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NECESSARY CONDITIONS FOR SOLUTIONS TO VARIATIONAL

PROBLEMS

A. CELLINA AND M.MAZZOLA†

Abstract. We prove necessary conditions for a solution u to the problem of minimizing
∫

Ω

[f (‖∇v (x) ‖) + g (x, v (x))] dx

in the form of a Pontryagin Maximum Principle, for f convex and satisfying a growth assumption,
but without assuming differentiability.
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1. Introduction. This paper deals with the necessary conditions satisfied by a
solution u to the problem of minimizing

∫

Ω

[f (‖∇v (x) ‖) + g (x, v (x))] dx on v0 + W
1,1
0 (Ω)

where f is a convex function defined on ℜ+ and g is a Carathéodory function, differ-
entiable with respect to v, and whose derivative gv is also a Carathéodory function.
The main point of the paper is that we do not assume further assumptions on f , with
the exception of a growth estimate. For functionals of the form

∫

Ω

[F (∇v (x)) + g (x, v (x))] dx

with F a convex function defined on ℜN , it has been conjectured in [2] that the
suitable form of the Euler-Lagrange equations satisfied by a solution u should be

∃p(·) ∈ L1(Ω), a selection from ∂F (∇u(·)), such that div p(·) = gv(·, u(·))

in the sense of distributions.
Equivalently, the condition can be expressed as

∃p(·) ∈ L1(Ω) : div p(·) = gv(·, u(·))

and, for a.e. x and every ξ ∈ ℜN , we have

〈p,∇u (x)〉 − [F (∇u (x)) + g (x, u (x))] ≥ 〈p, ξ〉 − [F (ξ) + g (x, u (x))] .

In this form, this condition is the equivalent of the Pontryagin Maximum Principle [4].
The purpose of the present paper is to prove this condition for the class of mappings
under consideration.
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2. Necessary conditions. For the properties of convex functions we refer to
[5] and, for those of Sobolev functions, to [1]. In what follows, B[0, 1] denotes the
closed unit ball of ℜN . We set F (ξ) = f(‖ξ‖) and ∂f+(t) = sup{λ : λ ∈ ∂f(t)}. We
consider mappings satisfying the following growth assumption.

Assumption A. The convex function f is such that there exist K and t0 such that,
for t ≥ t0,

∂f+(t) ≤ Kf(t).

Theorem 2.1.

Let Ω be a bounded open subset of ℜn. Let f : ℜ → ℜ be symmetric, convex,
and satisfying the growth assumption A. Let g(·, ·) and gv(·, ·) be Carathéodory func-
tions and assume that for every U there exists ξU ∈ L1

loc such that |v| ≤ U implies
|gv(x, v)| ≤ ξU (x). Let u be a locally bounded solution to the problem of minimizing

∫

Ω

[f (‖∇v (x) ‖) + g (x, v (x))] dx on v0 + W
1,1
0 (Ω).

Then there exists p ∈ L1(Ω), a selection from the map x → ∂F (∇u(x)), such that

div p(·) = gv (·, u(·))

in the sense of distributions.
Notice that, although p has a weak divergence, there is no claim that it belongs

to W 1,1(Ω).
Proof.
By the assumption of convexity, f is not differentiable at most on a countable

set, possibly containing 0. Set k0 = 0 and call 0 < k1 < k2 < . . . the other points of
non differentiability for f . Set

Ai = {x : ‖∇u (x) ‖ = ki}

Bi = {x : ki < ‖∇u (x) ‖ < ki+1}

for i = 0, . . . ,∞. We shall also set A+
i = {x ∈ Ai : 〈∇u,∇η〉 ≥ 0} and A−

i =
{x ∈ Ai : 〈∇u,∇η〉 < 0}. For η ∈ C1

0 (Ω) and ε > 0, we have

1

ε

{
∫

Ω

[f (‖∇u + ε∇η‖) + g (x, u + εη) − f (‖∇u‖) − g (x, u)]

}

≥ 0.(2.1)

Fix one such η; consider a compact set O containing supp(η); let D = sup(‖∇η‖), U

be sup(|u|) and H be sup(|η|) on O. Then

|g (x, u(x) + εη(x)) − g (x, u(x))

ε
| ≤ HξU+εH(x)

so that, by dominated convergence,
∫

Ω

g (x, u(x) + εη(x)) − g (x, u(x))

ε
dx −→

∫

Ω

gv (x, u(x)) η(x) dx.

Consider A0. On A0, as ε → 0+, pointwise with respect to x, we have that

f (‖∇u + ε∇η‖) − f (‖∇u‖)
ε

=
f (‖ε∇η‖) − f (0)

ε
−→ ∂f+(0)‖∇η‖;
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For i = 0, . . . ,∞, on Bi we obtain

f (‖∇u + ε∇η‖) − f (‖∇u‖)
ε

−→ f ′ (‖∇u‖)
〈 ∇u

‖∇u‖ ,∇η

〉

;

and, on Ai, i = 1, . . . ,∞, we have

f (‖∇u + ε∇η‖) − f (‖∇u‖)
ε

−→ ∂f−(ki)〈
∇u

‖∇u‖ ,∇η〉,

when 〈∇u,∇η〉 < 0, and

f (‖∇u + ε∇η‖) − f (‖∇u‖)
ε

−→ ∂f+ (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

otherwise.
Moreover, we have

|f (‖∇u + ε∇η‖) − f(‖∇u‖)
ε

| = |f(‖∇u‖ + θ(ε, x)) − f(‖∇u‖)
ε

| = s
|θ(ε, x))|

ε

where |θ(ε, x)| ≤ εD, and for some s(x) ∈ ∂f(ξ(x)), with ξ(x) in the interval of
extremes ‖∇u(x)‖ and ‖∇u(x)‖ + θ(ε, x). Consider assumption A. Then, either
max{‖∇u(x)‖, ‖∇u(x)‖ + θ(ε, x)} ≤ t0 + D, and in this case s(x) ≤ ∂f+(t0 + D);
or, max{‖∇u(x)‖, ‖∇u(x)‖ + θ(ε, x)} > t0 + D, i.e. both ‖∇u(x)‖ and ξ(x) are
> t0, so that f(ξ(x)) ≤ f(‖∇u(x)‖)eKεD ≤ f(‖∇u(x)‖)eKD and ∂f+(ξ(x)) ≤
Kf(‖∇u(x)‖)eKD. Hence

|f (‖∇u + ε∇η‖) − f(‖∇u‖)
ε

| ≤ max{D∂f+(t0 + D),DKf(‖∇u‖)eKD},

an integrable function independent of ε. By dominated convergence, from (2.1), we
obtain
∫

A0

∂f+(0)‖∇η‖ +
∞
∑

i=1

∫

A
+

i

∂f+ (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

+

∫

A
−

i

∂f− (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

+

∞
∑

i=0

∫

Bi

f ′ (‖∇u‖)
〈 ∇u

‖∇u‖ ,∇η

〉

+

∫

Ω

gv (x, u) η ≥ 0.

The same considerations, when applied to the variation −η, yield

∫

A0

∂f+ (0) ‖∇η‖ −
∞
∑

i=1

[

∫

A
−

i

∂f+ (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

+

∫

A
+

i

∂f− (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

]

−
∞
∑

i=0

∫

Bi

f ′ (‖∇u‖)
〈 ∇u

‖∇u‖ ,∇η

〉

−
∫

Ω

gv (x, u) η ≥ 0.

From these two inequalities we obtain

−
∫

A0

∂f+ (0) ‖∇η‖−
∞
∑

i=1

[

∫

A
+

i

∂f+ (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

+

∫

A
−

i

∂f− (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

]



4 A. CELLINA, M.MAZZOLA

≤
∞
∑

i=0

∫

Bi

f ′ (‖∇u‖)
〈 ∇u

‖∇u‖ ,∇η

〉

+

∫

Ω

gv (x, u) η ≤
∫

A0

∂f+ (0) ‖∇η‖−

−
∞
∑

i=1

[

∫

A
−

i

∂f+ (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

+

∫

A
+

i

∂f− (ki)

〈 ∇u

‖∇u‖ ,∇η

〉

]

.

