Purpose: The abundance and distribution of tumor-infiltrating lymphocytes (TILs) as well as that of other components of the tumor microenvironment is of particular importance for predicting response to immunotherapy in lung cancer (LC). We describe here a pilot study employing artificial intelligence (AI) in the assessment of TILs and other cell populations, intending to reduce the inter- or intra-observer variability that commonly characterizes this evaluation. Design: We developed a machine learning-based classifier to detect tumor, immune, and stromal cells on hematoxylin and eosin-stained sections, using the open-source framework QuPath. We evaluated the quantity of the aforementioned three cell populations among 37 LC whole slide images regions of interest, comparing the assessments made by five pathologists, both before and after using graphical predictions made by AI, for a total of 1110 quantitative measurements. Results: Our findings indicate noteworthy variations in score distribution among pathologists and between individual pathologists and AI. The AI-guided pathologist's evaluations resulted in reduction of significant discrepancies across pathologists: three comparisons showed a loss of significance (p > 0.05), whereas other four showed a reduction in significance (p > 0.01). Conclusions: We show that employing a machine learning approach in cell population quantification reduces inter- and intra-observer variability, improving reproducibility and facilitating its use in further validation studies.
Gallo, E., Guardiani, D., Betti, M., Arteni, B., Di Martino, S., Baldinelli, S., et al. (2024). AI drives the assessment of lung cancer microenvironment composition. JOURNAL OF PATHOLOGY INFORMATICS, 15(December 2024) [10.1016/j.jpi.2024.100400].
AI drives the assessment of lung cancer microenvironment composition
Lavitrano M.;
2024
Abstract
Purpose: The abundance and distribution of tumor-infiltrating lymphocytes (TILs) as well as that of other components of the tumor microenvironment is of particular importance for predicting response to immunotherapy in lung cancer (LC). We describe here a pilot study employing artificial intelligence (AI) in the assessment of TILs and other cell populations, intending to reduce the inter- or intra-observer variability that commonly characterizes this evaluation. Design: We developed a machine learning-based classifier to detect tumor, immune, and stromal cells on hematoxylin and eosin-stained sections, using the open-source framework QuPath. We evaluated the quantity of the aforementioned three cell populations among 37 LC whole slide images regions of interest, comparing the assessments made by five pathologists, both before and after using graphical predictions made by AI, for a total of 1110 quantitative measurements. Results: Our findings indicate noteworthy variations in score distribution among pathologists and between individual pathologists and AI. The AI-guided pathologist's evaluations resulted in reduction of significant discrepancies across pathologists: three comparisons showed a loss of significance (p > 0.05), whereas other four showed a reduction in significance (p > 0.01). Conclusions: We show that employing a machine learning approach in cell population quantification reduces inter- and intra-observer variability, improving reproducibility and facilitating its use in further validation studies.| File | Dimensione | Formato | |
|---|---|---|---|
|
Gallo-2024-Journal of Pathology Informatics-VoR.pdf
accesso aperto
Descrizione: This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


