HAIRER’S MULTILEVEL SCHAUDER ESTIMATES
WITHOUT REGULARITY STRUCTURES

LUCAS BROUX, FRANCESCO CARAVENNA, LORENZO ZAMBOTTI

ABSTRACT. We investigate the regularising properties of singular kernels at the
level of germs, i.e. families of distributions indexed by points in R%. First we
construct a suitable integration map which acts on general coherent germs. Then
we focus on germs that can be decomposed along a basis (corresponding to the
so-called modelled distributions in Regularity Structures) and we prove a version of
Hairer’s multilevel Schauder estimates in this setting, with minimal assumptions.
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1. INTRODUCTION

It is well-known that the convolution of a (Schwartz) distribution against a kernel
admitting an integrable singularity on the diagonal yields a distribution with improved
Holder-Besov regularity: this is the content of the celebrated Schauder estimates
which are a fundamental tool in the analysis of PDEs, since examples of regularising
kernels include the heat kernel and the Green’s function of many differential operators.

One of the key insights of Hairer’s theory of Regularity Structures [Hail4; BHZ19;
CH16; BCCH21] is that the same regularisation phenomenon still occurs when one
works at the level of families of distributions, as formalised by the notion of “modelled
distributions” (which one should think of as local approximations to a distribution of
interest). The resulting multilevel Schauder estimates [Hail4, Theorem 5.12] admit
powerful consequences, as they allow to solve via fixed point many singular stochastic
PDEs that are classically ill-posed, after lifting them in a suitable space of modelled
distributions; see [FH20; BH20; Ber22| for expository presentations. Let us also
mention the works [OSSW18; (OW19; MW20; OSSW21] where Schauder estimates
are established at the level of families of functions, in particular with the aim of
establishing a priori estimates for solutions of stochastic PDEs.

The purpose of the present paper is to formulate Hairer’s multilevel Schauder
estimates as a standalone result in distribution theory, without any reference to the
formalism of Regularity Structures. In doing so, we sharpen and extend Hairer’s
original result under nearly optimal assumptions.

To provide some context, there has recently been an effort, see e.g. |[Gub18;|OSSW21}
MW20; |(CZ20; ZK22], to isolate the other key analytic result of Regularity Struc-
tures, namely the Reconstruction Theorem , Theorem 3.10]. Given a family
F = (F,)gere of distributions on R? indexed by points in RY, called a germ, the
Reconstruction Theorem as presented in [CZ20; roughly states the following:

Under a simple condition on the germ F' = (F,),cga called coherence,
see (3.2), there exists a distribution RF, called reconstruction of F,
which is “well approximated” by F, around any base point z € R¢
(with a quantitative bound for the difference F, — RF, see (3.8))).
The reconstruction map F'— RF is better understood if one recalls the classical
Taylor expansion of a smooth function: if f € C*(R?) and v > 0, we can set
RO= Y @ ser, wmPeg
T . L! ) ) : .

keNg: |k|<vy
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By Taylor’s theorem, we know that |f(y) — F.(y)| < |y — 2|7 uniformly for z,y in
compact subsets of R? which shows that the function f(-) is well approximated by
the function F,(-) around any point z € R?, with a precise bound.

However, this situation is special because f = RF is known in advance and we
associate the family of local approximations (F}),erae to it. In the Reconstruction
Theorem, this point of view is rather reversed: the family (F}),cra is assigned and
the (unknown) distribution f = RF is (re-)constructed from (F}),cpa. We refer to
[HL17; |[RS21; BL22; Ker21] for similar results. This point of view is strongly inspired
by the theory of rough paths, where the analog of the Reconstruction Theorem is the
Sewing Lemma [Lyo98; |(Gub04; FLP06; Dav0§].

Coming back to the present paper, we can formulate the Schauder estimates in
great generality, at the level of coherent germs F' = (F,),cge: we prove that the
convolution K « RF of a suitable regularising kernel K with a reconstruction RF' can
be lifted to a map K acting on germs F', so that the following diagram commutes:

F—* ,KF

Rl |
RF X R(KF) = K« RF .

More precisely, our first main result can be stated as follows, where we quantify the
coherence of a germ by an exponent 7 € R (see Definition and the regularisation
of a kernel by an exponent 3 > 0 (see Definitions 2.3 and Lemma [2.9).

Theorem 1.1 (Schauder estimates for coherent germs). Let F' = (F,),cra
be a y-coherent germ with a reconstruction RE. Let K be a [-reqularising kernel.
Then, assuming v + B ¢ Ny, the germ KF = ((KF))4era given by

(KF), = K= Fp— ) DWK%&—RFW@«;f) (1.1)
k<5 '

is well-defined, it is (y + [B)-coherent, and it satisfies R(KF) = K= RF.
(The “pointwise derivatives” D¥(...)(x) in (1.1) are defined by Lemma )

We refer to Theorem below for a more refined formulation of this result where,
as in the papers |[Haild; GH22; HP21} |Lab19; [HS23|, we allow for non translation-
invariant kernels (so we talk of integration KF, rather than convolution K = F)
and we prove that the map I is continuous for natural topologies on germs. Some
antecedents of Theorem can be found in the works [OSSW18; OW19; MW20;
OSSW21|, which are concerned with special classes of germs given by solutions to
appropriate (stochastic) PDEs.

A crucial property for germs in our context is homogeneity, which quantifies the
Holder-like behavior of a germ through an exponent a € R, see below, and its
variant weak homogeneity, that is homogeneity modulo polynomials, see Definition
below. For instance, the difference {F,, — R F'} which appears in is a homogeneous
germ (by the Reconstruction Theorem) and understanding its convolution with K is
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essential. We prove the following result of independent interest, which extends the
classical Schauder estimates for distributions to general homogeneous germs.

Theorem 1.2 (Schauder estimates for homogeneous germs). Let F =
(Fy)zere be a a-homogeneous germ and let K a B-reqularising kernel. Then the
germ K« F = (K = F,) cra s well-defined and it is (o + [3)-weakly homogeneous.

We refer to Theorem below for a precise statement, see in particular (5.7)).
Theorems and show that convolving/integrating a germ by K improves both
coherence and homogeneity by 5 (modulo polynomials). The idea of considering
homogeneity and coherence as independent properties comes from [ZK22] (in the
context of the Reconstruction Theorem) and we adopt it throughout this paper.

Compared to Theorems|[I.T]and [I.2] the Schauder estimates in Regularity Structures
[Hail4, Theorem 5.12] have a more narrow scope: they apply to restricted classes
of germs, corresponding to so-called “modelled distributions”, but at the same time
they yield sharper multilevel Schauder estimates, which are crucial to solve singular
PDEs. We recover and extend such multilevel estimates in our framework.

Let us fix a finite family IT = (II"),e; of germs II* = (II%),cge which, like ordinary
monomials, can be “reexpanded” around any base point via some coefficients I' = (F;’y)
such a pair M = (IL,T) is called a model (see Definition [4.1)). We think of the family
1 = (IT%);c; as a basis to build germs via linear combinations F = (f, 1), i.e.

el

parametrised by real coefficients f = (f(x)). To ensure that such germs F = (f,II)
are y-coherent, we require that coefficients f*(-) satisfy multilevel Holder-like bounds,
which define a vector space of y-modelled distributions f for M (see Definition .

Our second main result, which includes both Hairer’s multilevel Schauder estimates
[Hail4, Theorem 5.12] and Hairer’s extension theorem [Hail4, Theorem 5.14], shows
that the map F' — KF from Theorem for germs F' = (f,II) of the form (1.2)),
can be lifted to a map on modelled distributions f — f for a new model M = (f[, f),
such that the following diagram commutes:

f LN f
<'7H>J l<7ﬁ>
More precisely, we can prove the following.
Theorem 1.3 (Multilevel Schauder estimates). Let M = (II,T') be a model

and let [ be a y-modelled distribution for M, so that {f,1I) is a ~y-coherent germ
with a reconstruction R{f,11). Let K be a S-reqularising kernel.
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Then, assuming v+ B ¢ Ng, we can define a new explicit model M = (f[, f), and
a new explicit (v + [5)-modelled distribution f for M, such that

(f, 1D = K1)
where IC is the map from Theorem ' in particular, we have R(F, 11 = K«R{f, TI).

We refer to Theorem below for a precise formulation of this result, where we also
show that the map (M, f) — (M, f) is continuous in natural topologies.

The Schauder estimates in Theorems [I.1], .2 and [I.3] are the main results of this
paper. Together with the Reconstruction Theorem from |CZ20; ZK22|, they provide
a standalone formulation of the core analytic results from [Hailj)], without defining
the notion of Regularity Structures. We also obtain a number of improvements: let
us briefly describe the most significant ones.

(1) We do not assume that the kernel K annihilates polynomials, i.e. we do not
require that {K(z,y) y*dy = 0 as was assumed (for convenience) in [Hail4,
Assumption 5.4]. Sometimes it is convenient (but not required) to assume that
K preserves polynomials, namely that {K(z,y) y* dy is a polynomial of degree
< |k|, see e.g. Remark [4.11] Note that this always holds in the translation
invariant case K(z,y) = K(z — ).

(2) We prove Schauder estimates for y-coherent germs and y-modelled distributions
also for v < 0, whereas in the literature it is always assumed that v > 0. Since
the reconstruction of a y-coherent germ is not unique when v < 0, a choice
must be given as an input in Theorems [[.1 and [I.3} this poses no problem and,
in fact, it decouples Schauder estimates from the Reconstruction Theorem. As
mentioned to us by Hendrik Weber, our Schauder estimates with v < 0 can be
useful to truncate modelled distributions associated with solutions to SPDEs.
Another application of this idea can be found in [HS24, Theorem 3.8].

(3) We introduce a new notion of weakly coherent germs, inspired by classical Holder-
Zygmund spaces, see Definition [5.1} This allows us to give a “conceptual” proof
of Theorem [L.1] factorised in two steps, see Section [5] and also to recover in a
very clear way the classical Schauder estimates for distributions, see Remark

(4) We relaz the definition of a model M = (II,T") from [Hai14), as we do not need to
impose that the reexpansion coefficients I' satisfy a group property, an analytic
bound, nor a triangular structure (see Remark [4.2)). However, we prove that

these properties are preserved by the operation I' — I'; see Proposition .

(5) Another key property of germs, besides coherence, is the homogeneity, see
Definition [3.2 Even though modelled distributions yield germs which are both
coherent and homogeneous, we keep these properties as distinct as possible in
our discussion, following the ideas of [ZK22|. This greater flexibility makes
proofs more transparent and, moreover, allows to consider interesting germs
which need not be associated to modelled distributions.
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In conclusion, in this paper we have improved some of the most powerful and
beautiful results from [Hail4], presenting them in a more general yet simpler setting,
without losing in sharpness. We hope that our formulation will make these results
even more useful and widespread.

ORGANISATION OF THE PAPER. The paper is structured as follows.

e In Section 2l we set notations and recall classical results.

e In Section [3| we present our first main result Theorem (Schauder estimates
for coherent germs), which we rephrase more precisely as Theorem w

e In Section [4] we present our second main result Theorem [1.3] (multilevel Schauder
estimates), which we formulate in a more detailed way in Theorem [4.13]

e In Section [5] we prove Theorem [3.17 and other auxiliary results.
e In Section [6] we give the proof of Theorem [£.13]

e Finally, some more technical results are deferred to the Appendix.

ACKNOWLEDGEMENTS. We thank Ismaél Bailleul, Martin Hairer, Cyril Labbé,
Felix Otto, Scott Smith, Hendrik Weber for very useful discussions.

2. CLASSICAL RESULTS (REVISITED)

We work in R?, where d > 1 is a fixed integer, with the Euclidean norm | - |. Balls
are denoted by B(xg,r) = {x € R?: |z — 29| < r}. We use the shorthand

<y — 1C <w: f<(Cg.

Given r € Ny = {0,1,2,...}, we denote by C" the space of functions ¢ : R — R
which admit partial derivatives of order k for all |k| < r. The corresponding norm is

o k
lelor = max [0%¢]a,

where for a multi-index k € N¢ we set |k| = k; + ... + k4. Similarly, given r, m € Ny,
we denote by C™" the space of functions ¥ : R? x R? — R which admit partial
derivatives of order (ki, k) for all multi-indices |k1| < m, |ko| < 7.

2.1. TEST FUNCTIONS AND DISTRIBUTIONS. We denote by D = D(R?) the

space of smooth test functions ¢ : R? — R, i.e. C* with compact support. We write

D(K) for the family of test functions ¢ € D(R?) that are supported in K < R
Given a test-function ¢, its scaled and centered version ) is defined by

P2() = AT~ 2), (2.1)
for z € R* and A > 0. Note that { ¢} = {¢.
We denote by D' = D'(R%) the space of distrbutions, i.e. the linear functionals

f : D(RY) — R with the following property: for any compact K < R? there are
r=rig € Ny and ¢ = cx < o such that

[fp)l <cleler  VeeD(K). (2.2)
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We say that f is a distribution of order r (meaning “at most r”) if the value of r in

can be chosen independent of K, while the constant ¢ may still depend on K.

In this case, we can canonically define f(p) for non-smooth test functions p € C".
The derivative of any distribution is defined by duality:

D*f(p) := (-1 f(0%p)  VkeN.
We will later give conditions under which pointwise derivatives D* f(z) can be defined

for suitable distributions, see Lemma [3.15]

2.2. HOLDER-ZYGMUND SPACES. For v € R we denote by 27 := B .. the
(local) Hélder-Zygmund spaces, see [FH20, Section 14.3], which coincide with the usual
(local) Holder-Besov spaces C? when + is not an integer. To recall their definition, we
first introduce for r € Ny and v € R the families of test-functions

B ={peD(B(0,1): [|0"p]|o <1 forall0< k| <7 (e |p|er <1)},

2.3
B, = {(p e D(B(0,1)) : J ¢(2)2Fdz = 0 for all 0 < |k| < ’Y} , (23)
R4

and we denote their intersection by
B, =R B, . (2.4)

Note that we have %] = %], where m = |7] is the largest integer m < . Also note
that for v < 0 the constraint 0 < |k[ < v is empty and we have %7 = Z".

We can now define the spaces Z7. Note that for v < 0 we denote by r = |[—y + 1]
the smallest positive integer r > —~.

Definition 2.1 (Holder-Zygmund spaces Z7). Let v € R, we define Z7 as the
set of distributions f € D'(R?) such that

Iflzy, <+

for all compacts K = R? and for some (hence any) Ae [1,00), where

3 A
sup M if v <0,
zeK, Xe(0,)], A7
YEB” with r=|—v+1|
Iz =4 o) (25)
sup |f(¥g)| +  sup )ﬂz if v=0.
meKO zeK, Ae(0,)],
kzpe% <p6332

We often set A = 1 and omit it from notation.

