We propose a generalization of the autoregressive latent variable models for longitudinal database on an AR(1) process to represent the effect of unobservable factors on the response variables. The generalization is based on correlation coefficient depending on the regime of the chain. Some particular cases are discussed in detail and illustrated by an application to a longitudinal dataset about self-evaluetion of the health status.

Bacci, S., Bartolucci, F., Pennoni, F. (2010). Markov-switching autoregressive latent variable models for longitudinal data. In Proceedings 25th International workshop on Statistical modelling (pp.57-62). Adrian W. Bowman.

Markov-switching autoregressive latent variable models for longitudinal data

PENNONI, FULVIA
2010

Abstract

We propose a generalization of the autoregressive latent variable models for longitudinal database on an AR(1) process to represent the effect of unobservable factors on the response variables. The generalization is based on correlation coefficient depending on the regime of the chain. Some particular cases are discussed in detail and illustrated by an application to a longitudinal dataset about self-evaluetion of the health status.
slide + paper
Latent Markov model; Ordinal variables; Numerical integration
English
25th international workshop on Statistical modelling
2010
Proceedings 25th International workshop on Statistical modelling
lug-2010
57
62
open
Bacci, S., Bartolucci, F., Pennoni, F. (2010). Markov-switching autoregressive latent variable models for longitudinal data. In Proceedings 25th International workshop on Statistical modelling (pp.57-62). Adrian W. Bowman.
File in questo prodotto:
File Dimensione Formato  
Pennoni_IWSM_1.pdf

accesso aperto

Dimensione 178.09 kB
Formato Adobe PDF
178.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/53005
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact