Let P<sub>0</sub>(X) be the nonempty subsets of a metric space 〈X, d〉,. Some classical convergences in P<sub>0</sub>(X) - such as convergence in Hausdorff distance, Attouch-Wets convergence and Wijsman convergence - have been shown to be compatible with the weak topology on P<sub>0</sub>(X) induced by all gap and excess functionals with fixed left argument ranging in some bornology. Here we consider an arbitrary ideal of subsets of X and compare the gap and excess topology so generated with the corresponding convergence defined in terms of truncations by elements of the ideal. © 2008 Springer Science+Business Media B.V.
Beer, G., & Levi, S. (2008). Gap, excess and bornological convergence. SET-VALUED ANALYSIS, 16(4), 489-506.
Citazione: | Beer, G., & Levi, S. (2008). Gap, excess and bornological convergence. SET-VALUED ANALYSIS, 16(4), 489-506. |
Tipo: | Articolo in rivista - Articolo scientifico |
Carattere della pubblicazione: | Scientifica |
Titolo: | Gap, excess and bornological convergence |
Autori: | Beer, G; Levi, S |
Autori: | |
Data di pubblicazione: | 2008 |
Lingua: | English |
Rivista: | SET-VALUED ANALYSIS |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11228-008-0086-8 |
Appare nelle tipologie: | 01 - Articolo su rivista |