Background: Anaplastic lymphoma kinase (ALK) plays a role in the development of lymphoma, lung cancer and neuroblastoma. While tyrosine kinase inhibitors (TKIs) have improved treatment outcomes, relapse remains a challenge due to on-target mutations and off-target resistance mechanisms. ALK-positive (ALK+) tumors can evade the immune system, partly through tumor-associated macrophages (TAMs) that facilitate immune escape. Cancer cells use “don’t eat me” signals (DEMs), such as CD47, to resist TAMs-mediated phagocytosis. TKIs may upregulate pro-phagocytic stimuli (i.e., calreticulin, CALR), suggesting a potential therapeutic benefit in combining TKIs with an anti-CD47 monoclonal antibody (mAb). However, the impact of this combination on both TKIs-sensitive and resistant ALK+ tumors requires further investigation. Methods: A panel of TKIs-sensitive and resistant ALK+ cancer subtypes was assessed for CALR and CD47 expression over time using flow cytometry. Flow cytometry co-culture and fluorescent microscopy assays were employed to evaluate phagocytosis under various treatment conditions. Results: ALK inhibitors increased CALR expression in both TKIs-sensitive and off-target resistant ALK+ cancer cells. Prolonged TKIs exposure also led to CD47 upregulation. The combination of ALK inhibitors and anti-CD47 mAb significantly enhanced phagocytosis compared to anti-CD47 alone, as confirmed by flow cytometry and fluorescent microscopy. Conclusions: Anti-CD47 mAb can quench DEMs while exposing pro-phagocytic signals, promoting tumor cell phagocytosis. ALK inhibitors induced immunogenic cell damage by upregulating CALR in both sensitive and off-target resistant tumors. Continuous TKIs exposure in off-target resistant settings also resulted in the upregulation of CD47 over time. Combining TKIs with a CD47 blockade may offer therapeutic benefits in ALK+ cancers, especially in overcoming off-target resistance where TKIs alone are less effective.

Malighetti, F., Villa, M., Mauri, M., Piane, S., Crippa, V., Crespiatico, I., et al. (2024). Anaplastic Lymphoma Kinase (ALK) Inhibitors Enhance Phagocytosis Induced by CD47 Blockade in Sensitive and Resistant ALK-Driven Malignancies. BIOMEDICINES, 12(12) [10.3390/biomedicines12122819].

Anaplastic Lymphoma Kinase (ALK) Inhibitors Enhance Phagocytosis Induced by CD47 Blockade in Sensitive and Resistant ALK-Driven Malignancies

Malighetti, Federica;Villa, Matteo;Mauri, Mario;Piane, Simone;Crippa, Valentina;Crespiatico, Ilaria;Cocito, Federica;Bossi, Elisa;Steidl, Carolina;Civettini, Ivan;Scollo, Chiara;Ramazzotti, Daniele;Gambacorti-Passerini, Carlo;Piazza, Rocco
Co-ultimo
;
Mologni, Luca
Co-ultimo
;
Aroldi, Andrea
Co-ultimo
2024

Abstract

Background: Anaplastic lymphoma kinase (ALK) plays a role in the development of lymphoma, lung cancer and neuroblastoma. While tyrosine kinase inhibitors (TKIs) have improved treatment outcomes, relapse remains a challenge due to on-target mutations and off-target resistance mechanisms. ALK-positive (ALK+) tumors can evade the immune system, partly through tumor-associated macrophages (TAMs) that facilitate immune escape. Cancer cells use “don’t eat me” signals (DEMs), such as CD47, to resist TAMs-mediated phagocytosis. TKIs may upregulate pro-phagocytic stimuli (i.e., calreticulin, CALR), suggesting a potential therapeutic benefit in combining TKIs with an anti-CD47 monoclonal antibody (mAb). However, the impact of this combination on both TKIs-sensitive and resistant ALK+ tumors requires further investigation. Methods: A panel of TKIs-sensitive and resistant ALK+ cancer subtypes was assessed for CALR and CD47 expression over time using flow cytometry. Flow cytometry co-culture and fluorescent microscopy assays were employed to evaluate phagocytosis under various treatment conditions. Results: ALK inhibitors increased CALR expression in both TKIs-sensitive and off-target resistant ALK+ cancer cells. Prolonged TKIs exposure also led to CD47 upregulation. The combination of ALK inhibitors and anti-CD47 mAb significantly enhanced phagocytosis compared to anti-CD47 alone, as confirmed by flow cytometry and fluorescent microscopy. Conclusions: Anti-CD47 mAb can quench DEMs while exposing pro-phagocytic signals, promoting tumor cell phagocytosis. ALK inhibitors induced immunogenic cell damage by upregulating CALR in both sensitive and off-target resistant tumors. Continuous TKIs exposure in off-target resistant settings also resulted in the upregulation of CD47 over time. Combining TKIs with a CD47 blockade may offer therapeutic benefits in ALK+ cancers, especially in overcoming off-target resistance where TKIs alone are less effective.
Articolo in rivista - Articolo scientifico
ALK; macrophages; tumor immunology; CD47; TKIs (tyrosine kinase inhibitors); neuroblastoma; lymphoma; NSCLC; tumor microenvironment (TME)
English
12-dic-2024
2024
12
12
2819
open
Malighetti, F., Villa, M., Mauri, M., Piane, S., Crippa, V., Crespiatico, I., et al. (2024). Anaplastic Lymphoma Kinase (ALK) Inhibitors Enhance Phagocytosis Induced by CD47 Blockade in Sensitive and Resistant ALK-Driven Malignancies. BIOMEDICINES, 12(12) [10.3390/biomedicines12122819].
File in questo prodotto:
File Dimensione Formato  
Malighetti-2024-Biomedicines-VoR.pdf

accesso aperto

Descrizione: This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 4.02 MB
Formato Adobe PDF
4.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/528539
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact