Abstract: Given a branching random walk on a graph, we consider two kinds of truncations: by inhibiting the reproduction outside a subset of vertices and by allowing at most $m$ particles per site. We investigate the convergence of weak and strong critical parameters of these truncated branching random walks to the analogous parameters of the original branching random walk. As a corollary, we apply our results to the study of the strong critical parameter of a branching random walk restricted to the cluster of a Bernoulli bond percolation

Bertacchi, D., Zucca, F. (2009). Approximating critical parameters of branching random walks. JOURNAL OF APPLIED PROBABILITY, 46(2), 463-478 [10.1239/jap/1245676100].

Approximating critical parameters of branching random walks

BERTACCHI, DANIELA;
2009

Abstract

Abstract: Given a branching random walk on a graph, we consider two kinds of truncations: by inhibiting the reproduction outside a subset of vertices and by allowing at most $m$ particles per site. We investigate the convergence of weak and strong critical parameters of these truncated branching random walks to the analogous parameters of the original branching random walk. As a corollary, we apply our results to the study of the strong critical parameter of a branching random walk restricted to the cluster of a Bernoulli bond percolation
Articolo in rivista - Articolo scientifico
branching random walks, critical parameters, percolation, graphs
English
463
478
16
http://arxiv.org/abs/0710.3792
Bertacchi, D., Zucca, F. (2009). Approximating critical parameters of branching random walks. JOURNAL OF APPLIED PROBABILITY, 46(2), 463-478 [10.1239/jap/1245676100].
File in questo prodotto:
File Dimensione Formato  
approxbrw11.pdf

accesso aperto

Dimensione 302.24 kB
Formato Adobe PDF
302.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/6813
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
Social impact