR

∣∣∣e i2 (θ0−θe)(i∇+Ae)ϕ̃a − |a|k/2√
H(ϕa,Kδ|a|)

(i∇+A0)Wa

)∣∣∣2 dx.
Estimate (127) implies that H(ϕa,Kδ|a|) = o(1) whereas Proposition 6.11 yields |a|k/2√

H(ϕa,Kδ|a|)
= O(1)

as |a| → 0+. Then Theorem 5.9, Lemma 6.3, (134), and (23) imply that vn0,R,a → ϕ0 in H1,0
0 (Ω,C) as

|a| → 0+. Therefore, from Lemma 7.1, we have that

(154) F (λa, vn0,R,a) = dF (λ0, ϕ0)(λa − λ0, vn0,R,a − ϕ0) + o
(
|λa − λ0|+ ‖vn0,R,a − ϕ0‖H1,0

0 (Ω,C)

)
as |a| → 0+. In view of Lemma 7.1, the operator dF (λ0, ϕ0) is invertible (and its inverse is continuous
by the Open Mapping Theorem), then (154) implies that

|λa − λ0|+ ‖vn0,R,a − ϕ0‖H1,0
0 (Ω,C)

≤ ‖(dF (λ0, ϕ0))−1‖L(R×R×(H1,0
0,R(Ω,C))?,C×H1,0

0,R(Ω,C))‖F (λa, vn0,R,a)‖R×R×(H1,0
0,R(Ω))?(1 + o(1))

as |a| → 0+. In order to prove the theorem, it remains to estimate the norm of

F (λa, vn0,R,a) = (αa, βa, wa)(155)

=
(
‖vn0,R,a‖2H1,0

0 (Ω,C)
− λ0, Im

(∫
Ω
vn0,R,aϕ0 dx

)
, (i∇+A0)2vn0,R,a − λavn0,R,a

)
in R × R × (H1,0

0,R(Ω))?. As far as αa is concerned, arguing as in (128), we have that, in view of (76),

(115), Theorem 5.9, Lemma 6.3, and Proposition 6.11,

αa =

(∫
DR|a|

|(i∇+A0)vintn0,R,a|
2 dx−

∫
DR|a|

|(i∇+Aa)ϕa|2 dx

)
+ (λa − λ0)

= H(ϕa,Kδ|a|)
(∫

DR

|(i∇+A0)ZRa |2 dx−
∫
DR

|(i∇+Ae)ϕ̃a|2 dx
)

+ (λa − λ0) = O(H(ϕa,Kδ|a|))

as |a| → 0+. As far as βa is concerned, by Theorem 5.9, Lemma 6.3, (134), and the normalization
condition (20) required on ϕa, we have that

βa = Im

(∫
DR|a|

vintn0,R,aϕ0 dx−
∫
DR|a|

e
i
2 (θ0−θa)ϕaϕ0 dx+

∫
Ω

e
i
2 (θ0−θa)ϕaϕ0 dx

)

=
√
H(ϕa,Kδ|a|)|a|

k
2 +2 Im

(∫
DR

ZRa Wa dx−
∫
DR

e
i
2 (θ0−θe)ϕ̃aWa dx

)
= o
(√

H(ϕa,Kδ|a|)
)
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as |a| → 0+. Let η|a|R be a cut-off function as in (14). Then, for every ϕ ∈ H1,0
0 (Ω,C) we have that

η|a|Re
i
2 (θa−θ0)ϕ ∈ H1,a

0 (Ω,C). Hence testing (19) with η|a|Re
i
2 (θa−θ0)ϕ we obtain that∫

Ω\DR|a|
e
i
2 (θ0−θa)(i∇+Aa)ϕa · (i∇+A0)ϕdx− λa

∫
Ω\DR|a|

e
i
2 (θ0−θa)ϕaϕdx

= −
∫
DR|a|

(i∇+Aa)ϕa · (i∇+A0)ϕη|a|Re
i
2 (θ0−θa) dx− i

∫
DR|a|

(i∇+Aa)ϕa · ∇η|a|Rϕe
i
2 (θ0−θa) dx

+ λa

∫
DR|a|

ϕaη|a|Re
i
2 (θ0−θa)ϕdx

and hence, by Hölder inequality and (17),∣∣∣∣ ∫
Ω\DR|a|

e
i
2 (θ0−θa)(i∇+Aa)ϕa · (i∇+A0)ϕdx− λa

∫
Ω\DR|a|

e
i
2 (θ0−θa)ϕaϕdx

∣∣∣∣(156)

≤

(
9

(∫
DR|a|

|(i∇+Aa)ϕa|2 dx
)1/2

+ 2λa|a|R
(∫

DR|a|

|ϕa|2 dx
)1/2)

‖ϕ‖H1,0
0 (Ω,C).

By Hölder inequality and (17), we also have that∣∣∣∣ ∫
DR|a|

(i∇+A0)vintn0,R,a · (i∇+A0)ϕdx− λa
∫
DR|a|

vintn0,R,aϕdx

∣∣∣∣(157)

≤
(∫

DR|a|

|(i∇+A0)vintn0,R,a|
2 dx

)1/2
(1 + 4λa|a|2R2)‖ϕ‖H1,0

0 (Ω,C).

From (156), (157), (80), (82), and (117) it follows that

‖wa‖(H1,0
0,R(Ω,C))? = sup

ϕ∈H1,0
0 (Ω,C)

‖ϕ‖
H

1,0
0 (Ω,C)

=1

∣∣∣∣Re

(∫
Ω

(i∇+A0)vn0,R,a · (i∇+A0)ϕdx− λa
∫

Ω

vn0,R,aϕdx

) ∣∣∣∣
= O

(√
H(ϕa,Kδ|a|)

)
, as |a| → 0+.

The proof is thereby complete. �

As a consequence of Theorem 7.2, we obtain the following uniform energy estimate.

Theorem 7.3. For a = (|a|, 0) ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) solve (19-20), ϕ0 ∈ H1,0

0 (Ω,C) be a solution to
(4–5) satisfying (3), (6), and (33), ϕ̃a be as in (76) and Wa as in (133). Then, for every R > 2,

(158)

∫(
1
|a|Ω
)
\DR

∣∣∣∣(i∇+Ae)
(
ϕ̃a(x)− e i2 (θe−θ0) |a|k/2√

H(ϕa,Kδ|a|)
Wa

)∣∣∣∣2dx = O(1), as |a| → 0+.

Proof. The proof follows directly from scaling and Theorem 7.2. �

8. Blow-up analysis

In this section we study the limit of the blow-up sequence introduced in (76).

Theorem 8.1. For a = (|a|, 0) ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) solve (19-20) and ϕ0 ∈ H1,0

0 (Ω,C) be a solution
to (4–5) satisfying (3), (6), and (33). Let ϕ̃a and Kδ be as in (76), βk,2(0, ϕ0, λ0) as in (34), and Ψk be
the function defined in (43). Then

(159) lim
|a|→0+

|a|k/2√
H(ϕa,Kδ|a|)

=
1

|βk,2(0, ϕ0, λ0)|

√
Kδ∫

∂DKδ
|Ψk|2ds

and

(160) ϕ̃a →
βk,2(0, ϕ0, λ0)

|βk,2(0, ϕ0, λ0)|

√
Kδ∫

∂DKδ
|Ψk|2ds

Ψk as |a| → 0+,

in H1,e(DR,C) for every R > 1, almost everywhere and in C2
loc(R2 \ {e},C).

Proof. From Theorem 5.9 we know that the family of functions
{
ϕ̃a : a = |a|e, |a| < rδ

R

}
is bounded in

H1,e(DR,C) for all R ≥ Kδ. Furthermore, from Proposition 6.11, |a|k/2√
H(ϕa,Kδ|a|)

= O(1) as |a| → 0+. It
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follows that, for every sequence an = (|an|, 0) = |an|e with |an| → 0, by a diagonal process there exist

c ∈ [0,+∞), Φ̃ ∈ H1,e
loc (R2,C), and a subsequence an` such that

lim
`→+∞

|an` |k/2√
H(ϕan` ,Kδ|an` |)

= c and ϕ̃an` ⇀ Φ̃ weakly in H1,e(DR,C)

for every R > 1 and almost everywhere. We notice that Φ̃ 6≡ 0 since

(161)
1

Kδ

∫
∂DKδ

|Φ̃|2 ds = 1

thanks to (78) and the compactness of the trace embedding H1,e(DKδ ,C) ↪→ L2(∂DKδ ,C).
Multiplying (77) by η ∈ C∞c (R2 \ {e},C) and integrating by parts, we have that, if |a| is sufficiently

small so that supp η ⊂ 1
|a|Ω,∫

R2

(i∇+Ae)ϕ̃a · (i∇+Ae)η dx = λa|a|2
∫
R2

ϕ̃aη dx.

Along a = an` with `→∞, the left hand side converges to
∫
R2(i∇+ Ae)Φ̃ · (i∇+Ae)η dx via the weak

H1,e(DR,C)-convergence, where R > 1 is such that supp η ⊂ DR, whereas, in view of (79), the right
hand side can be estimated as∣∣∣∣λan` |an` |2 ∫

R2

ϕ̃an` η dx

∣∣∣∣ ≤ λan` |an` |2‖ϕ̃an` ‖H1,e(DR,C)‖η‖L2(R2,C) = O(|an` |2) as `→∞,

thus proving that Φ̃ weakly solves

(162) (i∇+Ae)2Φ̃ = 0, in R2.

We now claim that the convergence of the subsequence ϕ̃an` to Φ̃ is actually strong in H1,e(DR,C) for

every R > 1. By classical elliptic estimates, we can easily prove that ϕ̃anl → Φ̃ in C2,α(DR2
\ DR1

,C)

for every 1 < R1 < R2. Therefore, multiplying by Φ̃ equation (162) and integrating by parts in DR for
R > 1, we obtain

(163) − i
∫
∂DR

(
(i∇+Ae)ϕ̃an` · ν

)
ϕan` ds→ −i

∫
∂DR

(
(i∇+Ae)Φ̃ · ν

)
Φ̃ ds =

∫
DR

|(i∇+Ae)Φ̃|2dx

as ` → ∞. On the other hand, multiplying equation (77) by ϕ̃an` with ` large and integrating by parts
in DR for R > 1, we obtain

(164)

∫
DR

|(i∇+Ae)ϕ̃an` |
2dx = λan` |an` |

2

∫
DR

|ϕ̃an` |
2dx− i

∫
∂DR

(
(i∇+Ae)ϕ̃an` · ν

)
ϕ̃an` ds.

From (163) and (164), we obtain that
∫
DR
|(i∇+Ae)ϕ̃an` |

2dx→
∫
DR
|(i∇+Ae)Φ̃|2dx as `→∞, whereas

the compactness of the trace embedding H1,e(DR,C) ↪→ L2(∂DR,C) yields
∫
∂DR
|ϕ̃an` |

2ds→
∫
∂DR
|Φ̃|2ds

as ` → ∞, so that, in view of Lemma 3.1, we can conclude that ‖ϕ̃an`‖H1,e(DR,C) → ‖Φ̃‖H1,e(DR,C) as

`→∞, and hence ϕ̃an` → Φ̃ strongly in H1,e(DR,C) for every R > 1 as desired.

Passing to the limit along an` in (158) and recalling (134), we obtain that

(165)

∫
R2

∣∣∣∣(i∇+Ae)
(

Φ̃(x)− cβe i2 θeψk
)∣∣∣∣2dx < +∞.

Estimate (165) implies that c > 0. Indeed, c = 0 would imply that
∫
R2 |(i∇+Ae)Φ̃|2dx < +∞ and then,

arguing as in the proof of Proposition 4.3, we could prove that Φ̃ ≡ 0, thus contradicting (161).

Then, from (162), (165), and Proposition 4.3 we deduce that necessarily Φ̃ = cβΨk with Ψk being
the function defined in (43). From (161) and the fact that c is a positive real number, it follows that

c = 1
|β|
(

Kδ∫
∂DKδ

|Ψk|2ds
)1/2

. Hence we have that ϕ̃an` →
β
|β|
(

Kδ∫
∂DKδ

|Ψk|2ds
)1/2

Ψk in H1,e(DR,C) for every

R > 1 and a. e., and
|an` |

k/2

√
H(ϕan`

,Kδ|an` |)
→ 1
|β|
(

Kδ∫
∂DKδ

|Ψk|2ds
)1/2

. Since the above limits depend neither

on the sequence {an}n nor on the subsequence {an`}`, we conclude that the above convergences hold as
|a| → 0+, thus concluding the proof of the theorem (the convergence in C2

loc(R2 \ {e},C) follows easily
from classical elliptic estimates). �

Theorem 8.2. For a = (|a|, 0) ∈ Ω, let ϕa ∈ H1,a
0 (Ω,C) solve (19-20) and ϕ0 ∈ H1,0

0 (Ω,C) be a solution
to (4–5) satisfying (3), (6), and (33). Then

ϕa(|a|x)

|a|k/2
→ βk,2(0, ϕ0, λ0)Ψk as |a| → 0+,
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in H1,e(DR,C) for every R > 1, a.e. and in C2
loc(R2 \ {e},C), with βk,2(0, ϕ0, λ0) 6= 0 as in (34) and Ψk

being the function defined in (43).

Proof. It follows directly from convergences (159) and (160) established in Theorem 8.1. �

As a consequence of Theorem 8.1, we can prove convergence of the blow-up family of functions intro-
duced in (115). Let zR be the unique solution to the minimization problem∫
DR

|(i∇+A0)zR(x)|2 dx = min

{∫
DR

|(i∇+A0)u(x)|2 dx : u ∈ H1,0(DR,C), u = e
i
2 (θ0−θe)Ψk on ∂DR

}
,

which then solves

(166)

{
(i∇+A0)2zR = 0, in DR,

zR = e
i
2 (θ0−θe)Ψk, on ∂DR.

Lemma 8.3. Under the same assumptions as in Theorem 8.1, let ZRa be as in (115). Then, for all
R > 2, ZRa → γδzR in H1,0(DR,C) as |a| → 0+, where

γδ =
βk,2(0, ϕ0, λ0)

|βk,2(0, ϕ0, λ0)|

√
Kδ∫

∂DKδ
|Ψk|2ds

.

Proof. We notice that ZRa − γδzR solves (i∇ + A0)2
(
ZRa − γδzR

)
= 0 in DR with boundary condition

ZRa − γδzR = e
i
2 (θ0−θe) (ϕ̃a − γδΨk) on ∂DR. Then, by the Dirichlet principle and Theorem 8.1,∫

DR

∣∣(i∇+A0)(ZRa − γδzR)
∣∣2 dx ≤ ∫

DR

∣∣∣(i∇+A0)
(
ηR e

i
2 (θ0−θe)(ϕ̃a − γδΨk)

)∣∣∣2 dx
≤ 2

∫
DR

|∇ηR|2
∣∣ϕ̃a − γδΨk

∣∣2dx+ 2

∫
DR\DR/2

η2
R

∣∣(i∇+Ae)(ϕ̃a − γδΨk)
∣∣2dx = o(1)

as |a| → 0+, where ηR : R2 → R is a smooth cut-off function as in (14). Then, taking into account (17),
we conclude. �

9. Sharp asymptotics for convergence of eigenvalues

In view of the exact asymptotics of the term H(ϕa,Kδ|a|) established in (159), Proposition 6.11 yields
a control of λ0 − λa with |a|k both from above and below. To compute explicitly the limit of λ0−λa

|a|k it

remains to determine the limit of the function fR(a) in Lemma 6.4 as |a| → 0 and R→ +∞.

Lemma 9.1. For all R > R̃ and a = (|a|, 0) ∈ Ω with |a| < R0

R , let fR(a) be as in Lemma 6.4. Then

(167) lim
|a|→0+

fR(a) = −i Kδ∫
∂DKδ

|Ψk|2ds
κR

where

(168) κR =

∫
∂DR

(
e−

i
2 θ0(i∇+A0)zR · ν − e−

i
2 θe(i∇+Ae)Ψk · ν

)
e
i
2 θeΨk ds.

Furthermore limR→+∞ κR = −4imk, where mk is defined in (10).

Proof. We first observe that, by Theorem 8.1, Lemma 8.3, (45), and (166),

lim
|a|→0+

∫
DR

|(i∇+A0)ZRa |2 dx−
∫
DR

|(i∇+Ae)ϕ̃a|2 dx

= Kδ∫
∂DKδ

|Ψk|2ds

(∫
DR

|(i∇+A0)zR|2 dx−
∫
DR

|(i∇+Ae)Ψ̃k|2 dx
)

= −iKδ∫
∂DKδ

|Ψk|2ds
κR

with κR as in (168). Hence (167) follows from (121). The computation of limR→+∞ κR is divided into
two steps.

