We propose a generalization of the autoregressive latent variable models for longitudinal database on an AR(1) process to represent the effect of unobservable factors on the response variables. The generalization is based on correlation coefficient depending on the regime of the chain. Some particular cases are discussed in detail and illustrated by an application to a longitudinal dataset about self-evaluetion of the health status.
Bacci, S., Bartolucci, F., Pennoni, F. (2010). Markov-switching autoregressive latent variable models for longitudinal data. In Proceedings 25th International workshop on Statistical modelling (pp.57-62). Adrian W. Bowman.
Markov-switching autoregressive latent variable models for longitudinal data
PENNONI, FULVIA
2010
Abstract
We propose a generalization of the autoregressive latent variable models for longitudinal database on an AR(1) process to represent the effect of unobservable factors on the response variables. The generalization is based on correlation coefficient depending on the regime of the chain. Some particular cases are discussed in detail and illustrated by an application to a longitudinal dataset about self-evaluetion of the health status.File | Dimensione | Formato | |
---|---|---|---|
Pennoni_IWSM_1.pdf
accesso aperto
Dimensione
178.09 kB
Formato
Adobe PDF
|
178.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.