Controlling the formation and stoichiometric content of the desired phases of materials has become of central interest for a variety of fields. The possibility of accessing metastable states by initiating reactions by X-ray-triggered mechanisms over ultrashort time scales has been enabled by the development of X-ray free electron lasers (XFELs). Utilizing the exceptionally high-brilliance X-ray pulses from the EuXFEL, we report the synthesis of a previously unobserved yttrium hydride under high pressure, along with nonstoichiometric changes in hydrogen content as probed at a repetition rate of 4.5 MHz using time-resolved X-ray diffraction. Exploiting non-equilibrium pathways, we synthesize and characterize a hydride in a Weaire-Phelan structure type at pressures as low as 125 GPa, predicted using a crystal structure search, with a hydrogen content of 4.0-5.75 hydrogens per cation, that is enthalpically metastable on the convex hull.
Siska, E., Smith, G., Villa-Cortes, S., Conway, L., Husband, R., Van Cleave, J., et al. (2024). Ultrafast Yttrium Hydride Chemistry at High Pressures via Non-equilibrium States Induced by an X-ray Free Electron Laser. THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 15(39), 9912-9919 [10.1021/acs.jpclett.4c02134].
Ultrafast Yttrium Hydride Chemistry at High Pressures via Non-equilibrium States Induced by an X-ray Free Electron Laser
Cerantola V.;
2024
Abstract
Controlling the formation and stoichiometric content of the desired phases of materials has become of central interest for a variety of fields. The possibility of accessing metastable states by initiating reactions by X-ray-triggered mechanisms over ultrashort time scales has been enabled by the development of X-ray free electron lasers (XFELs). Utilizing the exceptionally high-brilliance X-ray pulses from the EuXFEL, we report the synthesis of a previously unobserved yttrium hydride under high pressure, along with nonstoichiometric changes in hydrogen content as probed at a repetition rate of 4.5 MHz using time-resolved X-ray diffraction. Exploiting non-equilibrium pathways, we synthesize and characterize a hydride in a Weaire-Phelan structure type at pressures as low as 125 GPa, predicted using a crystal structure search, with a hydrogen content of 4.0-5.75 hydrogens per cation, that is enthalpically metastable on the convex hull.| File | Dimensione | Formato | |
|---|---|---|---|
|
Siska-2024-J Phys Chem Lett-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
3.76 MB
Formato
Adobe PDF
|
3.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


