We prove necessary conditions for a solution u to the problem of minimizing fΩ[f (∥∇v (x)∥) + g(x,v(x))]dx in the form of a Pontryagin maximum principle, for f convex and satisfying a growth assumption, but without assuming differentiability. © 2009 Society for Industrial and Applied Mathematics.

Cellina, A., Mazzola, M. (2009). Necessary conditions for solutions to variational problems. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 48, 2977-2983.

Necessary conditions for solutions to variational problems

CELLINA, ARRIGO;
2009

Abstract

We prove necessary conditions for a solution u to the problem of minimizing fΩ[f (∥∇v (x)∥) + g(x,v(x))]dx in the form of a Pontryagin maximum principle, for f convex and satisfying a growth assumption, but without assuming differentiability. © 2009 Society for Industrial and Applied Mathematics.
Articolo in rivista - Articolo scientifico
Equazione di Eulero Lagrange; non differenziabilita'
English
2009
48
2977
2983
open
Cellina, A., Mazzola, M. (2009). Necessary conditions for solutions to variational problems. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 48, 2977-2983.
File in questo prodotto:
File Dimensione Formato  
EL_SIAM.pdf

accesso aperto

Dimensione 108.39 kB
Formato Adobe PDF
108.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/8664
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact