We developed an F2A-based multicistronic system to evaluate functional effects of co-expression of three proteins important for xenotransplantation: heme oxygenase 1 (HO1), ecto-5'-nucleotidase (E5NT) and ecto-nucleoside triphosphate diphosphohydrolase-1 (ENTPD1). The tricistronic p2A plasmid that we constructed was able to efficiently drive concurrent expression of HO1, E5NT and ENTPD1 in HEK293T cells. All three overexpressed proteins possessed relevant enzymatic activities, while addition of furin site interfered with protein expression and activity. We conclude that our tricistronic p2A construct is effective and optimal to test the combined protective effects of HO1, E5NT and ENTPD1 against xeno-rejection mechanisms.
De Giorgi, M., Cinti, A., Pelikant Malecka, I., Chisci, E., Lavitrano, M., Giovannoni, R., et al. (2015). Co-expression of functional human Heme Oxygenase 1, Ecto-5'-Nucleotidase and ecto-nucleoside triphosphate diphosphohydrolase-1 by "self-cleaving" 2A peptide system. PLASMID, 79, 22-29 [10.1016/j.plasmid.2015.03.004].
Co-expression of functional human Heme Oxygenase 1, Ecto-5'-Nucleotidase and ecto-nucleoside triphosphate diphosphohydrolase-1 by "self-cleaving" 2A peptide system
CINTI, ALESSANDROSecondo
;CHISCI, ELISA;LAVITRANO, MARIALUISA;GIOVANNONI, ROBERTOPenultimo
;SMOLENSKI, RYSZARD TOMASZ
Ultimo
2015
Abstract
We developed an F2A-based multicistronic system to evaluate functional effects of co-expression of three proteins important for xenotransplantation: heme oxygenase 1 (HO1), ecto-5'-nucleotidase (E5NT) and ecto-nucleoside triphosphate diphosphohydrolase-1 (ENTPD1). The tricistronic p2A plasmid that we constructed was able to efficiently drive concurrent expression of HO1, E5NT and ENTPD1 in HEK293T cells. All three overexpressed proteins possessed relevant enzymatic activities, while addition of furin site interfered with protein expression and activity. We conclude that our tricistronic p2A construct is effective and optimal to test the combined protective effects of HO1, E5NT and ENTPD1 against xeno-rejection mechanisms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.