Step 1. We claim that

(169) κR =

∫
∂DR

(
e−

i
2 θ0(i∇+A0)zR · ν − e−

i
2 θe(i∇+Ae)Ψk · ν

)
ψk ds+ o(1)

as R→∞. To prove the claim, we observe that

(170) κR =

∫
∂DR

(
e−

i
2 θ0(i∇+A0)zR · ν − e−

i
2 θe(i∇+Ae)Ψk · ν

)
ψk ds+ I1(R) + I2(R)
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where

I1(R) =

∫
∂DR

(
Ψk − e−

i
2 θeψk

)
(i∇+Ae)

(
e
i
2 θeψk −Ψk

)
· ν ds

I2(R) =

∫
∂DR

(
e−

i
2 (θ0−θe)Ψk − e−

i
2 θ0ψk

)
(i∇+A0)

(
zR − e

i
2 θ0ψk

)
· ν ds.

Testing the equation (i∇ + Ae)2
(
e
i
2 θeψk − Ψk

)
= 0, which is satisfied in R2 \ DR, with the function(

e
i
2 θeψk −Ψk

)
(1− η2R)2 (being η2R as in (14)), we obtain that

I1(R) = i

∫
R2\DR

(i∇+Ae)
(
e
i
2 θeψk −Ψk

)
· (i∇+Ae)

(
(1− η2R)2(e

i
2 θeψk −Ψk)

)
dx

= i

∫
R2\DR

|(i∇+Ae)
(
e
i
2 θeψk −Ψk

)
|2(1− η2R)2 dx

+ 2

∫
R2\DR

(1− η2R)(e−
i
2 θeψk −Ψk)(i∇+Ae)

(
e
i
2 θeψk −Ψk

)
· ∇η2R dx,

and hence, thanks to (46) and (47),

(171) |I1(R)| ≤ 2

∫
R2\DR

|(i∇+Ae)
(
e
i
2 θeψk −Ψk

)
|2 dx+

4

R2

∫
D2R\DR

|e i2 θeψk −Ψk|2 dx→ 0

as R→ +∞.
On the other hand, testing the equation (i∇ + A0)2(e

i
2 θ0ψk − zR) = 0 in DR with the function

ηR
(
e
i
2 (θ0−θe)Ψk − e

i
2 θ0ψk

)
(with ηR as in (14)) and using the Dirichlet Principle, we have that

|I2(R)| =
∣∣∣∣− i ∫

DR

(i∇+A0)(e
i
2 θ0ψk − zR) · (i∇+A0)

(
ηR
(
e
i
2 (θ0−θe)Ψk − e

i
2 θ0ψk

))
dx

∣∣∣∣
≤
∫
DR

∣∣∣(i∇+A0)
(
ηR
(
e
i
2 (θ0−θe)Ψk − e

i
2 θ0ψk

))∣∣∣2dx
≤ 2

∫
DR\DR

2

∣∣∣(i∇+Ae)
(

Ψk − e
i
2 θeψk

)∣∣∣2dx+
32

R2

∫
DR\DR

2

∣∣Ψk − e
i
2 θeψk

∣∣2 dx
which, in view of (46) and estimate (47), yields that I2(R) → 0 as R → +∞. Claim (169) then follows
recalling (170) and (171).

Step 2. We claim that

(172)

∫
∂DR

(
e−

i
2 θ0(i∇+A0)zR · ν − e−

i
2 θe(i∇+Ae)Ψk · ν

)
ψk ds = ik

√
π
(
ξ(1)−

√
π
)
,

where the function ξ is defined in (144). From (36) and (37), the function ξ satisfies
(
r−k/2ξ(r)

)′
=

Cξ
r1+k

in (1,+∞), for some Cξ ∈ C. Integrating the previous equation over (1, r) we obtain that

(173) r−k/2ξ(r)− ξ(1) =
Cξ
k

(
1− 1

rk

)
.

From (8) and estimate (47) it follows that

ξ(r) =
1√
π

∫ 2π

0

ψk(r cos t, r sin t) sin
(
k
2 t
)
dt

+

∫ 2π

0

e
i
2 (θ0−θe)(r cos t,r sin t)

(
Ψk(r cos t, r sin t)− e i2 θe(r cos t,r sin t)ψk(r cos t, r sin t)

)
ψk,2(t) dt

=
√
π rk/2 +O(r−1/2), as r → +∞,

and hence r−k/2ξ(r)→
√
π as r → +∞. Letting r → +∞ in (173), this implies that

Cξ
k =

√
π − ξ(1), so

that

(174) ξ(r) =
√
π rk/2 + r−k/2

(
ξ(1)−

√
π
)
, ξ′(r) =

k

2

√
πrk/2−1 + (

√
π − ξ(1))

k

2
r−k/2−1, r > 1.