For later purpose, we reformulate the condition that a distribution is of finite order.

Remark 2.2 (Bounded order). A distribution f € D’ is of order r, see (2.2), if
and only if the following condition holds:

VzeRY VYie[l,o): sup | f(ed)] = C(z,)) < . (2.6)

PEBT, Xe[1,A]
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This is also equivalent to the seemingly weaker condition

3z € R? such that YAeN={1,2,...}: sup ]f((pz)| = C'(2,\) < 0. (2.7)
pEABT

We prove the equivalence between , and (| below.

It follows by that any f € Z7 is a distm'butian of order r, for r € Ny with
r > —v. If 7 <0 this is a direct consequence of (2.5)), since for z = 0 (say) and any
given A € N we have |f(¢")] < A7 < 1 for every gp € ,%”" If v = 0, let us show that
f is a distribution of order 0: by ({2.5} . we know that |f(¢,)| < 1 uniformly for x in
compact sets and ¢ € £°; for A e N and ¢ € 2° we can decompose, using a partition
of unity, p* = >7_, (¥, for suitable z; € B(0, A + 1), ¥l € ° and n (uniformly
bounded given \); then it follows that |f(p*)] < b, [f(¥!),,)] < 1 uniformly
over 1 € #°, which proves with 2 = 0 and r = 0.

Proof of equwalence between . and . For any fixed z € RY, we can
deduce relation (2.6) from (2.2) w1th K B(z, \) because, for fixed A € (O ), we
have ¢]or < ||90Hcr (note that 3¥(2})(-) = AH-d(@Fo) (A (- — 2)).

Since clearly implies , it remains to show that implies : given

z € R? and a compact K < R, we fix A € N so that K < B(z, \), then it suffices to
note that any ¢ € D(K) can be written as ¢ = a ¢} for some ¢ € #" and a < [¢)]cr
(e.g. we can take ¢ := ¢ /| o € Z7 and ¢ = [ |or < AT O

2.3. SINGULAR KERNELS. We define a class of kernels K(z, y) called -reqularising,
for reasons that will soon be clear. Intuitively, these kernels satisfy

1
< -

IK(z,9)| < P L{jo—y|<c} for some 5,¢ >0, (2.8)

but the precise assumptions are conveniently encoded via a dyadic decomposition of

K(z,y), as in [Haild, Assumption 5.1]. We anticipate that in the translation invariant

case K(z,y) = K(z — y) these assumptions simplify considerably: we just require that
K and its derivatives satisfy a relation like (2.8)), see Lemma [2.9]

Definition 2.3 (Regularising kernel). A function K: R? x R? — R is called
regularising kernel if there exist constants p > 0, m,r € Ny and p > 0 such that
one can write

y) = io Kn(z,y) for a.e. z,y e R, (2.9)
where for all n € Ny the funcZi_oons K, € C™" have the following support:
(1) supp(Ky) = {(z,y): [z —y| < p27"},
and moreover, for any compact set K < R?, there is a constant cx > 0 such that
(2) for k,1 e N& with |k| < m, || <r we have, for z,y € K,
|05 04K (2, y)| < cx 20l IEDR (2.10)



MULTILEVEL SCHAUDER ESTIMATES WITHOUT REGULARITY STRUCTURES 9

(3) for k,l e N& with |k|,|l| < r we have, forye K,

| w-o'etk, @ y)as
Rd

We call such a function K(x,y) a p-regularising kernel of order (m,r) with range p.

<cg 27, (2.11)

Let us show that assumptions , (2) and are less restrictive than they might
appear, as they can be deduced from (2.8)) and from translation invariance.

Remark 2.4 (Singular kernels). To fulfill assumptions and (2), it is enough
that K satisfies condition ([2.8)) and, correspondingly, for |k| < m, |I| < r,

1
x — y|d=BHIIFIH] Ly—ai<ny

K] < (2.12)

uniformly for z,y in compact sets. This can be seen via a dyadic partition of unity:
given x € D with Ly.1<p < x(2) < Lyjz1<20), We set ¢(2) := x(2) — x(22) and define

Kn(z,y) == K(z,y) (2" (x — y)) . (2.13)
Since Y, cn, ¢(2"]2]) = Lizr0p, it follows that K(z,y) = > K, (2,y) for « # y, and
assumptions (1)) and (2)) follow by (2.12]).

Interestingly, in the boundary case 8 = d, we can weaken condition ([2.8)) allowing
for a logarithmic divergence (see [Hail4, Remark 5.6]):

K(z,y)| < log(1 + |z —y|™") Ljy-al<p} » (2.14)
and we can correspondingly weaken (2.12)), for |k| < m, |I| < r:
log(1 + |z —y|™")

\&’f&éK(w,y)\ § ]1{\y—x|<p} . (2.15)

|1‘ — y||”+|k|
In this case, it is convenient to modify (2.13)) as follows:
- 1
Kn(z,y) := K(z, 2" (x —vy)),
(,y) = K(z,y) man+ 02" (@ — )
so that is satisfied and we still have K(z,y) = >,° K, (2,y) for z # y. To
see that condition is satisfied too, we note that for p27! < |z —y| < p27*

2Z+1

we can bound |Ky(z,y)| < log(1+ =) 2 crony —= < 1 by (2.14) and, similarly,
108K, (2, )| < 20U+IKDE by ([2.15)), uniformly over £ > n.

Remark 2.5 (Translation invariance, I). If assumptions (1)) and (2]) are satisfied,
assumption (3|) is easily seen to hold for |[| > |k|. Then the issue is whether is
satisfied for |I| < |k|. This always holds in the translation invariant case:

Kn(z,y) = K, (z —y) Va,y e R, (2.16)

because the integral in the Lh.s. of (2.11) vanishes for |I| < |k|, as one sees through
integration by parts, since 05K,, = (—1)*0FK,, and o¥(y — z)! = 0.
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In some cases, we will require a last assumption on the kernel.

Assumption 2.6 (Preserving polynomials). Let K: R? x R? — R admit
a decomposition K = Z:fo K, as in (2.9). For v € R, we say that K preserves
polynomials at level v if, for every n € Ny and for all k € N with 0 < |k| <,

T Kn(z,y)y"dy is a polynomial of degree < |k . (2.17)
Rd

(This condition is automatically satisfied for v < 0.)
Remark 2.7 (Translation invariance, IT). A sufficient condition for (2.17)) is that
J Kn(z,y) (y — 2)¥dy does not depend on .
Rd

This condition clearly holds if the kernels K,, are translation invariant, see ([2.16)), in
which case Assumption [2.6] is satisfied at any level ~.

Remark 2.8. In |[Hail4, Assumption 5.4] much more than (2.17)) is required, namely
that for all multi-indices k with |k| < and any n € Ny

Vz e R?: J Kn(z,y)y"dy = 0.
Rd

We finally show that for translation invariant kernels K(z,y) = K(z — y) the notion
of B-regularising kernel is greatly simplified.

Lemma 2.9 (Translation invariant regularising kernel). Let 5,p > 0 and
m,r € Ng. Fiz a function K : R? — R such that, for all k € N& with [k] < m +r,

1

k
[0°K(2)] = T2 L)

Then K(z,y) := K(x —y) is a B-reqularising kernel of order (m,r) with range p and
it preserves polynomial at any level v € R (see Definition and Assumption @)

Proof. Tt suffices to apply Remarks [2.4] and 2.7 O

Remark 2.10 (Scale-invariant kernels). Given a smooth function K: RN\{0} — R
with the scaling property K(z/\) = A4~?K(z) for all A > 0, a B-regularising kernel is
obtained by K(z,y) := K(z — y) x(x — y), where x is any smooth function supported
in B(0, p). This is a direct consequence of Lemma [2.9] see also [Hail4, Lemma 5.5].

Examples of kernels falling in this situation include the Heat kernel, the Green’s
function of usual differential operators with constant coefficients, the Green’s function
of the fractional Laplacian [BK17], etc.
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2.4. SINGULAR INTEGRATION AND CLASSICAL SCHAUDER ESTIMATES. The
integration of a distribution f € D’(R?) with a kernel K(z,y) is formally defined by

Kf(a) = F(K () = | Koy £,

which makes sense when K(z, ) is regular enough. If K is singular, then one expects
Kf to be a distribution, defined by duality on test functions ¢ € D(R?) by

(KA (@) = f(K*) where (K*)(y) = Rdw(x) K(z,y)dz, (2.18)
provided K*i is regular enough, so that f(K*iy) makes sense.

Remark 2.11 (Translation invariance, III). Formula for Kf is always
well-defined if the kernel K(z,y) = K(z — y) is translation invariant with K : R — R
compactly supported and integrable: indeed, (K*¢)(y) = §p. ¥ (y — ) K(—z) dz in
this case is the convolution of v with K(—-), hence K*1 is smooth (as 1 is smooth)
and compactly supported (as ¢ and K are compactly supported).

We now consider the case of a [-regularising kernel K of order (m,r), as in
Definition [2.3] From (2.10)) and Fubini’s theorem we can formally write

(K*)(y) = D (Ki)(y)  where  (Kio)(y) = Rdw(w)Kn(fv,y)dx, (2.19)

nENo

and note that K¥1 is a well-posed C" function, for any n € Ny, because K, (z,-) € C".
This means that f(KZ) is well-defined as soon as f is a distribution of order r, see
(2.2) and the following lines. In conclusion, we can set

Kf(w) = Y] f(K:), (2:20)

TLGNQ

provided the series converges. This is guaranteed by the next result.

Proposition 2.12 (Singular integration). Given r € Ny, if K is a regularising
kernel of order (0,7) and f is a distribution of order r, then the integration Kf is
well-defined by and it is a distribution of order r.

If K is a regularising kernel of order (0,r) for any r € Ny, then the integration
Kf is well-defined for any distribution f € D'.

We can finally show that the integration by a [-regularising kernel K improves the
Holder regularity of a distribution by (: this result is known as the classical Schauder
estimates and can be stated as follows (see also [FH20, Theorem 14.17]).

Theorem 2.13 (Classical Schauder estimates). Let v € R. Let K be a
B-regularising kernel of order (m,r), where 5 > 0 and m,r € Ny satisfy:

m>y+8, r>-—. (2.21)
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Also assume (if v = 0) that K preserves polynomials at level 7y, see Assumption @
Then, integration by K in (2.20)) defines a continuous linear map from Z7 to Z7+F.

We prove Proposition and Theorem in Section below.

3. MAIN RESULT I: SCHAUDER ESTIMATES FOR GERMS

3.1. GERMS. Our first goal is to extend Theorem in the context of germs, that
is, families of distributions indexed by R%.

Definition 3.1 (Germs). A germ is a family F' = (F,),ere of distributions
F, € D'(RY), such that for any ¢ € D(RY), the map x — F,(p) is measurable.

We will denote G the vector space of germs. In general, we will see a germ F € G
as a family of local approximations of a global distribution f. The reconstruction
problem, i.e. the problem of constructing a suitable f from F', has been previously
considered in a number of different contexts, see [Hail4; |(CZ20; ZK22|. In [CZ20], it
was established that this reconstruction can be performed under the assumption that
F satisfies properties named homogeneity and coherence, which we recall now.

Definition 3.2 (Homogeneity and coherence). Let F' = (F,),cge be a germ.
Let a,a,v € R with a,a < v and r € Ny.
e F' is called a-homogeneous of order r, denoted F € Gf, ., if the following

homogeneity property holds, for any compact K < R% and X € [1,0):
|Fw(90§:\)| <A\ (3.1)
uniformly over x € K, A€ (0,)\], p € A" '

The space of a-homogenous germs (of any order) is G, = |J Ghom.,-
T‘ENO
e F is called («,7)-coherent of order r, denoted F € G5 ., if the following

coh,r’

coherence property holds, for any compact K < R* and X € [1,0):
|(Fy = Fo) (@) S A%(ly — | + A)~ (32)
uniformly over x,y € K, e (0,)\], pe &". '

The space of (a,y)-coherent germs (of any order) is Goyl := | Goop

coh,r*
TENQ
o ' is called (o, 7y)-coherent with homogeneity a if both (3.1)) and (3.2) hold,
for some order r. The space of such germs is denoted by

_§ y _ o a,y
gaa’y - g}?om N gcoh .

Remark 3.3 (Monotonicity). Increasing the exponents &, «, 7, homogeneity and
. . =!. / e — —
coherence become more restrictive: G**7 < G%*Y for any o' > @, o = «a, 7 = 7.
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Remark 3.4 (Coherence almost implies homogeneity). Any coherent germ
automatically satisfies the homogeneity relation (3.1)) with an exponent ax that may
depend on the compact K, see [CZ20, Lemma 4.12]. Requiring that a coherent germ
is a-homogeneous simply means that we can take ayx > a for any compact K.

Remark 3.5 (Homogeneity implies some coherence). In the definition of
(o, 7y)-coherent germs with homogeneity &, we require that & < v for convenience, to
rule out trivialities. Indeed, if a germ F' is a-homogeneous, then arguing as in [CZ20),
Proposition 6.2] one can show that F' is («a,7y)-coherent with v = & (and suitable ).
This shows that the “interesting regime” for the coherence exponent is v > a.

Remark 3.6 (Uniformity of r for coherence + homogeneity). If either relation
or holds for some order r, then it holds for all orders ' > r, simply because
BT < %". If these relations hold together, i.e. if a germ is both (c,y)-coherent and
a-homogeneous, then we can choose the “canonical” order r = r5 , given by

Tae := min {r € N: r > max{—a, —a}}
= (|max{—a, —a}| + 1)*.
Indeed, if (3.1]) and (3.2]) hold for some r > max{—a, —a}, it turns out that they also
hold for r = r5 4, see Proposition in Appendix

Remark 3.7 (Bounded order and singular integration). Ifa germ F' = (F) cpa
is a-homogeneous of order r, then each distribution F, is of order r. This follows by
Remark 2.2 see with 2z = z, because | F,(¢2)| < A* < 1 uniformly for p € %", by
, for any given A € N. As a consequence, we can define the germ KE = (KE,) ,epd
for any regularising kernel K of order (0,7), by Proposition m

Similarly, if a germ F' = (F}),ega is (a,y)-coherent of order r, then for any x,y € R?
the difference F, — F, is a distribution of order r, because |(F, — F,)(¢2)| < 1 by
(3-2), uniformly for ¢ € #", for any given A€ (0,0). Thus we can define K(F, — F)
for any regularising kernel K of order (0,r), but not necessarily KF,.

