Hormone therapy with tamoxifen has long been the established adjuvant treatment for node-positive, estrogen-receptor-positive breast cancer in postmenopausal women. Since 30-40% of these patients fail to respond, reliableoutcome prediction is necessary for successful treatment allocation. Using pathobiological variables (available in mostclinical records: tumor size, nodal involvement, estrogen and progesterone receptor content) from 596 patients recruitedat a comprehensive cancer center, we developed a prediction model which we validated in an independent cohort of 175patients recruited at a general hospital. Calculated at 3 and 4 years of follow-up, the discrimination indices were 0.716[confidence limits (CL) 0.641, 0.752] and 0.714 (CL 0.650, 0.750) for the training data, and 0.726 (CL 0.591, 0.769) and0.677 (CL 0.580, 0.745) for the testing data. Waiting for more effective approaches from genomic and proteomic studies, amodel based on consolidated pathobiological variables routinely assessed at relatively low costs may be considered as thereference for assessing the gain of new markers over traditional ones, thus substantially improving the conventional use ofprognostic criteria

Boracchi, P., Coradini, D., Antolini, L., Oriana, S., Dittadi, ., R, G., et al. (2008). A prediction model for breast cancer recurrence after adjuvant hormone therapy. THE INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 23(4), 199-206.

A prediction model for breast cancer recurrence after adjuvant hormone therapy

ANTOLINI, LAURA;
2008

Abstract

Hormone therapy with tamoxifen has long been the established adjuvant treatment for node-positive, estrogen-receptor-positive breast cancer in postmenopausal women. Since 30-40% of these patients fail to respond, reliableoutcome prediction is necessary for successful treatment allocation. Using pathobiological variables (available in mostclinical records: tumor size, nodal involvement, estrogen and progesterone receptor content) from 596 patients recruitedat a comprehensive cancer center, we developed a prediction model which we validated in an independent cohort of 175patients recruited at a general hospital. Calculated at 3 and 4 years of follow-up, the discrimination indices were 0.716[confidence limits (CL) 0.641, 0.752] and 0.714 (CL 0.650, 0.750) for the training data, and 0.726 (CL 0.591, 0.769) and0.677 (CL 0.580, 0.745) for the testing data. Waiting for more effective approaches from genomic and proteomic studies, amodel based on consolidated pathobiological variables routinely assessed at relatively low costs may be considered as thereference for assessing the gain of new markers over traditional ones, thus substantially improving the conventional use ofprognostic criteria
Articolo in rivista - Articolo scientifico
breast cancer
English
199
206
8
Boracchi, P., Coradini, D., Antolini, L., Oriana, S., Dittadi, ., R, G., et al. (2008). A prediction model for breast cancer recurrence after adjuvant hormone therapy. THE INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 23(4), 199-206.
Boracchi, P; Coradini, D; Antolini, L; Oriana, S; Dittadi, ; R, G; M, D; Mg, ; Biganzoli, E
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/8526
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact