We investigate the regularising properties of singular kernels at the level of germs, i.e. families of distributions indexed by points in Rd. First we construct a suitable integration map which acts on general coherent germs. Then we focus on germs that can be decomposed along a basis (corresponding to the so-called modelled distributions in Regularity Structures) and we prove a version of Hairer’s multilevel Schauder estimates in this setting, with minimal assumptions.
Broux, L., Caravenna, F., Zambotti, L. (2024). Hairer’s multilevel Schauder estimates without regularity structures. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 377(10), 6981-7035 [10.1090/tran/9245].
Hairer’s multilevel Schauder estimates without regularity structures
Caravenna F.;
2024
Abstract
We investigate the regularising properties of singular kernels at the level of germs, i.e. families of distributions indexed by points in Rd. First we construct a suitable integration map which acts on general coherent germs. Then we focus on germs that can be decomposed along a basis (corresponding to the so-called modelled distributions in Regularity Structures) and we prove a version of Hairer’s multilevel Schauder estimates in this setting, with minimal assumptions.File | Dimensione | Formato | |
---|---|---|---|
Broux-2024-Trans Am Math Soc-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
713.4 kB
Formato
Adobe PDF
|
713.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Broux-2024-Trans Am Math Soc-AAM.pdf
accesso aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Creative Commons
Dimensione
823.96 kB
Formato
Adobe PDF
|
823.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.