Adding the term
∑∞

i=1

∫

Ai

1

2
[∂f+ (ki) + ∂f− (ki)]

〈

∇u
‖∇u‖ ,∇η

〉

to all sides, we have

the estimate

−
∫

A0

∂f+ (0) ‖∇η‖ −
∞
∑

i=1

∫

Ai

1

2

[

∂f+ (ki) − ∂f− (ki)
]

|
〈 ∇u

‖∇u‖ ,∇η

〉

|(2.2)

≤
∞
∑

i=0

∫

Bi

f ′ (‖∇u‖)
〈 ∇u

‖∇u‖ ,∇η

〉

+

∞
∑

i=1

∫

Ai

1

2

[

∂f+ (ki) + ∂f− (ki)
]

〈 ∇u

‖∇u‖ ,∇η

〉

+

∫

Ω

gv (x, u) η ≤

∫

A0

∂f+ (0) ‖∇η‖ +
∞
∑

i=1

∫

Ai

1

2

[

∂f+ (ki) − ∂f− (ki)
]

|
〈 ∇u

‖∇u‖ ,∇η

〉

|.

Set

X =
{

(v, w) ∈ L1 (A0,ℜn) × L1 (∪∞
i=1Ai,ℜ) : ∃η ∈ C1

0 (Ω) : v = ∂f+ (0)∇η|A0
,

w|Ai
=
[

∂f+ (ki) − ∂f− (ki)
]

〈 ∇u

‖∇u‖ ,∇η〉|Ai
, i = 1 . . . ,∞

}

.

Define the map T : X → ℜ as follows:

T (v, w) = −
∞
∑

i=0

∫

Bi

f ′ (‖∇u‖)
〈 ∇u

‖∇u‖ ,∇η

〉

(2.3)

−
∞
∑

i=1

1

2

∫

Ai

[∂f+ (ki) + ∂f− (ki)]〈
∇u

‖∇u‖ ,∇η〉 −
∫

Ω

gv (x, u) η.

We claim that T is well defined and that it is a continuous linear functional on
X.

In fact, consider (v, w) in X, and assume that there exist η1 and η2 such that
v = ∂f+ (0)∇η1|A0

= ∂f+ (0)∇η2|A0
and

w|Ai
= [∂f+ (ki) − ∂f− (ki)]〈

∇u

‖∇u‖ ,∇η1〉|Ai
= [∂f+ (ki) − ∂f− (ki)]〈

∇u

‖∇u‖ ,∇η2〉|Ai
.
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From (2.2) we have

| −
∞
∑

i=0

∫

Bi

f ′ (‖∇u‖)
〈 ∇u

‖∇u‖ ,∇η1 −∇η2

〉

−
∞
∑

i=1

1

2

∫

Ai

[∂f+ (ki) + ∂f− (ki)]〈
∇u

‖∇u‖ ,∇η1 −∇η2〉 −
∫

Ω

gv (x, u) [η1 − η2]| ≤

∫

A0

∂f+ (0) ‖∇η1−∇η2‖+

∞
∑

i=1

∫

Ai

1

2
[∂f+ (ki)−∂f− (ki)]|

〈 ∇u

‖∇u‖ ,∇η1 −∇η2

〉

| = 0,

so that T is well defined. It is clearly linear and, from

|T (v, w) | ≤
∫

A0

‖v‖ +
1

2

∫

∪Ai

|w| ∀ (v, w) ∈ X,

it is bounded. Hence, by the Hahn-Banach theorem, there exists L, a continuous
linear functional on L1 (A0,ℜn) × L1 (∪∞

i=1Ai,ℜ), such that L|X ≡ T and

|L (v, w) | ≤
∫

A0

‖v‖ +
1

2

∫

∪Ai

|w| ∀ (v, w) ∈ L1 (A0,ℜn) × L1 (∪∞
i=1Ai,ℜ) .

Let us define L∗ : L1 (A0,ℜn) → ℜ, setting

L∗ (v) = L (v, 0)

and L∗∗ : L1 (
⋃∞

i=1
Ai,ℜ) → ℜ, setting

L∗∗ (w) = L (0, w) .

We have that

|L∗ (v) | ≤
∫

A0

‖v‖ ∀v ∈ L1 (A0,ℜn)

and

|L∗∗ (w) | ≤ 1

2

∫

⋃

∞

i=1
Ai

|w| ∀w ∈ L1

(

∞
⋃

i=1

Ai,ℜ
)

,

so that ‖L∗‖ ≤ 1 and ‖L∗∗‖ ≤ 1

2
.

By Riesz’s Theorem, there exists α ∈ L∞ (A0,ℜn), supess‖α‖ ≤ 1, such that, for
every v ∈ L1 (A0,ℜn),

L∗ (v) =

∫

A0

〈α, v〉

and there exists β ∈ L∞ (∪∞
i=1Ai,ℜ), with |β| ≤ 1

2
a.e., such that, for every w ∈

L1 (
⋃∞

i=1
Ai,ℜ) ,
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L∗∗ (w) =

∫

⋃

Ai

βw.