In particular, from (174) we have that

(175)
√
π − ξ(1) =

√
πrk − rk/2ξ(r), for all r > 1,

whose substitution into (174) yields

(176) ξ′(r) = k
√
πrk/2−1 − k

2

ξ(r)

r
, for all r > 1.
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On the other hand, writing ξ as ξ(r) = 1
r

∫
∂Dr

e
i
2 (θ0−θe)Ψk(x)ψk,2(θ0(x)) ds(x), differentiating and taking

into account (25), (8) and the fact that A0 · ν = 0 on ∂Dr, we obtain also that

(177) ξ′(r) =
1

r

∫
∂Dr

∇
(
e
i
2 (θ0−θe)Ψk

)
· ν ψk,2(θ0(x)) ds = − i√

π
r−

k
2−1

∫
∂Dr

e−
i
2 θe(i∇+Ae)Ψk · ν ψk ds.

Combination of (176) and (177) yields that

(178)

∫
∂Dr

e−
i
2 θe(i∇+Ae)Ψk · ν ψk ds = i

√
πrk/2+1ξ′(r) = i

√
πrk/2+1

(
k
√
πrk/2−1 − k

2

ξ(r)

r

)
,

for all r > 1. According to (36) and (37), the function ζR defined as

ζR(r) :=

∫ 2π

0

zR(r cos t, r sin t)ψk,2(t) dt

satisfies, for some CR ∈ C,
(
r−k/2ζR(r)

)′
= CR

r1+k in (0, R). Integrating the previous equation over

(r,R) we obtain R−k/2ζR(R) − r−k/2ζR(r) = CR
k

(
1
rk
− 1

Rk

)
, for all r ∈ (0, R]. Since by Proposition 2.1

ζR(r) = O(r1/2) as r → 0+, we necessarily have CR = 0. Hence

(179) ζR(r) =
ζR(R)

Rk/2
rk/2, for all r ∈ (0, R], ζ ′R(r) =

k

2

ζR(R)

Rk/2
rk/2−1, for all r ∈ (0, R].

On the other hand, writing ζR as ζR(r) = 1
r

∫
∂Dr

zR(x)ψk,2(θ0(x)) ds(x), differentiating and using (25),

(8) and A0 · ν = 0 on ∂Dr, we obtain that

(180) ζ ′R(r) =
1

r

∫
∂Dr

∇zR · ν ψk,2(θ0(x)) ds = − i√
π
r−

k
2−1

∫
∂Dr

e−
i
2 θ0(i∇+A0)zR · ν ψk ds.

Combination of (179) and (180) yields that

(181)

∫
∂Dr

e−
i
2 θ0(i∇+A0)zR · ν ψk ds =

ik

2

√
π
ζR(R)

Rk/2
rk

for all r ∈ (0, R]. From the boundary condition in (166) it follows that ξ(R) = ζR(R). Hence, collecting
(178), (181), and (175) we obtain that∫
∂DR

(
e−

i
2 θ0(i∇+A0)zR ·ν − e−

i
2 θe(i∇+Ae)Ψk ·ν

)
ψk ds = ik

√
π
(
ξ(R)R

k
2 −
√
πRk

)
= ik
√
π
(
ξ(1)−

√
π
)
,

thus proving claim (172).
Combining (169) with (172) we obtain that κR = ik

√
π(ξ(1)−

√
π)+o(1) as R→ +∞. The conclusion

then follows recalling Lemma 4.4 (see also (151)). �

We are now in position to prove our main result.

Proof of Theorem 1.2. From Proposition 6.11, Lemma 6.4, Lemma 9.1, and (159) it follows that, for

every R > R̃,

−4|βk,2(0, ϕ0, λ0)|2mk ≤ lim inf
|a|→0+

λ0−λa
|a|k ≤ lim sup

|a|→0+

λ0−λa
|a|k ≤ −iκR|βk,2(0, ϕ0, λ0)|2.

Letting R→ +∞, Lemma 9.1 yields the conclusion (see Remark 2.2). �
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