We consider a generalization of Einstein-Sasaki manifolds, which we characterize in terms both of spinors and differential forms, that in the real analytic case corresponds to contact manifolds whose symplectic cone is Calabi-Yau. We construct solvable examples in seven dimensions. Then, we consider circle actions that preserve the structure, and determine conditions for the contact reduction to carry an induced structure of the same type. We apply this construction to obtain a new hypo-contact structure on S^2\times T^3.
Fino, A., & Conti, D. (2010). Calabi-Yau cones from contact reduction. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 38(1), 93-118 [10.1007/s10455-010-9202-8].
Citazione: | Fino, A., & Conti, D. (2010). Calabi-Yau cones from contact reduction. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 38(1), 93-118 [10.1007/s10455-010-9202-8]. | |
Tipo: | Articolo in rivista - Articolo scientifico | |
Carattere della pubblicazione: | Scientifica | |
Titolo: | Calabi-Yau cones from contact reduction | |
Autori: | Fino, A; Conti, D | |
Autori: | ||
Data di pubblicazione: | 2010 | |
Lingua: | English | |
Rivista: | ANNALS OF GLOBAL ANALYSIS AND GEOMETRY | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10455-010-9202-8 | |
Appare nelle tipologie: | 01 - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
contact.pdf | Other attachments | Open Access Visualizza/Apri |