Hence, we can conclude that, for η ∈ C1
0 (Ω), we have

T

(

∂f+ (0)∇η|A0
, [∂f+ (ki) − ∂f− (ki)]

〈 ∇u

‖∇u‖ ,∇η

〉

|⋃
Ai

)

= L

(

∂f+ (0)∇η|A0
, [∂f+ (ki) − ∂f− (ki)]

〈 ∇u

‖∇u‖ ,∇η

〉

|⋃
Ai

)

= L
(

∂f+ (0)∇η|A0
, 0
)

+ L

(

0, [∂f+ (ki) − ∂f− (ki)]

〈 ∇u

‖∇u‖ ,∇η

〉

|⋃
Ai

)

= L∗
(

∂f+ (0)∇η|A0

)

+ L∗∗

(

[∂f+ (ki) − ∂f− (ki)]〈
∇u

‖∇u‖ ,∇η〉|∪Ai

)

=

∫

A0

∂f+ (0) 〈α,∇η〉 +

∫

∪Ai

β[∂f+ (ki) − ∂f− (ki)]〈
∇u

‖∇u‖ ,∇η〉.

Equating the definition (2.3) to the equality above, we obtain

∫

A0

∂f+ (0) 〈α,∇η〉

+
∞
∑

i=1

∫

Ai

[

1

2
[∂f+(ki) + ∂f−(ki)] + β[∂f+(ki) − ∂f−(ki)]

]〈 ∇u

‖∇u‖ ,∇η

〉

+

∞
∑

i=0

∫

Bi

f ′(‖∇u‖)
〈 ∇u

‖∇u‖ ,∇η

〉

+

∫

Ω

gv (x, u) η = 0.

Since

∂F (ξ) =











∂f+(0)B[0, 1] for ξ = 0

{b ξ
‖ξ‖ : ∂f− (ki) ≤ b ≤ ∂f+ (ki)} for ‖ξ‖ = ki

f ′(‖ξ‖) ξ
‖ξ‖ otherwise

,

from the properties of α and β we have that the map

p(x) = ∂f+(0)α(x)χA0
(x)+

+

∞
∑

i=1

[

1

2
[∂f+ (ki) + ∂f− (ki)] + β(x)[∂f+ (ki) − ∂f− (ki)]

] ∇u(x)

‖∇u(x)‖χAi
(x)+
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+

∞
∑

i=0

f ′(‖∇u(x)‖) ∇u(x)

‖∇u(x)‖χBi
(x)

is a selection from ∂F (∇u(x)) and

∫

Ω

[〈p(x),∇η(x)〉 + gv(x, u)η(x)] dx = 0

for every η ∈ C1
c (Ω). Moreover, from our assumptions on g and the local boundedness

of u, we have that f(‖∇u(·)‖) ∈ L1(Ω); then, from assumption A, we obtain that every
selection from ∂f(‖∇u(·)‖) is integrable, thus proving the Theorem.

Example 1. In ℜ2, let g(x, u) = u and

F (ξ) = f(‖ξ‖) =

{ √
2‖ξ‖ for ‖ξ‖ ≤

√
2

1 + 1

2
‖ξ‖2 for ‖ξ‖ ≥

√
2

(2.4)

We have that ∂F (0) =
√

2B[0, 1]. Then, as described in [3],

u(x) =

{

0 for ‖x‖
2

≤
√

2

(‖x‖
2

)2 − 2 for ‖x‖
2

≥
√

2
(2.5)

is a solution to the minimization problem, among those functions satisfying the same
values as u on ∂Ω. We have

∇u(x) =

{

0 for ‖x‖
2

<
√

2
1

2
x for ‖x‖

2
>

√
2

(2.6)

Hence,

∂F (∇u(x)) =

{ √
2B[0, 1] for ‖x‖

2
<

√
2

∇F (∇u(x)) = ∇u(x) = 1

2
x for ‖x‖

2
>

√
2

.(2.7)

Then, although the function ∇u(x) is discontinuous, the vector function

p(x) =
1

2
x

is an everywhere smooth selection from the map x → ∂F (∇u(x)) and has everywhere
divergence equal 1.
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