NECESSARY CONDITIONS FOR SOLUTIONS TO VARIATIONAL
PROBLEMS
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Abstract. We prove necessary conditions for a solution u to the problem of minimizing

/[f(IIVU(w)H)+9($7v(w))]dw
Q

in the form of a Pontryagin Maximum Principle, for f convex and satisfying a growth assumption,
but without assuming differentiability.
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1. Introduction. This paper deals with the necessary conditions satisfied by a
solution u to the problem of minimizing

/Q (V0 @) +g @ o @)de on v+ WELQ)

where f is a convex function defined on " and g is a Carathéodory function, differ-
entiable with respect to v, and whose derivative g, is also a Carathéodory function.
The main point of the paper is that we do not assume further assumptions on f, with
the exception of a growth estimate. For functionals of the form

/Q F (Vo (2)) + g (2,0 ()] de

with F a convex function defined on RV, it has been conjectured in [2] that the
suitable form of the Euler-Lagrange equations satisfied by a solution u should be

Ip(-) € L*(Q), a selection from OF (Vu(-)), such that divp(-) = g, (-, u(-))

in the sense of distributions.
Equivalently, the condition can be expressed as

Ip(-) € LY(Q) = divp(-) = gu(-,u(-))
and, for a.e. = and every £ € RV, we have

(P, Vu(z)) = [F (Vu(z) + g (z,u(2))] = (p,§) = [F(§) + g (z,u(2))].

In this form, this condition is the equivalent of the Pontryagin Maximum Principle [4].
The purpose of the present paper is to prove this condition for the class of mappings
under consideration.
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2. Necessary conditions. For the properties of convex functions we refer to
[5] and, for those of Sobolev functions, to [1]. In what follows, B0, 1] denotes the
closed unit ball of RY. We set F(£) = f(||£]|) and OfF(t) = sup{\: A € df(t)}. We
consider mappings satisfying the following growth assumption.

Assumption A. The convex function f is such that there exist K and t( such that,
for t > tg,

aft(t) < Kf(t).

THEOREM 2.1.

Let Q be a bounded open subset of R™. Let f : R — R be symmetric, convex,
and satisfying the growth assumption A. Let g(-,-) and g,(-,-) be Carathéodory func-
tions and assume that for every U there exists y € Llloc such that |v] < U implies
lgu(z,v)] < &u(x). Let u be a locally bounded solution to the problem of minimizing

/Q Ve @) +g(@o @) on v+ WE Q).

Then there exists p € L' (), a selection from the map x — OF (Vu(z)), such that
div p() = gv (-, u("))

in the sense of distributions.

Notice that, although p has a weak divergence, there is no claim that it belongs
to WhHi(Q).

Proof.

By the assumption of convexity, f is not differentiable at most on a countable
set, possibly containing 0. Set kg = 0 and call 0 < k1 < ko < ... the other points of
non differentiability for f. Set

Ai =A{z: [Vu (@) | = ki}

Bi=A{z: ki <[[Vu(z) | <kitr}

for i = 0,...,00. We shall also set A = {z € A4;:(Vu,Vn) >0} and A; =
{x € A; : (Vu,Vn) < 0}. For n € C} (Q) and € > 0, we have

(2.1) 1{/ F (IVu+eVal) + g (u+en) — £ (9l —g(a:,u)]} > 0.

€
Fix one such 7; consider a compact set O containing supp(n); let D = sup(||Vnl|), U
be sup(Ju|) and H be sup(|n|) on O. Then

E (z, u(z) +en(z)) — g (x, u(z))

c ‘ < H£U+€H(x)

so that, by dominated convergence,

/ g (x,u(x) +en(z)) — g (z, u(z))
Q

3

dx — /ng (z,u(z)) n(x) dz.

Consider Ag. On Ay, as ¢ — 0, pointwise with respect to =, we have that

S (IVu+29nl) = £ (IVul) _ £ (IeVnl) = £ ©) .
! = L — 07+
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For i =0,...,00, on B; we obtain

FUNVu+eval) = FUAVED i <||§Z||’V”>;

e

and, on 4;,i=1,...,00, we have
fUVu+evnl) = f(IVul) - Vu
€ Vul

when (Vu, Vi) < 0, and

LR e = ST e s (T8 )

otherwise.
Moreover, we have

‘f IV +eVnl) - f(IIVUII)| _ |f(IIVUII +0(e, ) - f(IIVUII)‘ _ 10 2))|
£ 3 3

where |0(g,x)| < €D, and for some s(z) € 9f(&(x)), with £(x) in the interval of
extremes ||Vu(z)|| and |Vu(z)| + 6(e,z). Consider assumption A. Then, either
max{||Vu(z)|, ||Vu(z)| + 6(e,2)} < to+ D, and in this case s(z) < df*(to + D);
or, max{||Vu(x)|,||Vu(z)| + 0(e,z)} > to + D, ie. both |[|[Vu(z)| and &(z) are
> to, so that f(¢(x)) < f(IVu(@)[)e®*P < f(|[Vu(2)[)e"? and 0f*(¢(z)) <
Kf(|Vu(z)|)eXP. Hence

fIVu+evnl) = F(IVul)

| | < max{DAf* (to + D), DK f(||Vul)eX P},

an integrable function independent of e. By dominated convergence, from (2.1), we
obtain

[, o5 ”V”'”Z/ o1 ) [y 1) + o ) ¥

3 ' Vu
3 [ 7w (g vy + [ zo

The same considerations, when applied to the variation —n, yield

[, o8 @19 -3, V o1 ) (g ¥1) + [, 2 00 (g V>]
—i/B f’<||Vu||><H§ZH,Vn> - [tz =0

From these two inequalities we obtain
Vu
o~ () oe- )
> Ar IVull’

_/AO@ﬁ(OHW”— V ort (k <||V|
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gi/}g P 9ul) { o 9n) + [ (e < [ orrwien-

‘ZV ) {a ¥)+ / o8 ) (g ¥ >]

Adding the term Y2, [, 1[0fF (k) +0f~ (k)] <H§—gﬂ,vn> to all sides, we have
the estimate

- [ ort )19l - Z/ o+ () =01~ ] 1 { o 1)

< 2/3 719 g ¥) + > [ 5lorw+or w) (™)

i=17 4

+/gv(xau)77§
Q

kol 1 _ Vu
ACACIZIES o R R DR T
Set

X = {(v,w) et (Ao, R") x Lt (U, A, R):3n e C& () :v=0f"(0)Vn|a,,

Vu

wla, = [0f " (k) —Of ~ (ks)] <w,vn)|&,i = 1...,00}.

Define the map T : X — R as follows:

(23 T (0, ) = i/B 7 vl ()

—Z | o1+ () + 08~ W)l V1) = | oo ()
||v I o

We claim that T is well defined and that it is a continuous linear functional on
X.

In fact, consider (v,w) in X, and assume that there exist 7; and 7 such that
v=0f*(0)Vinla, = f* (0) Vipz| 4, and

Vu Vu

wla, = [0fF (ki) — 0f~ (ki )](Hv & V)|, = [0 (ki) — 0f~ (ks )]<”v T » V)|,
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From (2.2) we have

> y Vu
I—;/Bif <||Vu||><”w||,wl —Vn2>

—Z 5 [ 1 )+ 01 Gl ¥ = 9 = [ g m -l <

> 1 _ Vu
[ o O 1on-vul+ 3 [ 307 k-0 Gl {a Vm -~ V)1 =0

so that T is well defined. It is clearly linear and, from

1
)< [ o4y [ ol Yewex,
Ao 2 UA

i

it is bounded. Hence, by the Hahn-Banach theorem, there exists L, a continuous
linear functional on L' (Ag, R") x L' (U2, A;, R), such that L|x = T and

1
L@l [ o5 [ ol low) e L (AR x LU 4 %).
Ag UA

Let us define L* : L (4p, R") — R, setting
L* (v) = L (v,0)
and L** : L' (U2, Ai, R) — R, setting
L* (w) = L (0, w).

We have that

@< [ ol voe Lt (4o R)
Ao

and
ok 1 1 ~
|L (w)|§§/m A1|w| Vw € L <U1Ai’%>7
i=1""" 1=

so that |[L*|| <1 and [|[L**|| < 3.
By Riesz’s Theorem, there exists o € L (Ag, R™), supess||a| < 1, such that, for
every v € L' (Ag, R"),

L (v) = /A (a0, v)

and there exists § € L™ (U2, A;,R), with |5] < % a.e., such that, for every w €
LY (U, A ),
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L™ (w) = Un Sw.

Hence, we can conclude that, for n € C} (), we have

7 (01 0) Va0 ) - 0~ ()] (7. V) 1 0, )
=1 (0% O Valaw. 05 () - 0~ (] (7o ¥1) Iy,
= L(07 0)Valay0) + L (0,005 () = 07~ (8] { o V) .0 )

=1 (05" 0)Vala) + £ (07 (8) - 07 (Bl ey o,

Vu

= [ st (0) (o, Vi) + / 501" (k) = 0~ ()l

Ao

vn).
Equating the definition (2.3) to the equality above, we obtain

af* (0) {a, V)

Ao

>

i=17 A

5107400 + 05 ~(k + 8101 (k) — 0701 | (g ¥)

*2/3 POl (o ) + [ g =o.

Since

8f+<> [0,1] for £ =0
OF(¢) = { {bygg :0f~ (k) Sb < Of T (ki)}  for ||| = ki
(”5”)i otherwise

from the properties of a and 3 we have that the map

p(z) = 0f T (0)a(w)xa, () +

(Lo ~(k: 2)oft Vu(z) z
+3 [51077 (6 + 05~ ()] + B0 (k) = 0 (]| [ g (o)

=1
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Vu(x)

X ()

+ ) P IVu@) ) 57
; [|Vu(z

is a selection from JF(Vu(z)) and

/Q [(p(a), V(@) + go (s wn(e)] dr = 0

for every n € C1(Q). Moreover, from our assumptions on g and the local boundedness
of u, we have that f(||Vu(-)||) € L*(£2); then, from assumption A, we obtain that every
selection from Of(||Vu(-)||) is integrable, thus proving the Theorem. O

EXAMPLE 1. In R?, let g(x,u) = u and

V2lel o forll€ll < V2

(2.4) F(&§) = f(ligl) = { 1+%||£“2 for ||€] > 2

We have that OF(0) = v/2B[0,1]. Then, as described in [3],

0 or L=y 2
(2.5) u@) = { (Lely2 jzor IE] ; \\g

is a solution to the minimization problem, among those functions satisfying the same
values as u on 0N). We have

B 0 for llzll V2

Hence,

V2B[0,1 or 1zl < /2
27) OF (Vul()) = { VFE(Vu(zx)) [Vu](z) =1z jzor @ i V2o

Then, although the function Vu(x) is discontinuous, the vector function

p(x) = sz

is an everywhere smooth selection from the map x — OF (Vu(x)) and has everywhere
divergence equal 1.
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