(3.3)

Remark 3.8 (General scales). For germs F' € G%*7 that are both coherent and
homogeneous we can get rid of A: if we assume that both relations and hold
for A = 1, then they hold for any A € [1,00). To this goal, we claim that for A € [1, ]
we have |F,(p2)| < 1, which is enough since 1 < A* and 1 < X\*(Jy — z| + \)7™*.
First note that by and for X € (0, 1] we have, for x,y € K and ¢ € #",

By (@)l < |(Fy = Fo) (@) + [Falin)] S A%+ A% g ymintaad, (3.4)

If we now consider A € [1, A], using a partition of unity we can write ¢} = >1_ (¢x)L
for suitable x;, € K, ¢, € %" and n (uniformly bounded, depending on A and K).
Then by (3.4)) for A = 1 we obtain |F,(¢})] < 1 for X € [1,\], as we claimed.

tWe also point out |[CZ20, Propositions 13.1 and 13.2]: leaving aside for simplicity the case v = 0,
it is shown that if both and hold for a single test function ¢ € D with §¢ # 0, then they
hold uniformly over ¢ € #" for r = r5,4 as in (the proof requires & < 0, however when o > 0
one can show that a («,7)-coherent germ must be constant, hence the conclusion still holds).
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Let us now introduce the semi-norms for the relations of homogeneity and coherence,
see (3.1) and ([3.2)): given a compact set K = R%, r € N and X € [1,0), we set

F, (o
|Flgs = sup % 3
hom; K, \,r zeK, /\5(075\] A
pERB”
E, — F,) (o
[Flgo = sup  u— P02l >

coh; K, A, r z,yeK, )\6(0,5\] )\a(|y — x| + )\)’Y—a .
pERA"

We next define the joint semi-norm for homogeneous and coherent germs, where we
fix r = ra,q as in Remark [3.6] see (3.3):
|Flgser = IFlgs, o +1Flgsy (3.7)

KT, coh; K\ A, rg, o

We often set A = 1 and omit it from notation. Note that a germ F' is («,~)-coherent
with homogeneity @ if and only if | F Hg?{;a,’v < o for any compact set K < R

3.2. RECONSTRUCTION. The Reconstruction Theorem was originally formulated
in [Hail4, Theorem 3.10], see also [OW19]. We present here the version given by
[CZ20, Theorem 5.1] and [ZK22| (we exclude the case v = 0 to avoid introducing
logarithmic corrections).

Theorem 3.9 (Reconstruction for v # 0). Let o,y € R with o < and v # 0.
For any germ F = (F,),era which is («,y)-coherent, there exists a distribution

R'F e D'(RY),

called a y-reconstruction of F', which is “locally approximated by F'” in the following
sense: for any integer r € Ny with r > —a and for any compact K = R* we have

|(Fe = RYF)(gz)] S X

. (3.8)
uniformly over x € K, A€ (0,1], p € A".
Such a distribution RYF' is unique if and only if v > 0. Furthermore:
e for any vy, one can define RVF so that the map F — RYF is linear;
e if the germ F has homogeneity a < vy, then R7F € Z%, i.e.
RY: GO — Z9, (3.9)

o ifa>0, then R7F = 0.

With an abuse of notation, we sometimes write f = R F to mean that a distribution
f € D' is a y-reconstruction of F), i.e. it satisfies (3.8), but we stress that when v <0
there are many such a reconstruction f is not unique. If the value of v is clear from
the context, we may omit it and simply write that f = RF is a reconstruction of F.

Remark 3.10 (Non uniqueness is tame). For v < 0 there is no unique -
reconstruction RYF', but any two y-reconstructions differ by a distribution in Z7.
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This follows comparing (3.8) and ([2.5]), because the precise value of r > —v in the
definition of Z7 is immaterial, see Proposition [B.1]in Appendix [B]

Remark 3.11. The fact that RY = 0 when a > 0 follows by (3.1]) and (3.8]), which
yield |RYF(©))| < A% + A7 < A\, since a < 7. If @ > 0, this implies that RYF = 0.

Remark 3.12 (Reconstruction bounds). If a germ F'is («a, 7y)-coherent, the germ
F—RF = (F, — R"F)era is not only («,)-coherent but also y-homogeneous, as
the bound ({3.8]) shows, i.e. FF —RYF € G*7. More precisely, by [CZ20; ZK22|,

IF — R Flgyon < [Flgar . (3.10)

oh; K/ X\

for the enlarged compact K’ = K ® B(0, A + 1). If F' has homogeneity &, then
< |Plges

|R7F s

3.3. SCHAUDER ESTIMATES FOR COHERENT GERMS. A natural and interesting
problem is to find a “nice” continuous linear map /K which “lifts the integration with
K on the space of coherent (resp. coherent and homogeneous) germs”. More precisely,
given @, a,v € R and a (-regularising kernel K, we look for a continuous linear map
K = K7 such that the following diagrams commute, for suitable &, o/, € R:

Ggon K7, Kr:P ga ~ Gy K17, Kp ga o A
va lm’ RVJ lm’ (3.11)
D/ K D/ Zd K Zo—/

that is RY (K??F) = K(RYF). In particular, we need to assume that the integration
K(RYF) is well-defined. This is a mild condition, as we now discuss.

Remark 3.13 (Integration of reconstruction). The integration K(R'F) is
always well-defined if the kernel K is translation invariant, see Remark [2.11]

For germs F' that are a-homogeneous for some & € R, the integration K(RYF') is well
defined if the reqularising kernel K is of order (m,r) with r > —a, by Proposition [2.12]
because R7F € Z% (see Theorem is a distribution of order r (see Remark [2.2))

Finally, for non homogeneous germs F, the integration K(RYF') is still well defined
if the reqularising kernel K is of order (m,r) for any r € Ny, again by Proposition m

We next discuss the definition of (K7#F),. A naive guess would be to define it as
KF, (3.12)

but this choice of germ is typically neither coherent nor homogeneous. However, it
turns out that we can nicely modify (3.12)) by subtracting a suitable polynomial term.

Remark 3.14. One “trivial” solution would be to define (K7#F), for all z € R? by
K(R'F).
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However, such a germ is independent of x and does not contain F,. This is not useful
for applications (e.g. to stochastic equations) where one needs germs which do depend
on z, to reflect the local fluctuations of the noise.

As a first ingredient (of independent interest), we show in the next Lemma how to
define pointwise derivatives for any distribution which is “locally homogeneous” on
test functions that annihilate polynomials, and we prove that subtracting a Taylor
polynomial yields a homogeneity bound for general test functions.

Lemma 3.15 (Pointwise derivatives). Let f € D' be a distribution which
satisfies a “weak” homogeneity bound at a given point = € R?, for some § > 0:

for any v € Bs : 1£(e))] S X° uniformly for X € (0,1] (3.13)

where we recall that functions in Bs annihilate polynomials of degree < 6.
Then f admits “pointwise derivatives” of any order < 9, defined by

DFf(x) := 1%117’7(@) eR  VkeN¢ with 0< |kl <0, (3.14)

for any n € D with {n =1 and §n(z)z'dz =0 for all 1 < |I| < & (the limit does
not depend on the choice of such n). We can thus define the Taylor polynomial at z

TN = Y D) L (3.15)

0<|k|<d
If moreover § ¢ N, then f — T2(f) satisfies a “strong” homogeneity bound at x:
(f = TN <X uniformly for X € (0,1], (3.16)

for any test function ¢ € D(B(0, 1)) which needs not annihilate polynomials.
Finally, the bound (3.16)) holds also for § € N if the following condition holds: for
any k € N§ with [k| = 0 and any ¢ € D(B(0,1)), one has supye1y D" f(e)] < 1.

Remark 3.16. We point out that Lemma provides a local version, for a fixed
base point z, of the following well-known result in Holder spaces (see e.g. [BL22,
Proposition A.5], or [FH20, Proposition 14.15]): for a distribution f € D'(R%) and an
exponent 6 > 0 with ¢ ¢ N, there is equivalence between:

(i) fecClie |f(¢d)| <\ over z in compacts, A € (0,1], p € %s.
(i) fis a CVI function and | f(y) — Y5 @) () x)’“‘ < ly — 2.

x!

In the case of integer exponents, only the implication = (lij) holds.

Consider now an (a,7y)-coherent germ F' = (F,),cre and a 7-reconstruction RYF
(which is unique if v > 0). Given a -regularizing kernel K, we will show in Theorem
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that f = K{F, — RYF} satisfies (3.13) with § = v + /3, hence we can consider

(KYPF), = KE, — T, (K{F, — RVF})

— )" (3.17)
Kl

=KE, — ) DMK{E, —R'F})(x) s

0<|k|<v+8

that is, we subtract from KF, the Taylor polynomial at = of K{F, — R7F}. In case
v+ B <0, we agree that T)*# = 0, that is, we define (K7?F), := KF,.
Note that the difference (K"’F), — K(R7F) admits the expression

(K"F), —K(R'F) = K{F, - R'F} — TP (K{F, - R"F}), (3.18)

which is always well-defined when F' is a coherent germ, as we now discuss.

We can now state our first main result, that we prove in Section

Theorem 3.17 (Schauder estimates for coherent germs). Let o,y € R
with o < 7 and v # 0. Consider an («,7)-coherent germ F = (F,),ra and a
y-reconstruction RYE (which is unique if v > 0), see (3.8)). Let 8 > 0 satisfy

a+p#0, v+ 5¢Ny, (3.19)
and consider a B-reqularising kernel K with range p of order (m,r) large enough:
m>v+08, r>-—a. (3.20)

Then the germ KVPF — K(RYF) is well-defined by and it satisfies
KIBEF — K(R'F) e GrHBiatB)n0a+h (3.21)

i.e. it is (v + ()-homogeneous and ((o + B) A 0,7 + B)-coherent, with the following
continuity estimate: for any compact K € R? and X € (0, 0) we have

IKPF — K(RYF)|| gr+pitarmrnon+s < cstg s |F — RYF|gyen (3.22)
Iix ’ o

with X' = 8(\ + p + diam(K)), and the RHS can be bounded by (3.10)).
If we further assume that K(RYF') is well-defined, see Remark|3.15, then also

the germ KYPF is well-defined by and the following holds:
o K¥PF is ((a+ B) A 0,7 + ()-coherent and (with some abuse of notation)
RP(KPF) = K(R'F), (3.23)
i.e. K(RVF) is a (y + B)-reconstruction of KVPF;

e if F' has homogeneity a < =, then K¥PF has homogeneity (a + 3) A 0,
provided
a+pB#0;
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o the map F — KVPF is linear and continuous, both on Goy — gég;ﬁ)w””ﬁ
and on GHY — GatBIA0(+B) A0+ yith the following continuity estimate:

for any compact K < R? and X € (0, 0),

K Flgarsnonss S csticsl Flgasr (3:24)
||IC%5F||Q(&4:13)Ao;(a+5)Ao,w+l3 S CStK’j\HF”g&;aﬁ, (325)
K\ Kl,>\/

with K' = K ® B(0,1+ 2)), X = 8(\ + p + diam(K)).
As a consequence, if we set
(@0, ) = ((@+P) A0, (a+8) A0,y + ),
both diagrams in commute, where KP is linear and continuous.

We finally show that the definition (3.17)) of the K"?F is canonical, in the following
precise sense. The proof of the next result is also given in Section [5

Proposition 3.18 (Canonicity of the germ K" F). If we postulate that
K"PF = KF, — P, (3.26)

then the only polynomial P, of degree < v+ [3 such that (3.23|) holds (i.e. such that
the diagrams in (3.11) commute) is P, = TP (K{F, — RYF}) as in (3.17).

4. MAIN RESULT II: MULTILEVEL SCHAUDER ESTIMATES

In many applications, the space G%*7 of all coherent and homogeneous germs is
“too big”. This happens for instance when one wants to define singular operations
on germs, such as the product with a non smooth function, or even a distribution:
one can typically make sense of such a product only for a few germs II*, hence the
best one can hope is to extend the product to those germs that are locally given by
linear combinations of the I1'’s. This leads to the notion of models and modelled
distributions, which are cornerstones of the theory of regularity structures |[Hail4].

4.1. MODELS AND MODELLED DISTRIBUTIONS. We fix a family II = (Hi)iel of
germs IT" = (TI%) ,cpe on R? indexed by a finite set 1. We view this family as a basis
to build germs F = {f,1I) through linear combinations with coefficients f*(x):

= (f, 1D, = Y fi(2) 1L (4.1)
i€l
We will call the basis I a model and the family of coefficients f a modelled distribution,
provided they satisfy assumptions that we now discuss.
To define a model IT = (IT*),c;, we require that each germ II* is homogeneous, and
furthermore that the vector space Span{Il}: i€ I} < D'(RY) does not depend on x
(i.e. IT}, is a linear combination of (II))je;, for any x,y € R?). This leads to:
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Definition 4.1 (Model). Fiz a finite set I and a family o = (o;)ier of real
numbers. A pair M = (II,T) is called a model on RY with homogeneities a if there
exists an integer r = ri € Ny (called the “order” of the model) such that:
(1) IT = (I")ser is a family of germs on R that are o;-homogeneous of order r,
that is for any compact K < RY and any X € [1, )

[T, (02)] < A%

_ 4.2
uniformly over v € K, N€ (0,\], p € #"; (4.2)

(2) T = (I'%}) are real numbers such that, for all i € I and x,y € RY,
= > i (4.3)

jel
We denote by M® the class of models with homogeneities o and we set, see

B3),
Mg o= sup Mo (44)

hom; K, \,r I

Remark 4.2 (Models in Regularity Structures). Our definition of a model is
more general than Hairer’s original definition [Hail4, Definition 2.17], because we do
not enforce the following requirements:

(1) Group Property: Ty, T,. =T,, (thatis Y T8 Tk =T7);

Ty Yz
(2) Triangular Structure: T%, =1,T3 = 0if j #iand a; > o;
(3) Analytic Bound: |T7,| < |y — x|%~%.
Property (1)) is natural, in view of ([4.3) (indeed, When the I1%’s are linearly independent,
the coefficients I')!, are un1vocally determined by (4.3) and (I)) holds automatically).
The role of propertles and (3] is discussed below see Remark (4.6 .
If the analytic bound holds, we can define the norm
7,

ai—ay "

(4.5)

T pme == max sup
Jel ayer |2 —y

Remark 4.3 (Bounded order and general scales). Given a model M = (IL,T")
of order r = r, each 1% is a distribution of order r, see Remark hence we can
define KIT!, for any regularising kernel of order (0,r).

We also note that if (z,y) — ')}, is locally bounded (e.g., if the analytic bound

holds), then it is sufficient to require the homogeneity property (4.2]) for A\ = 1. This
can be shown as in Remark , see (3.4]) and the following lines.

Example 4.4 (Polynomial model). The simplest choice of a model is obtained
taking as basis of germs the usual (normalized) monomials

XF = 7< — )"

R keNi. (4.6)
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More precisely, if we fix any ¢ € Ny, the polynomial model at level ¢ is defined by

pobz k _ ¢k
H = {H =X }keNg: |k|<e*

It is an exercise to check that Hpoy is indeed a model, as in Definition , with

k—l

- polyyk _ (= Y)"
ap = |/€|, (F y)xy = (k‘ — l)' ]l{ZSk}a (47)
where by | < k we mean l; < ky, Iy < ko, ..., lg < kgq. It is also easy to check that

the three additional properties (1)), and (3] . ) described in Remark [4.2) are satisfied
by the polynomial model.

We next define modelled distributions. Consider a germ F' = (f,II) as in (4.1)), for
some model IT = (I1%),c;. Applying (4.3)), for any z,y € R? we can write

F, - F, Z{Zr” )—fi(a;)}H;. (4.8)

el N gel

In order to ensure that F' is coherent, it is natural to require scaling properties of the
quantities in brackets. This leads to the following definition:

Definition 4.5 (Modelled distribution). Consider a model M = (II,T") with
homogeneities o = (;)ie; and fix a real number -y > max a := max{a;: i € I}.

A measurable function f = (f'(z))ir : R? > R is called modelled distribution
of order ~ if for any compact set K < R¢ and for any i € I, uniformly for x,y € K,

2.8 F ) - fi(=)
jel
We denote by DY = D}, = Dﬂa the space of modelled distributions of order -,

relative to a model M = (I1,T") with homogeneities c.. This is a vector space with a
Fréchet structure through the semi-norms

[f'@)] <1 and S ly—a7.

| 218, Fi(y) - fi(a)

jel

I/l = M f Moy, = sup |[f(@)| + sup (4.9)

T,o;K zeK, el zyekK, i€l ly — x|y~

Remark 4.6 (Consequences of additional properties). Our definition of
modelled distributions mimics Hairer’s original one |[Hail4, Definition 3.1]. The
additional properties of the models enforced in [Hail4], see Remark [1.2] ensure
that modelled distributions can be truncated: given a model M = (II*, T7"); je; with
homogeneities & = (;);er, denoting by I’ := {i € I: o; < 7'} the truncation of the
index set I at a given level v/ > min ¢ (so that I’ # ), then:

e the truncated family M’ = M|y = (II',17"), jer is also a model, thanks to
property (triangular structure);
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e given a modelled distribution f = (f*);e; of order v > 4/ relative to M, the
truncated function f’ = f|; = (f%)icr is a modelled distribution of order ~/
relative to M’, thanks to property (analytic bound).

Property also ensures that the spaces D7 contain non-zero elements: if ig € [ is
such that a;, = min e, then [V = 1,_, . hence defining f; () =1 and f;(x) = 0 for
j # ig yields f # 0 with f = (fi)ier € D7 (note that (f, 1) = TI%).

For any modelled distribution f relative to a model M = (II,T"), we now check that
the germ F' = (f,1I) in (4.1]) is coherent and homogeneous, see |CZ20, Example 4.10].

Proposition 4.7 (Modelled distributions yield coherent germs). Let
M = (IL,T) be a model with homogeneities ¢ = (a;)ier and set & := min a.

For any modelled distribution f € D), of order =y, the germ F = {f,1I) in
is y-coherent, more precisely it is (a,y)-coherent with homogeneity a:

feD = F={(fT)egumn,
Moreover, the map f — F = (f,1I) is continuous:
|Flgaas < 11 MMacg 1l (4.10)

Proof. By (83.5), the homogeneity semi-norm of F' can be bounded by
IFlgs ., <M1 s [F@IWge <l Mg @)

KA zeK jie

where ¢/ denotes the first term in the r.h.s. of (£.9), see (#.4). Turning to coherence,
by (4.8) we can bound, arguing as in [CZ20, Example 4.10],

|(Fy = F2) ()| < 11} T age (A + [y — 2])7~ A%,
where ¢} denotes the second term in the r.h.s. of (4.9). Then, by (3.6), we obtain

_ f
||F|\g;;g;mr < Hfep [Mae

which together with (4.11]) yields (4.10). O

Example 4.8 (Polynomial modelled distributions). Let f : RY - R be a
function of class C*, for some ¢ € Ny. Its Taylor polynomial of order ¢ based at z is

Fo() = ), & f(a)XE(),
k<t
where X* are normalized monomials, see (4.6). The germ F = (F},),cra can be
expressed as F = (f 7H2(21y>7 see (4.1), where Hiogly is the polynomial model in
Exampleand f= (fk<$))|k|<g7xeRd is defined by f*(x) := 0% f(z).

If f is Holder continuous with exponent v > 0 and ¢ = |v], it is an exercise to
show that f is a modelled distribution of order v, see e.g. [CZ20, Example 4.11].
In particular, by Proposition , the germ F' = (F,)zera = ¢ f,Hg}ly> of Taylor
polynomials of f is y-coherent (more precisely: (0,~y)-coherent with homogeneity 0).
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4.2. SCHAUDER ESTIMATES FOR MODELLED DISTRIBUTIONS. Given a model
M = (II,T") and a modelled distribution f € D},, by Proposition |4.7| we have that

F = {f,1I) in (4.1) is y-coherent .
If we fix a 7-reconstruction RYF (which is unique if 4 > 0) and a S-regularising
kernel K, the Schauder estimates in Theorem yield that

K2 F in (3.17) is (v + ()-coherent and  R(KF) =K(R'F).

Since the germ F' = {f,II) comes from a modelled distribution f, a natural question

arises: do we have KYPF = <f, ﬂ> for some model I and modelled distribution f ?
Our next main result shows that the answer is positive: see Theorem below,

which generalizes Hairer’s multilevel Schauder estimates [Haild, Theorem 5.12] as

well as Hairer’s extension theorem [Haild, Theorem 5.14]. We first need to define the

new model (ﬁ, f) and the new modelled distribution .

NEW MODEL (f[, f‘) The new model is labelled by a new set I, obtained by adding
to I all multi-indexes of homogeneity up to v + f:

I:=Tupoly(y+p8)  where  poly(t) == {keNZ: |k <t} (4.12)

where L denotes the disjoint union and we agree that poly(¢) = & for ¢ < 0.
The germs 11 = (I1,) s i the new model are defined by

X KIL, - Y DFKIL)(x)XE ifa=iel,
I = kepoly(aa+5) (4.13)
Xk if a = k € poly(y + 3),

xT

with homogeneities & = (&,),.j given by

o, +p ifa=1€el,
Ay 1= (4.14)
k| if a =k e poly(y + ).

We will show that I1, is well defined, thanks to Proposition and Lemma
and it satisfies the homogeneity condition (4.2)) with exponent &,.

We next define the coefficients ' = (Fb“)bael Using labels 4,7 € I and k,[ €

ay
poly(y + ) for clarity, we have the triangular structure
Iz if (b,a) = (j,1)elx 1,
Fba:(% 0 lk): 0 (b,a) = (j, k) € I x poly(y + ),
i e (PO if (b,a) = (I,7) € poly(y + ) x I,
oly\ 1k
(PP¥)zy  if (ba) = (I, k) € poly(y + ) x poly(v +8),
(4.15)
where I are the coefficients of the original model while I'®°%Y are those of the polynomial
model, see (4.7). It only remains to define - - - = Fify for I € poly(y + ) and i € I:
Lhi= >0 DIKIE)(@)Ty, — > (I*%)% DHKIL)(y) . (4.16)
jel': kepoly(a;+03)

a;+6>l]
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(The second sum is restricted to k > [, because (I'*°Y)!% = 0 otherwise, see (L.7)).

Also note that F“ # 0 only for |/| < maxa + f = maxjer o + 3.)
We will check by direct computation that condition (4.3]) in the definition of a
model is satisfied by II and I, see Section m

NEW MODELLED DISTRIBUTION f. Given a modelled distribution f = (f(x))ics
relative to the original model (II,T), we define for a € I = I 1 poly(y + )

(fi(x) ifa=iel,

fi(x) = 3 ZI 1) DH(KTE ) (@) (4.17)
ajf6>\k\ if a =k epoly(y+ ).
\ _Dk(K{<fv H>x_R,Y<.fa H>})(l‘)

(We point out that the three lines in the r.h.s. of (4.17)) correspond precisely to the
three terms Z, 7, N in the setting of Regularity Structures, see [Haild), (5.15)].)

We will prove that f is indeed a modelled distribution of order v + [ relative to
the new model (II,T), see Section [6.1.3]

Remark 4.9. For t € R, we define the restriction Q«;f of a modelled distribution
f = (f'())icr where we only keep the components f*(z) with a; < t, that is
We can then rewrite (4.17) more compactly as follows:

. fi(z) ifa=iel,

(x) =
DM(K{R(S, T = (Qapysfs Tu}) (@) if a =k e poly(y + B).

COMPATIBILITY CONDITION. Before stating our multilevel Schauder estimates, we
state a technical condition on the model M = (II,T") and the kernel K.

Assumption 4.10 (Compatibility). A model M = (I1,T") with homogeneities
a = ()i and a [-reqularising kernel K are called compatible if

(DF(KI:)),ere s a 0-homogeneous germ whenever |k| = a; + € Ng. (4.18)
We denote for K < R* and X > 0
Kl =Y, Y IDAKI)g (119)
i€l keNg: |kl=aitB

where we agree that [KI]x 5 := 0 if the sum is empty (i.e. a; + 3 ¢ Ny for alli e I).

Remark 4.11 (Compatibility is mild). Condition is trivially satisfied if
a; + B is non-integer for any ¢ € I. Even when some «; + 3 is an integer, one can
ensure compatibility by slightly decreasing > 0 to 8’ € (0, 5) so that all o; + 3" are
non integer (note that a [-regularising kernel K is also f’-regularising).
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We also note that condition is fulfilled when KII, is a polynomial of degree
< a; + 3, because DF(KII) = 0 in this case. In particular, if the kernel K preserves
polynomials (see Assumption @), condition only applies to non-polynomial
germs II'. Thus, in practice, the assumption of compatibility is often void.

Remark 4.12 (Strong vs. weak homogeneity). Since by assumption each germ
IT% is a-homogeneous, Theorem below implies that when «; + 8 = |k| the germ
(D*(KITY)) yepa is always weakly 0-homogeneous, see Definition [5.1|below. This further
shows that Assumption is not very demanding.

MULTILEVEL SCHAUDER ESTIMATES. We can finally state our second main result.
Recall the order 7 € Ny of a model M = (II,T'), see Definition [4.1]

Theorem 4.13 (Multilevel Schauder estimates). Let M = (II,I") be a model
with homogeneities o = (o;)ie; and order r = r € Ng. Fiz v > max a.
Let f € D}, be a modelled distribution of order v relative to M = (II,T'), so that

(f, 11y = (2]“(1’) H;) is a y-coherent germ,
zeR4

el
and fiz a y-reconstruction RY{f, Iy (which is unique if v > 0).
Fiz B > 0 with v + B ¢ Ny and let K be a -reqularising kernel of order (m,r)
large enough:
m > v+ f, r=or, (4.20)
such that M = (IL,T) and K are compatible (see Assumption[4.10 and Remark[{.11)).
Then we can define:
e a new model M = (II,T), see (#13) and [(@.15)-([@.16), indezed by I in (£.12)
with homogeneities & = (&) ,o; in (4.14) and with order ry = ri;
o a new modelled distribution f € D};ﬂ of order ~ + B relative to M = (ﬂ, f),

see (4.17)), so that
(oI = (Zf“(x) ﬂg) is a (v + B)-coherent germ;
zeR4

ael
in such a way that the following equality holds, with K* defined by .'
(Folly = K5I (4.21)
In particular, by Theorem we have (with some abuse of notation)
R7H(F, I = K (RS, II)), (422)

i.e. K(RYF,ID) is a (v + B3)-reconstruction of (f, Ty (which is unique if v+ 3 > 0).

The proof of Theorem is given in Section [6.1], and we proceed as follows.
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e In Section 6.1.1 we prove that M = (II,T") is indeed a model: we first check
the condition of reexpansion (4.3 for II and I" by a direct computation; then
we show that each IT% satisfies the homogeneity relation (4.2)) with exponent &;.

e In Section [6.1.2] we prove (4.21)) by a simple calculation; then relation (4.22)
follows as an immediate consequence of Theorem [3.17, see (3.23)).

e In Section we prove that f is indeed a modelled distribution, and we also
prove a continuity estimate, see (4.24]) below.

Remark 4.14. We can rephrase Theorem by stating that the map K77 acting
on germs can be lifted to a map f — f acting on modelled distributions, defined by
(4.17)), so that the following diagram commutes:

N _A,_g
Dy —— Dy,

<',H>l l<7ﬁ>

G LSRN Gr+8

where we set G7 := G%®7 and GV := G@+B)A0(@+8)A07+8 for short.

4.3. CONTINUITY AND FURTHER PROPERTIES. Note that the maps II — I
and f +— f = K" f are affine. We will prove that they are also continuous: recalling

(4.4) and (4.9), as well as (4.19)), we have
£ g < [Tt + (KT (4.23)
1l pyee < (M, + KM x) 1 £ Iy, - (4.24)

for some compact K’ 2 K, e.g. we can take K’ := K ® B(0, 2) as the 2-enlargement of
K. A similar continuity bound holds for the map I" — I, see below, provided
I satisfies the analytical bound in Remark

We now discuss enhanced continuity estimates. Observe that the space M< of
models is not a vector space, despite the semi-norm like notation | - | Ma , see ,
because the relation between II and I' is non-linear. Neverthelesé, given two
models M; = (I11,T'y) and My = (I, I'y) (with the same homogeneities o = (;)ier
and the same value of r = ry;, = rp,), we can consider the distance

[T — ol ye

which is well defined by (even though TI; — TT5 needs not be a model).

We next compare two modelled distributions f; € Dy, and f, € Dy, of the same
order 7y, but relative to different models M, = (I1,I'y) and My = (II5,I'y) (with the
same homogeneities a = (;);e; and r = rp, = rq,), as in [Haild, Remark 3.6]. To
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this purpose, we define for compacts K < R? the distance

535 Follog, = s follg, = WFus Fellog,
= sup |fi(z) = f5(2)]
zeK, el
S AT, ) — )5 )} - (fitz) - filx))
+ sup jel —
vyeK, il |z — y|re

We can improve the bound - via a local Lipschitz estimate, which shows that

the distance between f1 and f2 is controlled by the distances between f; and f; and
between the models II; and Iy, if [I1;[ x4e, and H‘fzml?}{, are uniformly bounded.

Proposition 4.15 (Enhanced continuity). Given any two compatible models
1y, Iy such that [KIli]g = [KIly|g = 0, see Assumptz'on and given any
corresponding modelled distributions f1, fa, the following bound holds:

1755 Fallpre < [ Mallaeg, 1135 Fallpres + [0 = Thaf pga, [l f2lly,
for some enlarged compact K' > K (e.g. we can take K' = K & B(0,2)).

We omit the proof of this result, since it is very similar to that of
We finally come back to the addltlonal properties (/1] . 3)) of the coefﬁ(nents r
that one may require in a model M = (II,T"), see Remark 4.2l We show that these

properties are preserved when one considers the new model M = (f[, r ).

Proposition 4.16 (Properties of reexpansion). Fiz a model M = (II,T), a
real number v € R and a [-regularizing kernel K which satisfy the assumptions of
Theorem [4.13 (that is, condition holds and I1 and K are compatible).

Consider the new model M = (11, f‘), see (4.13) and (4.15)-(4.16). If any of the
properties , , mn Remark is satisfied by I', then the same property is
satisfied by I' (with respect to the homogeneities & = (&) o i (4.14) ).

Furthermore, if property holds, then recalling the norm (4.5) one has the
continuity estimate

IThe < (e, + [KIk) [Tl (4.25)
where K' := K ® B(0,2) is the 2-enlargement of K.

5. PROOF OF OUR MAIN REsuLT 1

In this section we establish our first main result, the Schauder estz’mates for coherent
germs in Theorem Along the way, we also prove Proposmon canom(:lty of
the germ K74 F), Proposmon (singular integration) and Theorem 2.13| (classical
Schauder estimates).

Rather than establishing Theorem by direct calculation, we prefer to divide
our proof into two steps.
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(1) First we establish that the operation of integration F' — KF', that is, (F})ecga —
(KF,),era, maps the space of coherent and homogeneous germs G%*7 into a

new space of weakly coherent and homogeneous germs, denoted by gf;e*f et Bth

for which the coherence and homogeneity conditions and (| . ) hold for
test-functions which annihilate suitable polynomials (thls is reminiscent of
Holder-Zygmund spaces Z, see Definition . This is a direct generalisation
of the classical Schauder estimates Theorem [2.13] see Remark [5.5] below. As a
consequence, by Remark [3.12] we have that

F - RF e gnon — K{F-—R'F}egG GrHBiatBats (5.1)

weak

(2) Then we prove that a weakly 7'-coherent and ~'-homogeneous germ H (with
the same exponent of coherence and homogeneity) can be turned into a usual
coherent and homogeneous germ by subtracting a Taylor polynomial 77 (H):

He gl — H— TA’/(H) e GV n0Y

weak

(note that o becomes o A 0). For the germ H = K{F — RYF'} in (j.1]), since
the difference H — T7*(H) equals K" F — K (RVF), see (3.17), we obtain

F - RF e Gren — K"WF —K(R'F) e GrHBi(atB) A0y +S

This implies that K2 F is ((a + 3) A 0,7 + (3)-coherent, and also that K (R F)
is a (v + f)-reconstruction of K'AF.

If, furthermore, we assume that [ has homogeneity &, then R'F € Z°
and consequently K (RYF) e Z%# by the classical Schauder estimates. Then
K (RYF) satisfies the homogeneity bound with exponent (a+ ) A 0, which
implies that K% F has homogeneity (& + ) A 0 (since & + 3 < v + ).

5.1. WEAKLY COHERENT AND HOMOGENEOUS GERMS. We introduce a class
of weakly coherent and homogeneous germs, generalising Definition We recall
that %5 denotes, for 7 € Ny and ¢ € R, the space of test functions ¢ € %" which
annihilate polynomials of degree < 9, see ([2.4)).

Definition 5.1 (Weak homogeneity and weak coherence). Let F' = (F,) cpa
be a germ. Let a,a,v € R with a,« <y and r € Ng.

e F' is called weakly a-homogeneous of order r, denoted F € Qf_v“eakhom;r, if for
any compact K < R and \ € [1,0) the following bounds hold:
Fo(p)l £ 4% and  |Fa(n)| S 1,
uniformly over v € K, A€ (0,)\], o € B~ and 1 € B".

The space of weakly a-homogeneous germs (of any order) is G&

weakhom —
U gweak hom;r-
TENQ

(5.2)
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o I is called weakly (a,~)-coherent of order r, denoted F' € Gill\ con., if for
any compact K < R% and \ e [1,0) the following bounds hold:

(Fy = F) (@)l S A(ly =2l + A7 and  |(Fy — F)(¥)| S 1

_ 5.3
uniformly over v,y € K, A€ (0,)], o € . and ¢ € H#". (5:3)

The space of weakly (a,v)-coherent germs (of any order) is Gool

weakcoh —
U gweak coh;r*
TENO

o F is called weakly (o, y)-coherent with homogeneity & if both (5.2)) and (5.3)
hold, for some order r € N. The space of such germs is

weak — Yweakhom M

a,y
weak coh *

Remark 5.2 (Usual vs. weak homogeneity and coherence). The first conditions
in and involve different Classes of test functions, namely ¢ € % and ¢ € %,
while the second conditions in and (| involve 1) € #". However, when a < 0
and v < 0 we have #. = @’” @’” hence (6-2) and (5.3) reduce to the usual
homogeneity and coherence conditions and .

In particular, coherent and homogeneous germs are weakly coherent and homoge-
neous: G¥*7 < Goivland the inclusion is an equality when @ < 0 and v < 0.

Remark 5.3 (General scales). As in the Remark - for germs F' = (F,),cpd
that are both Weakly homogeneous and weakly coherent we can get rid of A, i.e. if
both relations and (5-3) holds for A = 1, then they hold for any A € [1, ).
To this purpose, for A € [1,A] we decompose ) = D77, (1), for suitable ), € K,
wk e %’” and n (uniformly bounded, depending on A and K); by the second bounds

and (53) we get |F,((44))] < |(F, — E)((@e)}b) + \F ((r)z)| < 1, hence
|F (cpx)\ < 1 for A e [1, ], from which the first bounds in and (j5.3)) follow.

We introduce semi-norms for weakly homogeneous and coherent germs, correspond-

ing to (5.2) and (5.3):

|Fx<‘z@>\)|
Flga = su —T +  su F.(v.)], 5.4
” ngeak hom; K, \,r weK, /\2075\] Aa ek, wlz@r | (l/J )| ( )
pEARBL
Flge = s A EEIEL Ly, - Ry
weak coh; K)\ T LL‘,yEK, AE(O,S\] )\a(|y - .ZE| + >\)’7 « ;t,yef(7 we%”
PERB

(5.5)

We next define the joint semi-norm where we fix r = r5, as in (3.3)), i.e. the smallest
non-negative integer r > max{—a, —a} (see Proposition in Appendix [B)):

[ Flgaen = [ F[gs _ HFlgen : (5.6)
weak; K,

weak hom;K,/\,ra weak coh; K, A, 7

By Remark , we may set A = 1 and omit it from the notation.
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5.2. CONDITIONAL PROOF OF THEOREM [3.17l We state two basic results on
(weakly) coherent and homogeneous germs, which will yield Theorem as a
corollary. We also deduce Proposition [3.18]

The first result, proved in Section below, describes how a regularising kernel
K acts on germs F' = (F,),cra by integration, i.e. we consider KF' := (KF},) cga. We
recall that KF' is well-defined for homogeneous germs, see Remark [3.7] For coherent
germs, only K(F, — F}) is ensured to be well-defined, see again Remark , but also
in this case we will consider the germ KF' := (KF,),cge proving that it is weakly
coherent: this is an abuse of notation, justified by the fact that for the weak coherence
relation only the differences KF,, — KF,, = K(F, — F,) matter.

Theorem 5.4 (Integration of germs). Let K be a B-reqularising kernel of order
(m, r) with range p, see Definition . For every compact K < R? and \ € [1, o)
there is a constant cst’K,j\ < oo such that the following holds, for any a,a,v € R
with &, a0 < 7y:

o if m > a + 3, integration by K maps continuously Gf, . to g;‘;:aihom .

reN:  [KFlgas  <ostis|Plog, oo (5.7)

gOH‘BO"‘FB .

o if m >y + j3, integration by K maps continuously Gy, weak coh: 7

VreN:  |KF|gessoes < cstley [Flgen (5.8)

weak coh; K, \,r coh; K,2(A+p),r
As a consequence (see Remark |3. 0 , if we assume that
r > max{—a, —a}, m>~y+0,

then integration by K is a continuous linear map from G¥®7 to GETHatPats.

||KFng;i2?;§W+3 < ot ||FHQ?‘(§&+,J) - (5.9)
If furthermore K preserves polynomials at level v, see Assumption then

integration by K is also a continuous linear map from GE%4T to GotGetPr+

Remark 5.5 (Classical Schauder estimates). Given any & € R and any distribu-
tion f € Z%, see Definition 2.1} we can consider the constant germ (F, = f),epe Which
is clearly coherent for any exponents «,y and weakly homogeneous with exponent a,
that is F' e G2 By Theorem , we see that (KF,) e GEH54748 which means

that Kf € Z2*# (compare (5.2) with (2.5])). We thus obtain the classical Schauder
estimates, Theorem [2.13] as a corollary of Theorem

Our second basic result links weakly coherent and homogeneous germs with ordinary
ones, in the special case when homogeneity and coherence exponents coincide: o = 7.
This will be proved in Section below, together with Lemma [3.15] which ensures
the existence of pointwise derivatives for suitable distributions.
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Theorem 5.6 (Positive renormalisation). Let o,y € R with o <~y and
o F# O, Yy ¢ No.

If a germ F = (F)yera € Gl is weakly (o, 7y)-coherent and weakly y-homogeneous,

subtracting the family TY(F) = (T,)(Fy))eera of its Taylor polynomials, see (3.15)),
we obtain the germ

G, = F,—T)(F,)

= F,— )Y, D'F(x)

0<|k| <y

G=F-T'F, that is (- —x)*

kKl

which is well defined, (a A 0,7)-coherent and y-homogeneous, i.e. G € 97““0’7.
The map F — G is linear and continuous: for any compact K € R? and X\ > 0

[Gllgysr < estrs [ Flgren (5.10)

eak; K,\/

for X == 4(\ + diam(K)).

Remark 5.7. The terminology “positive renormalisation” is inspired by [BHZ19],
where this notion is related to an operator called A" which yields an algebraic
description of the subtraction of Taylor polynomials, see [BHZ19, Lemma 6.10 and
Remark 6.11] and [FH20, section 15.3].

We can now deduce Theorem from Theorems [5.4] and [5.6]

Proof of Theorem[3.17. Let F be an («,7)-coherent germ for some a < 7. Let R7F
be a 7-reconstruction of F', see (3.8)), so that (see Remark |3.12])

F-—RFegr.

We stress that F' — RYF' is both coherent and homogeneous, even when F' is not

homogeneous. By Theorem , using the assumptions (3.20)), it follows that
K{F —R'F} := (K{F, — R"F})cpa € GIL3HP7HF (5.11)

weak

By assumption a+ 3 # 0, v+ ¢ N, see (3.19)), therefore we can apply Theorem 5.6
to the germ K{F — R7F} to obtain

K{F —R'F} —T*° (K{F _ R’YF}) e GrPiatf)r0y+h
Recalling (3.17))-(3.18]), this can be rewritten as
K"F —K(R'F) e GrH+BiatB) A0 4B (5.12)

which proves (3.21]). If we assume that K (R7F) € D’ is well-defined (note that it is a
fixed distribution, which does not depend on z), it follows that K"#F is well-defined
and is ((a+ ) A 0,7 + )-coherent. The property of homogeneity in means
precisely that K (RYF) is a (v + )-reconstruction of K77 F, see (3.8)), that is

R KTPF) = K(RTF).
The continuity estimate (3.22) follows by ([5.10]) and (5.9).
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We finally assume that F' is also a-homogeneous and we establish the homogeneity

of K¥PF. We know that RYF € Z%, see (3.9)), hence KRYF € 294 by the classical
Schauder estimates, see Theorem If we view KRYF' as a constant germ, it is
(o/,7')-coherent for any «’,~" and has homogeneity (& + ) A 0, hence

KRYF e Glatintia’s’ (5.13)

Since a < 7, summing ((5.12)) and (5.13)) we obtain

KYPE e g(&+/3)A0;(a+/3)A0ﬁ+B '

Finally, the continuity estimate (3.24)) follows from ([3.22)-(]3.10]). Furthermore, for
(3.25)) we use the fact that

IK(RYE)|ga+srno < [K(RVE)| gass
hom;K,A\,r K/, X\,r

for K’ := K@®B(0, \), which follows from the definition of homogeneity when a+3 < 0

and from (5.29) when a + 8 > 0. Now the right-hand side can be bounded by the

classical Schauder estimates and the reconstruction theorem. U

We then prove Proposition |3.18]

Proof of Proposition[3.18. Set K"#F := KF, — P, as in (3.26)), where P = (P,),cpa
for the moment is an arbitrary germ. Assume that lds7 i.e. that K(RF)
is a (v + B)-reconstruction of K¥#F. Then, if we define G := K{F — R"F}, for any
1 € D(B(0,1)) we must have, as A | 0,

(Go = Po)(4y) = (K™F = RVF)(¢3) = O(N™F).

We already observed in (5.11)) that G € GI5*+P7%5 1y Theorem [5.4L In particular,
for any x € R?, the distribution f = G, satisfies the assumption ([3.13)) of Lemma m

with § = v + 8, hence (G, — T7P(G))(¥2) = O(N*+#) by (3.16). We then obtain
(P = TH(G) (W) = ONF7).

x

Assume now that P, is a polynomial of degree < v+ 3. Then Q, := P, — T)*?(Q)
is a polynomial of degree < v + 8 with Q,(¢2) = O(A"*P), for any ¢ € D(B(0,1)).
But this implies that @, = 0: indeed, for any k € N¢ with 0 < |k| < v + 8 we have

(0"Qu) () = (=N MQ.((0*4);) = O H) —s 0,

AL0
hence, if we choose 1) with {1 = 1, we obtain 0*Q,(z) = lim,}o(0*Q,)(¢3) = 0. O

The rest of this section is devoted to the proof of Theorems and [5.6, In the
next subsection we first discuss some technical tools, which will also yield the proof of
Proposition (integration of K with a sufficiently nice distribution f is well-defined)
and Theorem (classical Schauder estimate).
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5.3. PRELIMINARY TOOLS. Fix a test function ¢ € D. A key ingredient of our
proofs is a convenient representation for the function K#*p?, recall , provided
by Lemma below. This result is analogous to [FH20, Proposition 14.11}, which
however only considers the translation invariant case K, (z,y) = K, (y — x).

We first describe heuristically the result, focusing for simplicity on K¥*¢* = K* .
Given a f-regularising kernel K with range p, as in Definition , by properties ([1)

and we can write approximately
Kn(z,y) = 277" (y — 2)
for some test-function ¢ € D, and thus, by ([2.19)),
K o) =2 | @0 (- ) ds. (514
R4

For A > p2~", we can pretend that the test function ¢*, which has the larger scale, is
approximately constant on the support of 1?2 ". This yields the approximation

for A>p27" 0 KipMy) > 277 (y)  (with > ).

For A\ < p27", exchanging the roles of ¢ and 1 would yield K**(y) ~ 277 nr2 ™" (y)
with 7 ~ ¢, but a better approximation can be obtained if we assume that ¢
annihilates polynomials up to some degree ¢ € Ny: subtracting the Taylor polynomial
of 2" at order ¢ based at y in the integral in (5.14)), we obtain

for A < p27": KEMy) =~ 278 (27 \)+L 027" (3))  (for some ( € D).
We can now state the precise result. Its proof is given in Appendix [A.T]
Lemma 5.8 (Integrating K, with test functions). Let K be a 3-regularising
kernel of order (m,r) with range p, see Definition 2.5 Fiz X € [1,00) and an

integer c € Ng u {—1}. For every compact K Q_Rd and any test functions ¢ € A,
we can write, for alln € Ny, z € K and X € (0, \],

« Ay) = {2_6" 2 (y) for p27" < A, (5.15)

nre 2—,Bn (Zn)\)min{c-i-Lm} Cg(pQ*")(y) fOT’ p2—n > )\’ c
for suitable (explicit) test-functions

n= n[”’)"“”"p] € cstyx A, ¢ = (["”\’x’“"] € csti B . (5.16)

where csty 5 < o0 depends only on K, X and on the kernel K.
If furthermore K preserves polynomials at some level cq € Ny, see Assumption [2.6,

we can improve (5.16)) to

n= 77[”’/\"”’“"] € csty x By, €= C["’A’x’“"] € csty y %y

min(c,co) ? min(c,co) *

(5.17)

Remark 5.9. Tt follows from the proof of this result that the constants csty
in (5.16]) and (5.17) depend on the constants cx appearing in items and in
Definition [2.3] as well as on the range p of the kernel K.
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We close this subsection with the proofs of Proposition (singular integration)
and Theorem [2.13 (classical Schauder estimates).

Proof of Proposition[2.13 Let K be a S-regularising kernel of order (0, r) with range p.
Let f be a distribution of order r, so that by Remark n see @ with z = 0,

YN e [1,0): sup  |f(n)] = C(X) < +o0. (5.18)
nedBr, Ae[1,\]
Let us show that Kf is well-defined by ([2.20] - as a distribution of order r, i.e. by ([2.7)
YAeN: sup [Kf(¢")| < +o. (5.19)
PERA”

Given A € [1,0), we apply Lemma with ¢ = —1, in particular by (5.15))

K*(p B 2—,371 7]25\ if p2—n < A
2B 227 if p27 = X

for some test-functions 7, ¢ € cst %". Both scaling exponents 2\ and 2(p27") = 2\
take values in [1, \'], where we set \ := max{2),2p}, hence by relation (5.18) we
can bound |f(K*¢)| < C(N)27#" uniformly over n € N. Thus, the sum in (2.20)
converges and furthermore holds. 0

Proof of Theorem [2.13. We give a simple proof of Theorem [2.13]exploiting Lemmal5.8]
in the same manner as in [FH20, Section 14]. We will also perform similar calculations
when proving Theorem [5.4] below.

We fix v € R, a f-regularising kernel K of order (m,r) with range p, where we
assume that m > v+  and r > —v, see . When v > 0, we also assume that K
preserves polynomials at level ~, see Assumption [2.6]

Let us fix f € Z7. First we note that f is a distribution of order r by Remark [2.2]
hence by Proposition the integration Kf is well-defined by . It remains to
show that Kf € Z7+4_ that is, ||KfHZ:{+B < o for any compact K < R%, see (2.5).

Fix K < R¢ compact. We take z € K and \ € (0,1]. We first estimate Kf(p)) for
€ B .5, see . We define
N, =min{n € N: p27" < A},

and we cut the series in two regimes. By Lemmawith A=1,¢=|y+p]and
co = |y], we can express Kn<px through formula (5.15) (where min{c + 1,m} = ¢ + 1,
since m > « + f3): for suitable test-functions n = n™ @¢l and ¢ = ("A#¢] we have

Ny—1 400
Kf(gh) = Z FIKEed) + > f(Kigd)
L (5.20)
= 2, 2@WNTAEET) + 3 2 ).
n=0 n=N

We have 7, ¢ € cstg1 %, see (5.17). Since f € Z7 and 7 > —y by assumption, we
can bound f(¢?* ") and f(n*) by (2.5) and sum the geometric series to get (note
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that c+ 1>~ + )

Ny—1 +00
Kf(ed)] < D0 270 @mn)stiam 4+ Y 27t < A8, (5.21)
n=0 n=NA

where the multiplicative constant depends only on the kernel K, the compact K and
the distribution f, as well as on A. This concludes our first estimate.
We next bound Kf(p,) for ¢ € %" which may not annihilate polynomials, see ([2.5)).

By Lemma with A = 1 and ¢ = —1, we have an analogue of ([5.20) with A = 1:

Ni—1 +00
Kf(p,) = D277 f(C") + ) 277 f ),
n=0 n=N1

for suitable 1, € cstg 1 #". Since 2 < 2p27" < 2p for n < Ny — 1, we can bound
|£(¢%?7) < 1and |f(n?)] < 1 by (2.6), because f is a distribution of order 7, hence

Kf(p)l < > 277" < 1. (5.22)

neN

From the calculations above, the estimates (5.21)) and (5.22)) hold uniformly over
re K, e(0,1], pe B 5 for any r > —v. In fact, from the results of Appendix ,
see Proposition this remains true even for r > —y — 3, and thus f € Z7%5.

By tracking the constants in the estimates, we have shown that

Kl 2500 < 1f122,.

where the compact K’ > K on the right-hand side depends only on K and the kernel
K, whence the continuity of the map Z7 — Z7*# f — Kf. O

5.4. PROOF OF THEOREM [5.4, We are going to prove the bounds (5.7) and

(5.8). Then, in order to obtain the estimate (5.9) which proves continuity from
G to GEETAFPAHE it suffices to choose 1 = 74,4 as in (3.3)), recalling Remark

weak

and Proposition in Appendix . The second part, i.e. continuity from G&%” to

weak

GoTBatBath g proved in the same way, using rather than of Lemma .
Let K be a 3-regularising kernel of order (m,r). We fix a compact K = R? and

A € [1,00) and we derive estimates that are uniform for v,y € K and A € (0,\]. The

decomposition argument is the same as in the proof of Theorem [2.13]

(1) Weak homogeneity: proof of (5.7). We assume that m > a + 5. Recalling ((5.4)),
we need to show that there is a constant cst’ = cst’. ; < oo such that, uniformly
for z € K, for A € (0, \] and for pe By, zand e B,

KE(03)] < est’ || Fllgg AP KE (1)] < est! | Fllgg

hom; K,2(A+p),r hom; K,2(A+p),r )
Given ¢ € AL, 5, we apply Lemma 5.8 with ¢ := |a + 3] (note that ¢ € ;).
We set Ny :=min{n € N: p27" < A} and we split the sum in ([2.20)):

N)\—l —+ 00

KE(¢)) = Y, Fu(Kipd) + D) Fu(Kig)).

n=0 n=Ny

(5.23)
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From (5.15)), since min{c + 1, m} = ¢+ 1 because m > a + 3,

N)\ 1 —+ 00
KE,(p)) = >0 272N (G ) + > 27 E (), (5.24)
n=0 n=N)

for ¢,m € csty x #", see (5.16)). Since F is a-homogeneous, see (3.5)),

Ny—1
‘KF QDZ,)‘ <CStK}‘|F”g§omK2(>\+p)r{ Z 2= Bn 2”)\)04—12 no + Z 2~ ,Bn)\a}

n=0 n=N)
Since ¢+ 1 > a + 3, the geometric series yield the first bound in (5.23)).
Given 1 € %" (which needs not annihilate polynomials), we apply Lemma
with ¢ =4 and A\ = 1, ¢ = —1. Similarly to (5.24)), with A = 1, we can write

N1—1 +00
KE, (1) = Y 277 F(C0*) + > 27" Fy(n?) (5.25)
n=0 n=N1

for (,n € csty1 A", see (5.16). Since F' is a-homogeneous, see ({3.5)),
KB < estiea | Flgg, - 27, (5.26)
neN

which completes the proof of ([5.23)).

(2) Weak coherence: proof of (5.8)). We now assume m > v+ 3. Recalling
need to show that, uniformly for v € K, A € (0, ] and for p € & 4, w € %””

KF, = KRIED] < o [Flazg, g, Aol 770
(KF, — KE) ()] < ost! [Flgag
By (220)

(KE, = KE,)(3) = D (F, = F)(Kiey)

neN

For ¢ € %7, 5, we apply Lemma with ¢ := |y + ] (note that ¢ € #.) and
we cut the sum as before, using |-D and min{c+1,m} =c+1bym >~y +f:

(KE, — KE,)(¢3) =

Ny—1 s
= D, 27N, — F)(GPT) + Y 270 (E, - B
n=0 =N

for ¢,m € csty 5 A", see (5.16]). Since F is (a,y)-coherent, see (3.6)),
(KF, — KE)(2)] <

Ny—1
< estucs [ Flgea { DIt R

+0
+ > 27y — 2]+ A)M}.

TL:N)\
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Bounding (Jy — x| +27")7"® < |y — 2|7~ + 270~ and recalling that ¢ + 1 >
v+ 3 = a+ [, we can estimate the first sum in the r.h.s. by

Ny—1
)\c-i-l Z {Qn(c+1—o¢—ﬂ)|y - x|7—a + 2n(c+1—7—6)} < )\a+5|y _ x|"/—o¢ + )\7+B

n=0

S A B(ly — 2| + A)7T7

Also the second sum in (5.28)) gives A**#(|y — z| + X\)7~2, therefore we obtain
the first bound in (5.27)).

For the second bound in (5.27), we argue as in ((5.25))-(5.26]): given ) € B"

(which needs not annihilate polynomials), we can write

Ni—1 +o0
(KE, —KE)(We) = 35 277(F, = F)(GP) + )] 277 (B, — F)()
n=0 n=N1

for (,n e cstx1 A", see (5.16). Since F is («, y)-coherent, see (3.6)),

(KE, — KE) ()] < cstiea | Flgey, Y27,
neN

which completes the proof of ((5.27)).
This completes the proof of Theorem [5.4] O

5.5. PROOF OF THEOREM [5.6f HOMOGENEITY. In this subsection we prove
“half” of Theorem [5.6 showing that a weakly homogeneous germ can be turned into
an ordinary homogeneous germ by subtracting a suitable Taylor polynomial.

Theorem 5.10 (Positive renormalisation of weakly homogeneous germs).
If a germ F = (Fy)era € gg‘geakhom;r is weakly a-homogeneous of order r € Ny, then
all pointwise derivatives D*F,(z) for x € R and 0 < |k| < & are well-defined by
and they satisfy the following bound, for any compact K < R* and XA > 0:

sup | D*F,(z)| < cst | F | ga for 0 < |k| < a, (5.29)
reK

weak hom; K, \,r

where cst > 0 is a constant depending only on &, \,r and on the dimension d.
Recalling (3.15)), we can then define the germ G := F — T*(F), that is

Go = Fp—T2F)=F.— ), D'F(x)XE.
0<|k|<a
(1) If a ¢ Ny, then G is a-homogenenous, i.e. G € Gp ., and for all compact
Kc<cR*and A\ >0, re Ny
: < cst’ - :
IGlgs < est’ |Flg , (5.30)

weak hom; K A,

where cst’ is a constant depending only on a,r and on the dimension d.
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(2) If @ € Ny and if furthermore D*F € Gy for all multi-indices k with |k| = a,
then G € G2 and, for all compact K < R? and A\ > 0, r € Ny,

IGlog < cst’ (IFlge + 2 D Fl ),

weak hom; K, A, _
|k|=a

where cst’ is a constant depending only on &, r and on the dimension d.

This result turns out to be a corollary of Lemma [3.15 which we prove first.

Proof of Lemma[3.15. We fix a distribution f € D’ such that (3.13)) holds, i.e.
for any ¢ € B; : 1£())] < A°  uniformly for A € (0,1], (5.31)

for some fixed x € R and 6 > 0 (recall the definition (2.3]) of %s). We first show that
derivatives D* f(z) defined as in exist, then we prove the bound (3.16).

Let us fix any test functionn € D with {n =1 and {n(x) 2! dx = 0 forall1 < |I| < 4.
Without loss of generality, we assume that supp(n) < B(0,1). We claim that

(- if =k,
0 ifl#k.

:L'l

Vk,le NI with 0<|I] <0: J
R4 l'

Fn(z) de = { (5.32)
If I; < k; for some ¢ = 1,...,d, this holds by integration by parts, because ﬁfq:i = 0.
If | > k, again by integration by parts, the integral equals (—1)* §_, % n(x) dx,
which gives (—1)!" for I = k while it vanishes for [ # k, because 0 < |l — k| < |I| <6
and 7 annihilates monomials with this degree.

Let us check that the limit in (3.14) does not depend on the choice of n: if 7 is
another such function, then 0*(n — 7) annihilates monomials z! for any 0 < |I| < 4,
by (5.32)), hence by (5.31)) and the definition of distributional derivative, for |k| < d,

D f(m}) = DF () = (=N f (05— #))3) = O(X W) —> 0.

A0

We next establish the limit in (3.14]). For any A € (0,1] and N € Ny, we can write

N
—( 1) —(n+1) —n
DFF> ) = DR FOR) + Y DR =), (5.33)
n=0

Let us define the function

N

p()=n2() —n() =2(2-) = n() (5.34)
so that
DR fl> " =) = (AT 2R (@) ) = (AT M@ )2
= (=72 F((@F)* ).
Note that 0¥y € %B;s for any k € N&, by (5.32)). Then our assumption (5.31]) yields

‘Dkf(né\Q*("“) . n;\T")‘ — )\ Ikl onlk| |f((ak90);\2*")} < A\~ Iklg—n(3—Ikl) 7 (5.35)
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hence the sum in ((5.33)) converges for 0 < |k| < . This shows that the limit
D*f(x[A) := lim D*f(m* ") (5.36)
—00

exists in R for any fixed A € (0,1].
Let us show that the limit in ((5.36)) does not depend on A and it coincides with
the limit in (3.14). Fix A, \ € (0,1] and define ¢ := n* —n", so that we can write

D*f(x|A) = DFf(eN) = lim DFf(2 ) = lim 2VHf((0%2)2 7). (5.37)

Note that still holds if we replace n by n* (because {n* = 1 and {n*(z) 2! dz =0
for all 1 < |I] < 6), and similarly for n*". It follows that 0*¢ e Bs for any k e N¢,
hence |f((*@)2 )| = O(27N%) as N — oo, by (5.31). In view of (5.37), we obtain
D¥ f(x|\) = DF f(z|N) for 0 < |k| < 6, hence the limit in does not depend on
A and we simply call it D* f(z). Recalling (5.33)), for any A € (0, 1] we can write

(n+1)

D*f(z) = D*f(m) + > DA fm> ™ =)
=0 (5.38)
_ ( )|k|f ak Z A~ lon \k:|f (ak ))\2,")7

with ¢ defined in terms of n by (5.34). The first line in shows that D*f(z)
does coincide with the limit in (3.14)), because by (5.35)), for |l<:\ <9,

+00
ke A\ Pk < 5=kl o—n(5—[kl) < o~k
|D*f(n}) Df@”~§k 2 SN 0.

We now prove (3.16). Recalling (3.15]), we set for short
ok
g=f=TXfH=f— D, Df(@)X, where Xj():= e k,”” :
0<|k|<6 ’
We fix an arbitrary ¢ € D(B(O 1)) and we need to prove that
g() = — > D) X)) = O(N). (5.39)
0<|k|<0

First consider the case § ¢ N. Since X¥(¢02) = AFIXE(1), the representation formula

for D¥ f(x) yields
g(d) = f2) = Do AXE@) (=AM F((0"n)))

\ 0<|k|<6 |

- (5.40)
— S ARxE@) S (A2 (k) |
0<[k|<d n=0

=B
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Recalling ([5.35]), and summing the geometric series, we obtain

IB| < 2 A () io)\awd g-n(-IKl) _ \0 Z XS oy
< K 1 <)

— 2—(6—IK)
0<|k|<d n=0 0<|k|<d

To prove ((5.39)), it remains to show that also |A| < \°.
It is convenient to define the function

br=og— Y (—DHRE(W) . (5.41)

0<k|<s

When 6 ¢ N, the sum ranges over 0 < |k| < & and we can write A = f(¢)). Then the
desired bound |A| < \° follows by assumption (5.31]), because we claim that

)e Bs. (5.42)

Indeed, we clearly have 1) € D(B(0,1)) and, moreover, Xé(zﬂ) = S”;—,l zﬁ(x) dx = 0 for

any [ € N§ with 0 < |I| <6, by (5.32).
Finally, consider the case where § € N. We modify (5.40) writing A = A; + A, with

A= WD) — ) AHEE@) (AT F(())

0<|k|<d

Ay = Y AHXE(@) (=AM £((0n)2) -

|k|=5

We can bound |A;| < \° as before, while Ay can be rewritten as

Ay = 3 NUXEW) DA = OV, (543
|k|=6

since when § € N we furthermore assume | D* f(12)| < 1. This completes the proof. [

Proof of Theorem[5.10} If & < 0 there is nothing to prove, hence we assume a > 0.
We use the same notation as in the proof of Lemma [3.15]

Given a weakly homogeneous germ F = (F,),crd € G ipom, the distribution
[ = F, satisfies with § = @, hence D*F,(z) is well-defined for z € R? and
0 < |k| < @. To obtain the estimate ([5.29)), we apply the second line of with
A = X and we note that, for any compact K < R? and z € K, we can bound

[Fo((@n)2)] < A% |Flgs

weak hom; K, \,r

[Fa((0%)2" I < A" 27" | Flgs

z weak hom; K, \,r

see (5.2) and (5.5) (we recall that 7 is a fixed suitable test function and ¢ = 1'/? — 7).
Then ((5.29) follows by summing the second line of ([5.38]).

Furthermore |G, (¢;)| < ¢(¢) A* by (3.16), where ¢(1)) can be estimated by (5.40])-

(5.43)): more precisely, if we fix a compact K < R? X\ > 0 and r € N, then for any

[e*nlc- .

Hak¢ Cry
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Ae (0,)], € K and ¢ € D(B(0,1)) we have, in the case where a ¢ Ny,

Xb(v) o s

A 0 k o

G.(42)] < uFrgg%khomm{ > e + [Gler (A
0<|k|<d

Cr

< cst’ [ Flgs [&ller A%,

weak hom; K, \,r

where cst’ depends only on a,r and on the dimension d, whence the result recalling
the definition of the homogenelty semi-norm |G| s

hom; K, \,r '
The same argument also establishes the announced bound when & € Nj. 0

5.6. PROOF OF THEOREM [5.6) COHERENCE. In this subsection, we complete
the proof of Theorem We first show how to decompose any test function ¢ € A"
as the sum of a single test function localized at a large scale 2M plus a sum of test
functions which annihilate polynomials, localised at scales 2™ for 0 < n < M.

Lemma 5.11 (Large scale decomposition). Fizr € Ny and c € Ny u {—1}.
For any test function ¥ € %" and for any M € Ny, we can write

= (M) 4 N () (5.44)

n=0

for suitable test-functions
oM e cst B, Pl e cst A forO<n< M, (5.45)

where the constant cst > 0 only depends on r,c and on the dimension d.

Proof. We fix ¢ € Ny u {—1}. We also fix a test-function n € D(B(0,1)) such that
§n(z)dr =1 and §2* n(z) dz = 0 for multi-indices k with 1 < |k| < c.

Given any test function ¢ € D(B(0,1)), we define 1/1 ) by - ) with 6 = ¢ and
we already showed that Q,L € A., see (b.42). We further observe that, given r € Ny
and a multi-index [ € N¢ with |I| < r, we can bound

|B(O 1)

3@ <1d9@ + 3 1ol B a0 < st ler

0<|k|<c
where cst > 0 only depends on ¢, r, d (via the chosen 7). Overall, we have proved that
e B = )€ cst B (5.46)

We next perform the following telescoping sum, for any |k| < ¢

M—1
akn _ 27M|k|(ak:77>2M + Z <271’L|k|(akn)2” . 27(n+1)|k|(akn>2n+1)
n=0

M—1
— 9~ Mlk| ak oM + Z 9—(n+1)[k| ak )2n+1
n=0
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where ¢ := 12 — ) was defined in (5.34) and it satisfies, for |k| < ¢
e cst B (5.47)
see (5.32) (with 6 = ¢). Plugging this into 1) we obtain

\k\<c n=1 |k|<c
which yields the decomposition ([5.44) once we define
P() = Y (=DM R (e 27 (),

|k|<c
1 9O) = (),
1/;[”](37) = Z (—D)MxE@p) 2k ok p(z) forn=1,--- , M.

|k|<c
Finally, relation ([5.45) follows by (5.46) and (5.47). O
Proof of Theorem[5.6. We fix a germ F € Gl = GT 1 God i con- We already

know from Theorem that G is well-defined and it is y-homogeneous, i.e. G € G/ ..
Thus, it remains to show that G is (a A 0, 7)-coherent, i.e. G € G2p*7

Let us fix r € N, A > 0 and a compact K < R?. We shall estimate (G, — G, )(¢}) for
Ae (0,)], 2,y € K and a test function 1) € %" (which does not necessarily annihilate

polynomials), which yields a bound on the semi-norm |G|z, see (3.6).
hom; K ,\,r

A first heuristic observation is that when |y — x| < A, then ¥ can also be seen
as a test function centered in y with scale \, say 9} ~ w;‘. Since G € G/, is
~v-homogeneous (even against test-functions which do not annihilate polynomials),

(Gy = Go)(W)| S 1Gy ()] + |Ga (W) £ AT = AN < X (Jy —af +A)77°,

implying that G is («,7y)-coherent. However, in general A and |y — x| need not be
comparable, hence we resort to the large scale decomposition of Lemma [5.11
More precisely, let us define

A\
M = M, = mi Np: 27" < s
g\ ‘= Inin {n e Np: )\ Ty —:13|}

so that A + |y — 2| < A2M < 2(\ + |y — z|). Applying the decomposition (5.44), we

write

(Gy = Ga)(2) = (Gy = Go) (WMD) + D (G P

n=0
-

A

7/

@ 4

We now estimate A and B separately.
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ESTIMATE OF A. Since the choice of M implies A2Y ~ X + |y — x|, we are at the
correct scale to apply the argument sketched above. We can recenter (@Z)[M]);QM at
point y, that is we can write

(G (G e JIMI Ml (IM)E

T = Yy

Note that |37 | < § by definition of M, therefore J[M] € cst#". As a consequence,
using the fact that G € G and \2M*1 < 4(\ + diam(K)) =: X by definition of M,

< |Gy (P2 4G, (P22
< cst ||G|\gv (A2M)7 (5.48)
MO+ Jy — 2],

|A]

m; K\ ,r

< cst' | Fllgn

weak hom; K, N,

where in the last estimate we used and the definition of M.

ESTIMATE OF B. Since @/V) annihilates polynomials up to degree 7, see (5.45)), we
have (G, — G,)((PI")2A2") = (F, — F,)((¥))?"). Since F is weakly (a,7)-coherent,

|B| < cst |[Fge

weak coh; K,\/ -

M
Z (A2M) (N2 + |y — z|)7~

M
< o, ny al,, |7« no
1Pl | V3 Kl > o],
T B,
Let us estimate By and By for v # 0 and a # 0 (by the assumptions in Theorem [5.6]).

e Estimate of By. If v < 0 then By <N < A0 (\ + |y — z|)77Y, while if v > 0 we
can bound By < (A2M)7 < 2X° (A + |y — z[)?7° by definition of M.

o Estimate of By. If a > 0 then By < (AN2M)%|y — 2|7 < X0 (X + |y — z|)770,
while if & < 0 then By < X[y — |7 < A*(Jly — z| + \)7™*

In all cases, we have shown that for any r € N

|B| < cst | F|gen aA0(|y x| + )\)7_‘“0. (5.49)

weak coh; K, N,

CoNcLUSION. It follows from (5.48) and (5.49) that G is (« A 0,7)-coherent with
|Gllgaron < est (| Fllg + [ Fllgen
coh; K,

X7 weak hom; K, M, weak coh; K, M, r )

where X' := 4(\ +diam(K)) and cst depends only on a, v, d. Together with the bound
(5.30) on the coherence semi-norm that we obtained in Theorem [5.10] namely

F
Glg st |[Flg ,

weak hom; K, X\,

we have proved the announced continuity of the map F' — G. 0
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6. PROOFS FOR OF OUR MAIN REsuLT II

In this section we establish our second main result, the multilevel Schauder estimates
in Theorem [4.13] alongside Proposition [.15] (enhanced continuity). We will also
prove Proposition m (properties of reexpansion).

6.1. PROOF OF THEOREM [4.13| We fix a model M = (I, T"), a modelled distri-
bution f € D), or order v with a reconstruction R{f,II), and a f-regularising kernel
K that satisfy the assumptions of Theorem [4.13] We need to prove that:

e (II,T) in and (4.15)-(4.16) is a model;

e fin - is a modelled distribution;

e the equality (4.21]) holds.
We correspondingly split the proof in three parts.

6.1.1. PROOF THAT (II,T) 1s A MODEL. We first show that IT and T are well-defined,

that is all terms appearing in and (|4.15] - are well-posed. By assumption
([.2), each germ IT* = (IT% )%Rd is ;- homogeneous hence KIT = (KII%) ,cpe is well-

deﬁned and weakly («; + )-homogeneous, by Theorem 5.4 it follows by Theorem m
that pointwise derivatives D’“(KHi)(x) are well- deﬁned for |k| < a; + [, so the

definitions and ( - 4.16]) of Il and I are Well—posed

It remains to show that the property of reexpansion and the homogeneity
condition (4.2)) hold for (II,T"). We recall that [ = I Ly poly(’y + ), see (4.12)).

PROPERTY OF REEXPANSION. Let us first check condition (£.3) for (II,T), that is
Iy = Y 1t (6.1)
bel

When a = k € poly(y+ 3), this holds by Example , because I1% = X* is a monomial
and I = 0 for j € I while I'*® = (ITP°¥)% for b = [ € poly(y + f3), see (4.15)).
We then fix a =i € I and we rephrase relation (6.1]), that we need to prove, as

=y mwrg+ > XLl (6.2)

jel lepoly(v+5)
(note that % = TV for (b,a) = (j,i) € I x I, see ([@15)). Let us set for short

AL = L(<apy DYKILE) (z)  for zeR% iel, le N, (6.3)
so that we can write, by ,

i i il el
I =KL, - > A'X

lepoly(v+8)
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Ji ;
jer 117 Fzy, we obtain

Since IT}, = 3,

R W(STAI YT

Jel lepoly(y+5)
A T il <l il i <l
=>Wry+ > < — APXL + 3 AT Xx> . (6.4)
jel lepoly(v+8) jel

The first term in the RHS matches with the one in (6.2). Let us show that also the
second terms match: for [ € poly(y + () and i € I, we rewrite (4.16) as

f\lxiy _ Z Af;;’l F]xz _ Z Az k (Fpoly)lk

Ty
jeI kepoly(y+53)

therefore the last term in (6.2 equals

IRIESEETEND YD WC e R SR YWD W A0l

lepoly(y+8) lepoly(y+p) jel kepoly(y+8) lepoly(y+5)
_ gl Tt el i,k vk
Y Narmmo S apx
lepoly(y+3) jel kepoly(v+03)

which coincides with the last term in (6.4) after renaming the sum index k as [.

