Amyotrophic lateral sclerosis (ALS) is a progressive disease that degeneratively damages both upper and lower motor neurons, eventually resulting in muscular paralysis and death. Although ALS is broad in scope and commonly thought of as a motor neuron disease, more active research sheds light on the that role skeletal muscle plays in the development and progression of the disease. Muscle tissue in ALS patients and in animal models demonstrates severe regenerative deficits, including impaired myogenesis and impaired myoblast fusion. In ALS, muscle stem cells, known as satellite cells, show poor performance in activation, proliferation, and differentiation and thus contribute to ALS muscle wasting. Moreover, the pathological tissue environment that inhibits myoblast fusion is made up of proinflammatory cytokines, oxidative stress, and a lack of trophic signals from the neuromuscular junction, which greatly disrupts homeostatic regulation. It is likely that skeletal muscle is instead a dynamic player, fueling neuromuscular degeneration as opposed to a passive responder to denervation. One must appreciate the cellular and molecular changes that complicate muscle regeneration in ALS for effective treatment to be developed, permitting simultaneous interventions with both muscle and neurons.

Duranti, E. (2025). The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis: State of the Art 2025. MUSCLES, 4(3) [10.3390/muscles4030022].

The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis: State of the Art 2025

Duranti, E
2025

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive disease that degeneratively damages both upper and lower motor neurons, eventually resulting in muscular paralysis and death. Although ALS is broad in scope and commonly thought of as a motor neuron disease, more active research sheds light on the that role skeletal muscle plays in the development and progression of the disease. Muscle tissue in ALS patients and in animal models demonstrates severe regenerative deficits, including impaired myogenesis and impaired myoblast fusion. In ALS, muscle stem cells, known as satellite cells, show poor performance in activation, proliferation, and differentiation and thus contribute to ALS muscle wasting. Moreover, the pathological tissue environment that inhibits myoblast fusion is made up of proinflammatory cytokines, oxidative stress, and a lack of trophic signals from the neuromuscular junction, which greatly disrupts homeostatic regulation. It is likely that skeletal muscle is instead a dynamic player, fueling neuromuscular degeneration as opposed to a passive responder to denervation. One must appreciate the cellular and molecular changes that complicate muscle regeneration in ALS for effective treatment to be developed, permitting simultaneous interventions with both muscle and neurons.
Articolo in rivista - Review Essay
amyotrophic lateral sclerosis; muscle; neurodegenerative disease;
English
9-lug-2025
2025
4
3
22
open
Duranti, E. (2025). The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis: State of the Art 2025. MUSCLES, 4(3) [10.3390/muscles4030022].
File in questo prodotto:
File Dimensione Formato  
Duranti-2025-Muscles-VoR.pdf

accesso aperto

Descrizione: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/560985
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact