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Preface

In 2010, the International Workshop on Statistical Modelling celebrates its
25th birthday. Twenty-five years old is a good age to be, as it combines ma-
turity with vitality, and both of these attributes are evident in abundance
in this year’s workshop. The invited papers demonstrate both the current
exciting developments in methodology and the key role which statistical
modelling plays in a very wide variety of modern applications. This is am-
plified in both breadth and depth in the large number of contributed papers
at this year’s workshop. Some aspects of the programme honour the past
and celebrate the origins and development of statistics, as befits a birthday
event. However, very importantly, there is a major focus on the future,
marked in particular by a substantial number of student contributions. It
is good to see that statistical modelling is in very good health.

This year the IWSM comes to Glasgow, a city with a rich history and a
dynamic culture. We hope that you will take full advantage of your stay
here to enjoy the character of the city and a variety of social events on the
workshop programme aim to help you in doing this. Glasgow is also located
close to some spectacular Scottish scenery and we hope that you will have
time to sample a little of this.

However, Glasgow also has a rich history in statistics and the Department
of Statistics in the University of Glasgow is particularly pleased to be able
to host the IWSM. The aims of the workshop coincide with the aims of
the Department, to promote the subject of statistics and its application to
important scientific problems, and so we look forward very much to meeting
you and interacting with you.

The scientific success of the workshop depends on the participants, although
this is focussed by the scientific committee whose contributions are very
much appreciated. The organisational success of the workshop necessarily
depends on a much smaller number of people, and the pivotal role is played
by our local organiser, Claire Ferguson. With the very able assistance of
Sarah Barry, plus a variety of administrative and IT staff, Claire has put
very considerable time, energy and expertise into the preparations for the
workshop. We hope that you enjoy the fruits of these labours. For my own
part, I would also like to thank Ludger Evers for invaluable assistance in
the technicalities of preparing the conference proceedings.

So welcome to Glasgow, and enjoy the workshop!

Adrian Bowman
Glasgow, July 2010
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Abstract: We propose a generalization of the autoregressive latent variable mod-
: els for longitudinal data based on an AR(1) process to represent the effect of
x unobservable factors on the response variables. The generalization is based on
assuming that the latent process follows a Markov-switching AR(1) process with
correlation coefficient depending on the regime of the chain. Some particular cases
are discussed in detail and illustrated by an application to a longitudinal dataset
about self-evaluation of the health status.
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1 Introduction

[n the analysis of longitudinal data, an important aspect to be taken into
account is how to represent the effect that unobservable factors have on the
occasion-specific response variables in addition to the effect of observable
covariates. The simplest approach is based on the inclusion, in the model
of interest, of individual-specific random intercepts. In this way, however,
the effect of unobservable factors is assumed to be time constant. A natural
way to relax this assumption is by assuming that, for each subject, there
are occasion-specific random effects which follow an AR(1) process (Chi
and Reinsel, 1989); the resulting model will be referred to as latent autore-
aressive (LAR) model. An alternative formulation is based on the inclusion
of a sequence of discrete latent variables which follow a first-order Markov
chain. In this way, a Latent Markov (LM) model (Wiggins, 1973) with co-
variate results. For a review on LM models see Bartolucci et al. (2010) and
for an instance of a complex model formulated following this approach see
Bartolucci and Farcomeni (2009).

The main advantage of the LAR formulation is that it retains a parsimony
close to that of the corresponding random effect model. Moreover, in cer-
tain applications it is natural to represent the error terms by continuous
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rather than discrete random variables. On the other hand, estimating the
resulting model may be problematic from the computational point of view
(Heiss, 2008). The model based on the LM formulation naturally provides
a classification of subjects into a reduced number of groups, is easier to
estimate, and may reach a better fit. However, this model is usually less
parsimonious. It is also worth noting that a Markov chain is able to ap-
proximate adequately a continuous process and then the model based on
the LM formulation may be seen as a semi-parametric version of the model
based on the AR(1) process. The issue of the comparison between the two
approaches above is related to that of the comparison between a standard
random effect model and its latent class version in contexts simpler to the
present one; see Lindsay et al. (1991) and Greene and Hensher (2003).

In this paper, we formulate a model for longitudinal data which is based
on the assumption that the error terms follow a Markov-switching AR(1)
process (Hamilton, 1989). In particular, we assume that a set of different
regimes are possible, with each regime corresponding to a different value
of the correlation coefficient. How a subject moves between regimes is gov-
erned by an unobservable Markov chain which is time-homogenous. In this
way, we extend the LAR model by allowing the correlation coefficient to
be different between subjects and occasions. Moreover, we expect that the
resulting model has a fit comparable to that of a model based on a LM
formulation, but it is more parsimonious. Two versions of the proposed
model are discussed in detail. In the former, the autoregressive correlation
coefficient may be different between subjects, but not between occasions. In
the second version, instead, each subject randomly moves between different
regimes. Both versions are estimated by the maximum likelihood method,
which is implemented on the basis of an algorithm similar to the sequential
numerical integration algorithm proposed by Heiss (2008).

The paper is organized as follows. In the following section we introduce the
basic notation and describe the LAR formulation for longitudinal data.
In Section 3 we outline the proposed extension, whereas the results of
an illustrative application based on a dataset about self-evaluation of the
health status are briefly illustrated in Section 4.

2 Preliminaries

Let y;; be the response variable observed at occasiont = 1,...,T for subject
t=1,...,n and let z;; be a corresponding vector of covariates.

The model based on the LAR formulation for these variables assumes that,
for every subject ¢, yi1,...,yir are conditionally independent given the
covariates &3, . . . , &;7 and a sequence of latent variables u;y, . .., u;7 which
follows an AR(1) process. In particular, we assume that u;; ~ N(0,02) and
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that, for ¢t > 1,

Uig|Uit—1 = PUip—1 + Eit, (1)
g ~ NI[0,0%/4/1—p?). (2)

An important point is how to model the conditional distribution of each
response variable y;; given u;; and ®;;. For instance, in the case of ordinal
responses with [ categories, that we will consider in our application, a
natural parametrization is based on cumulative (or global) logits:

p(yst > Jluit, T4t)
P(yie < Jltse, Tit)

=pi+uig +x'B, j=1,...,0-1L

The main difference with the LM formulation is that in the latter the latent
process follows a Markov chain with k states, with the following parameters:
k — 1 support points (the first is fixed at 0), in addition to k — 1 initial
probabilities, and k(k — 1) transition probabilities. The LAR model uses,
instead, only 2 parameters for the latent process.

3 The proposed model

We generalize the LAR model presented in the previous section in order to
allow for a different correlation between time occasions and subjects. For
this aim we exploit the general framework of Markov-switching autoregres-
sive models (Hamilton, 1989), where the correlation coeflicient depends on
an unobserved Markov chain.

3.1 Model assumptions

The proposed model (named SW-LAR) is formulated as in Section 2, with
assumptions (1) and (2) substituted by

Wit|Uig—1,Vit = Po, Uit—1 + Eits
gitlvie ~ NIO, ‘72/\/ 1—p3.],
where the latent process v;1,...,v;7 follows a Markov-chain with &k latent
states corresponding to the correlation coeflicients pi,. .., px. This process
is characterized by the vector of initial probabilities A, with elements A,,
v=1,...,k, and the transition probability matrix I, with elements m,,.,,
vg,v = 1,...,k. Note that every latent variable u;; has marginal distribu-

tion N(0,0?) as in the LAR model.
It is worth noting that by imposing constraints on k, X, or Il, special cases
of the SW-LAR model result. In particular:

1. with £ = 1 the LAR model described in Section 2 is obtained. The
correlation coefficient is then the same for all subjects and occasions.
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TABLE 1. Results from the fitting of models LAR, SW-LAR;, and SW-LAR,;.
LAR SW-LAR;, SW-LAR,

U1 7.3270 9.1515 7.6452
U2 4.1949 5.2750 4.3014
U3 1.0229 1.2479 0.9076
L4 -2.3763 -3.0282 -2.6919
female -0.0572 0.0440 -0.0591
non white -1.8515 -2.2072 -1.8758
education 1.5882 1.9401 1.6746
age -0.1012 -0.1207 -0.0929
o 2.9159 3.9973 3.2414
o1 0.9550 0.4889 0.4414
02 - 0.9758 1.0000
At 1.0000 0.2406 0.1268
Ao - 0.7594 0.8732
log-likelihood  -8884.7 -8795.6 -8818.2
# parameters 10 12 12
BIC 17838 17674 17719

In order to maximize £(0) we implemented a numerical algorithm which,
for the moment, may be only used to deal with LAR, SW-LAR;, and SW-
LAR» models. Future research will be devoted to the implementation of
an algorithm to estimate the more general SW-LAR model and to obtain
standard errors for the parameter estimates.

4 Application

The data used for the illustrative application come from the Health and
Retirement Study conducted by the University of Michigan (for a detailed
description see http://www.rand.org/labor/aging/dataprod). In par-
ticular, we considered a set of 1000 American people who self-evaluated
their health status over 8 occasions. The health status is measured on a
scale based on five grades: poor, fair, good, very good, and excellent. For
each subject, some covariates are available: gender, race, education, and age
at each occasion of interview.

We fitted three different models on these data: LAR, SW-LAR, (IT = I)
with k = 2 latent states, and SW-LAR; (IT = 1®X\’) with the same number
of latent states. The main results are given in Table 1.

We note that the SW-LAR; model has the highest log-likelihood and the
simallest value of the BIC index (Schwarz, 1978). With the inclusion of only
two more parameters, this model shows a much better fit than the LAR
model. The estimates of the two correlation coefficients under this model
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2. If the transition matrix is equal to an identity matrix, i.e. II = I,
the SW-LAR; model is obtained. Under this model, the correlation
coefficient may be different between subjects belonging to different
latent states, but not between occasions.

3. If the transition matrix has constant rows containing the initial prob-
abilities, i.e. IT = 1 ® A/, the SW-LAR, model results, under which
the correlation coefficient may change between subjects and occa-
sions, since each subject randomly moves between different regimes.

3.2 Model estimation

We estimate the model parameters by maximizing the corresponding log-
likelihood which is given by

#8) = 3 logp(y;|X.),

k2

where 0 is a short-hand notation for all model parameters, y, is the response
vector with elements y;;, t = 1,...,T, and X; is the corresponding matrix
of covariates made of the vectors x ;.

A crucial point is how to compute the manifest probability or density
p(y;|X;), which is based on a T-dimensional integral. For this aim we
implemented an algorithm which is related to the sequential numerical in-
tegration method of Heiss (2008).

Let gi¢(u,v) = p(ui = u,vit = v,¥:1,...,Yit) and note that, for ¢ > 1, this
probability may be expressed as

Qit(u,v) = f(yitl”)zﬂ'vov/mQi,t—l(UOavO)g(u|u07"))du0,
Vo

with
di1 (U, 'U) = p(yil |U)Pv9(u)a

where f(yit|u) = p(yitluir = u), g(u) denotes the density function for the
distribution of u;;, and g(u|ug,v) denotes that for the distribution of w;;
given u;—1 = ug and vy = v, with ¢t > 1. The algorithm we implemented
is based on computing first ¢;1 (u,v) and then g (u,v) fort =2,...,T by a
suitable Gaussian quadrature. These probabilities are computed for u equal
to every node of the quadrature and v = 1,...,k. At the end, we obtain

pilX0) = 3 [ aruo)au,

again computed by a suitable quadrature. Note that, this algorithm closely
resembles the recursive algorithm commonly used for the maximum likeli-
hood estimation of hidden Markov models (Baum et al., 1970).
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TABLE 1. Re’%ults fmm th( httmo of modelﬁ LAR, SW-LAR, and SW-LAR..

LAR SW-LAR, SW-LAR,

J1 7.3270 9.15615 7.6452
I ~ 4.1949 5.2750 4.3014
13 1.0229 1.2479 0.9076
L -2.3763 -3.0282 -2.6919
feale -0.0572 0.0440 -0.0591
non white -1.8515 -2.2072 -1.8758
education 1.5882 1.9401 1.6746
age ' —l) 1012 -0.1207 -0.0929
o 2.9159 3.9973 3.2414
Mm 0.9550 0.4889 0.4414
) : 0.9758 1.0000
AL 1.0000 0.24006 0.1268
Ao 0.7594 0.8732
log-likclihood  -8384.7 -8795.6 -8813.2
# parameters 10 12 12

BIC 1783 17674 17719

i order to maximize #{@) we implemented a numerical algorithm which,
for the momenut, nay be only used to deal with LAR, SW-LAR,, and SW-
1.ARy models. Future research will be devoted to the implementation of
- algorithm to estimate the more general SW-LAR model and to obtain
slandard errors for the parameter estitnates.

! Application

I'he data used for the llustrative application cowe from the Health and
Retirement Study conducted by the University of Michigan (for a detailed -
deseription see http://www.rand.org/labor/aging/dataprod). In par-
ticular, we considered a set of 1000 American people who self-evaluated
their health status over 8 occasions. The health status is measured on a
ccale based on five grades: poor, fair, good, very good, and excellent. For
cach subject, some covariates ave available: gender, race. education, and age
al each oceaston of interview. .

We fitted three different niodels on these data: LAR, SW-LAR (I = I)
with & == 2 latent states. and SW-LAR, (IT := 1& ) with the same number
of latent states. The main results are given in Table 1.

We note that the SW-LLAR, model has the highest log-likelihood and the
swallest value of the BIC index (Schwarz, 1978). With the inclusion of only
{wo more parameters, this model shows a much better fit than the LAR
imodel. The estimates of the two correlation coeflicients under this model
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are rather different; in particular we have an estimate equal to 0.49 for
the 24% of subjects and equal to 0.98 for the remaining 76% of subjects.
These two different levels of correlation correspond to two different levels of
persistence of the effect of unobservable factors on the response variables.
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