In this study, we propose a robust fuzzy clustering method tailored for cellwise outlier detection. Unlike conventional robust fuzzy clustering approaches, our model relaxes the assumption of spherical clusters while maintaining the eigenvalue ratio constraint of F-TCLUST and effectively handling contaminated cells in the data. The estimation process is carried out via an EM algorithm, incorporating an additional step for identifying outliers, followed by E-and M-steps that treat con-taminated cells as missing data. Through simulations we demonstrate the effectiveness of our approach in scenarios with significant cellwise contamination.

Greselin, F., García Escudero, L., Mayo-Íscar, A., Zaccaria, G. (2025). Cellwise Robust Fuzzy Gaussian Mixtures. In E. di Bella, V. Gioia, C. Lagazio, S. Zaccarin (a cura di), Statistics for Innovation IV SIS 2025, Short Papers, Contributed Sessions 3 (pp. 542-547). Springer [10.1007/978-3-031-96033-8_88].

Cellwise Robust Fuzzy Gaussian Mixtures

Greselin, F.;Zaccaria, G.
2025

Abstract

In this study, we propose a robust fuzzy clustering method tailored for cellwise outlier detection. Unlike conventional robust fuzzy clustering approaches, our model relaxes the assumption of spherical clusters while maintaining the eigenvalue ratio constraint of F-TCLUST and effectively handling contaminated cells in the data. The estimation process is carried out via an EM algorithm, incorporating an additional step for identifying outliers, followed by E-and M-steps that treat con-taminated cells as missing data. Through simulations we demonstrate the effectiveness of our approach in scenarios with significant cellwise contamination.
Capitolo o saggio
Clustering; Fuzzy approach; Constrained optimization; Cellwise outliers; EM algorithm
English
Statistics for Innovation IV SIS 2025, Short Papers, Contributed Sessions 3
di Bella, E; Gioia, V; Lagazio, C; Zaccarin, S
17-giu-2025
2025
9783031960321
Springer
542
547
Greselin, F., García Escudero, L., Mayo-Íscar, A., Zaccaria, G. (2025). Cellwise Robust Fuzzy Gaussian Mixtures. In E. di Bella, V. Gioia, C. Lagazio, S. Zaccarin (a cura di), Statistics for Innovation IV SIS 2025, Short Papers, Contributed Sessions 3 (pp. 542-547). Springer [10.1007/978-3-031-96033-8_88].
reserved
File in questo prodotto:
File Dimensione Formato  
Greselin et al-2025-SIS 2025-VoR.pdf

Solo gestori archivio

Descrizione: Articolo
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 191.23 kB
Formato Adobe PDF
191.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/559142
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
Social impact