HOMOGENEITY CONDITION. Let us now prove that each f[g, a € f, satisfies the
homogeneity relation (4.2]) with exponent &,. On the one hand, if a € poly(y + ),
this is straightforward, recall Example

On the other hand, if a = i € I, then since IT%, € Gy = and K is regularising of order
(m,r) with m >y + 8 > a; +  and r > rp, we have KIT € G, , by Theorem

Now we can apply Theorem to KII?, noting that when &; = oy + 3 € Ny, the
assumptions are satisfied thanks to the compatibility condition, see . Thus,
we obtain II' € GY  (recall the definition [.13)) of II.), i.e. the estimate (£.2) with
exponent ¢&; holds for ﬂi, as announced, and moreover in this relation we can take

p € A" with r = rp, by the estimates (5.30) and (5.7). This means that we can

take 7y = rr for the model (IT,T), see Definition Furthermore, the bound (|4.23))
follows from by keeping track of the estimates.

6.1.2. PROOF OF RELATION ([4.21)). We next show that for any x € R?

i, = Y fo(@) 12 = (k7¢f D), (65)

where we recall that K77 is defined in (3.17).
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We obtain by (4.17)), using the notation (6.3)),

D=y fai Y fAa)xd

ael i€l kepoly(v+0)
SYre(kn- Y aex)
iel kepoly(v+8)

© N (S D R ) )

kepoly(y+8) ™ jel
=K = 35 DMK D, = R ID)) (@) X,
kepoly(v+3)

which shows that (6.5 holds.

6.1.3. PROOF THAT f IS A MODELLED DISTRIBUTION. We finally prove that f
defined in is a modelled distribution of order 7 + 3 relative to the model (H F),
more premsely the continuity estimate (4.24)) holds. Recalling Deﬁnition | see ,
we fix a compact K < R? and we show that uniformly for a € I and z,y € K,
@) < 1M ae, Iy (6.6)

a; K/

MNP ) — )| < (Mg, + KITen) [l =%, (67)

bel

where K’ = K @ B(0,2) and the implicit constants depend on the compact K (as
well as on the kernel K). We split the proof in two parts.

PROOF OF ([6.6). We estimate |f%(z)|. One the one hand, if a = i € I then, by (&.9),
7@ = 17 < o,
On the other hand, if a = k € poly(fy + 3), then by (4.17)
f(x) = = >, F(2) DHKIL)(x) — DFG().
jel:
a;+B>|k|
where we have introduced the shorthand
Gy = K{{f, 1D, = RY(f, I} (6.8)
Since K is regularising of order (m,r) with m > v+ 8 > «; +  and r > ry, the
fact that Hj € gffgm, for any j € I, implies that KIIV € G%*” by Theorem [5.4] and,

- weak hom
recalling (4.4)), the estimate - 5.7)) yields, for any A > 0,
KT o, < osthe 5 | T17 < cstl 5 |TT 6.9
H H We;(ﬁhom K, STIT K >\ H thc{m K 2( p>’Tl'I K /\ H HMK 2(>\+p) ( )

Applying Theorem [5.10} see (5.29) with A = 1, for |k| < a; + 8 we can bound
| D(KIL ) ()] < este [T aag

K,2(1+p)
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Similarly, since ({f, H>x — RY(f, 1)) yera € Gpom by the Reconstruction Theorem,
see (3.10]), exploiting ((5.7)) from Theorem |5.4] and (4.10]) we get, for any A > 0,

HG”gWﬁ a S CStK)\ T pge Il £l 5 (6.10)

weak hom; TTL K',2(A+p) To; K/

for K' = K ® B(0,\ + 1) > K. Then, setting A\ = 1 and applying (5.29) from
Theorem we obtain with K" := K @ B(0, 2),

| D*Ga(x)] < sty [T e (raiPs

K’ 2(1+p) oK'

Collecting the estimates above, we have established (| .

PROOF OF . We estimate |ZbeIFab fo(y) — fo(z)|. Again we distinguish the cases
a€l and a€ poly(v + ). If a = i € I then by construction, see (4.15]) and (4.17)),

DT () = DT f(y) - fi(a)| <
bel Jel
whence the desired estimate (6.7)), because v — o; = (v + ) — &;.

Now fix a = [ € poly(y + ), i.e. | denotes some multi-index with |I| <y + 8: by

definition (A.15)) of T, since fi = f' for i € I, see , we can write
DIl = @) = Y M) + YT Fi )~ fle).

bel kepoly (v+5) el

Plugging in T , from and f from (4.17) yields, after some simplifications,

DT fy) - fix) = D DHKIL)( <Zr F(x )>
jel: el
el a1 ) (6.11)
+D'Gy(w)— Y, (TPM)% DFGy(y),
kepoly(y+5)
where we recall that GG, was defined in .
We now replace pointwise derivatives in in the RHS of (6.11)) by the multi—scale
formula ((5.38)): if we fix n € D(B(0,1)) such that Sn d:v = 1 and {n(z)z'dz = 0

for 1 < |I| < v+ /3, and define ¢ := 2 — n as in (5.34)), then by (5.38) with A = A > 0

Aoy ly = 277,

oK

D' (KII) () = (—A~HUKII ((8'n)) +Z ALK ()2 ™) (6.12)

D'Gy(x) = (~AG, (@) + D (A 201G, ((0'0)> ),

n=0

and similarly for D*G,(y). Plugging these expressions into (6.11]), we can write

2L ) = fo(@) = A +ZA (6.13)

bel
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where we recall that a = [ € poly(y + /) and we set, for a test-function ¢ and n € Ny,

Ay = Y <—X12”>“KHi((alw?‘”)(Zrﬂ Fily) - fj(x))

jel: el
o+ B>l

FETIG(EE = Y (O (<A 26
kepoly(v+5)
It remains to show that the RHS of (6.13) satisfies the bound in the RHS of (6.7)).

We already observed after (5.34)) that d'¢ € %, for all [ € N, in view of (.32 -
Then, for r = rr, we have d'¢ € cst KB, for all [l] < fy + 0, for a sultable cst > 0.

Since KIV € G224 and G e GYE7 . by (69) and (6:10) with A = L(1 + p)~! we
weak hom weak hom

can estimate, uniformly for x € K and n € Ny,
KT ((0'0)2% )] < [T g, 27102, (6.14)
Gal(@*0P) < TWte, I llpy 270+, (6.15)
) I'og K

where K’ = K @ B(0,2) and the implicit constants depend on the compact K and
on the kernel K. We can thus bound A" (p): recalling (4.9) and (4.7) we have

S o)) <

iel

therefore by (6.14)) and (6.15)) we get
|A§5’Z(Q0)’ < < Z 2fn(aj+5*|l|)|y_x|’yfaj

I lloy,  ly=al, 1PM)g ] < o=y gy, (6.16)

jel:
o+ B>l
’ (6.17)
_ o|lFI=1l 9=n(y+B—Ik])
Y fpogtriae ) MW, 1l -
keNg:
kL, [k|<v+8
We now estimate the tail of the sum in the RHS of (6.13)): if we set
Ny =min{n e Ny: 27" < |y — =}, (6.18)
summing the geometric series we get from (6.17)), since 2= Nev < |y — 2|,
+00
> A < Mg, Il Iy — 2,
n=Ngy

which agrees with the RHS of (6.7)) since &, = |l| for a = [ € poly(y + (3), see (4.14).
We finally bound the contribution of AL"(p) for n < N,, and of AL)(n) in the

RHS of (6.13)). Observe that by the reexpansion property (4.3|) we can write

3 (Z D8 i) — f <x>) KIL, = K{f, D), — K{f. T, = Gy — G,

Jel el
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where we recall that G, is defined in . Then we can rewrite

Alpg) = = ) (ATl Kng‘c((algp)g?‘%(ZFiL f') —f”’(w))
ot -

+ (_5\—1 Qn)\ll Gy <(al¢)22—n . Z (Fpoly)fvlz (_5\—1 2n>|k|—|l| ((?kgo)?’)z_n)

kepoly(v+5)

Let us single out the contribution of those j € I (if any) such that o; + 5 = |l],
which we bound separately using the Assumption of compatibility: denote

A () == Y (=aTtel KH;«@%@)?")(Zrigf%y)—ff'(x)),

jel: el
Oé]'+6=‘l|
AL () = Aln(p) = AR (),
then
Nay
n=0
o Nay
- (Zra s @) S k(e )
el jel: n=0
Oéj+,3:|l|
” i . ; Yo—(Ng,y+1)
- (Zrare - @) Y okm (),
el jgel:
aj+B=ll|

which is bounded by the fact that f is a modelled distribution, the assumption of
compatibility, see (4.19)), and the observation that v —a; = v+ 5 —|l|, by

=

zy

‘A’i?my(n) + >0 A ()

n=0

< (KMo Il ly — o1

Now we bound A_: note that for n < N,, we we have |z — y| < 27", hence we can
apply Lemma [6.1| below (with ¢ = [y + S]* — 1): we can thus write

D D g o O - L G e
kepoly(v+8) (6.19)
= (A7 2% — )T
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for a suitable ¢ = w[m,y,iz—"] € cst B, 5 with r = rg. Recalling the property of

homogeneity of G, see (6.10]), as well as (6.14]) and (6.16|), we obtain

Al (3 2y

jel:
a;+B<|l|

g, £l

)
o K/

+ Qn(\ll—(7+ﬁ)+h+51+)’y _ x’[ﬁﬁ]*) |

and, with similar arguments, the same bound with n = 0 also applies to A0, (n).

Since v+ 3 ¢ No, we have [[| = (y+ )+ [y + ]t > 0 and we can sum the geometric
series to obtain, since 2V < 2|y — x| 71,

Nac,y

AL+ Y AL)| < (Mg, + KT 1/ lloy _ ly = of*570,

n=0

which agrees with the RHS of (6.7)), since &, = || for a = [ € poly(y + ). This
concludes the proof that f is a modelled distribution with the estimate (4.24]). O

Lemma 6.1 (Taylor remainder). Given r € Ny, ce Ny u {—1}.
Then there exists a constant cst > 0 depending only on r, ¢, d, such that for all
test-functions p € B7 T and z,y € RY, n e Ny with |y — x| < 27", there exists a

test-function
Y = w[z’y’”] € cstA,,

such that for such x,y,n,

i = 3 I oM@ = (e - e

|k|<c

Remark 6.2. Note that the scale 27! may be greater than 1 for n = 0.

Proof. The test-function %™ is defined by:

gl s= 2@ o — ) (wz A2y - ) - X, Wa’wﬂ .

|k|<c

The required properties on ¢ follow from this expression, in particular after applying
Taylor-Lagrange’s formula. U

6.2. PROOF OF PROPOSITION |4.16|. We first look at the group property (1)) from

Remark E It follows by direct computation from the definition (&.15)-(£.16) of I
that, using labels 7, j € I and k,[ € poly(y + ) for clarity,

L. = @wyliyzyi (lixyliyzyk — (Fay 'y2)”" 0
Y - Yz (ny Fyz)lz’ (Fm Fyz)lk * (I‘ggly Fggly)lk

Y
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where, after some cancelation, we obtain

x= > DHKIE)(z) Ty, Ty) = >0 (IR I0o)% DR(KILL)(2) .
jel': kepoly(a;+8)
aj+8>l

Since the group property holds for TP°Y, that is [Py TPoly — TPO (see Remark ,
it follows that the group property holds for I" as soon as it holds for I'.

We next consider the triangular structure (which we know to hold for I’p(’ly).
Assuming that it is satisfied by I, that is I'Y, = 1 and T'} = 0 for j # i with &; > d;,

let us prove that it is satisfied by I'. By (4.15)), we only need to check that
=0 forall iel, lepoly(y+3) with & =||>d& =+ 0.

It suffices to note that, in the definition (4.16)) of T, both sums vanish for | = a; + 5:
indeed, the first sum is restricted to a; + 5 > ||, hence a; > oy and then Fftly =0 by
the triangular structure of I'; similarly, the second sum is restricted to |k| < oy + S,
hence |k| < [I| and then (I'*°¥)% = 0 by the triangular structure of IV,

We finally focus on the analytic bound , that we assume to hold for I', that
@~ By definition (4.15)-(4.16) of I', the corresponding bound
|Fba| < |y — 2|%~% is immediate to check except when b = [ € poly(y + ) and
a =1 € I, which is the case we tackle now: we need to show that

Vie I, Ve poly(y +f) : Tl | < Jy — ]t (6.20)

is Tl < ly—=

uniformly for x,y in compact sets, where we recall that f‘é’y is defined in (4.16)).

We argue as in the proof that f is a modelled distribution, see Section m
replacing the pointwise derivatives in m 4.16]) by formula (6.12)), we can write

T =100 Z Thn(p (6.21)

where for a test-function ¢ € D and n € Ny we set

D)= 35 (A2 (KIE)((@'9)) )Ty,
jel:
aj+5>|l

SN (A e (KIT (@)
kepoly(a;+8)

It follows by the property of homogeneity (6.14) and the analytic bound on I' that

i Z gnlastB- WDy _ glaas N genlatBo D)y gl
051 R
We can then bound the tail of the sum in (6.21): recalling N,, from (6.18)), we have
+a0
> )| 5 by el

n=Ngzy
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which agrees with (6.20)).
On the other hand, since > .., KIT, T\ = KIIJ by the reexpansion property (4.3),

we can rewrite, recalling (6.19)),

Lin(p) = = > (A2 I(KIY) ((0'e)2> ") T,
jel:
Oéj+6<|l|
+ (=AM (AT 27 (@ — )P KT (227

for a suitable ¢ = @vA27"] g cgt B 5 with 7 = rp, thanks to Lemma .
We again single out the indices j € I such that a; + 8 = |I| which we tackle using
the assumption of compatibility: denote

Pln (o) == D, (A2 (KT ('), ") T,
jel:
Oéj-‘r6=|l|
Flgfalcy(so) = FZ;JL(SD) - Fl:i;;?cy(gp)?
so that arguing as in the proof of [4.13],

vay _
P+ D o) = | Y T DAKIE) (3
n=0 jJel:
Olj+6:‘l|
< Z |y — YT < ‘y —r az‘*|l|+57
jel:
Ocj+,3=‘l|

while for the other terms, recalling the property of homogeneity , we obtain

M @ls Y, @)y~
Jel:
aj+ﬁ<\l|

ai—ay (Qn)\l|+[7+ﬂ1+—ai—/3 ly — ;1:]”+’8]+

Y

and the same estimate with n = 0 also applies to f‘ﬁjy”(n) Since a; + < v+ 8 <
[v + 5T, a geometric sum yields

Nz.y
) + 32 o) Iy = oo,
n=0

which completes the proof of (6.20]) and of the whole Proposition The continuity
bound (4.25)) follows from keeping track of the constants in the estimates above. [

APPENDIX A. TECHNICAL PROOFS

A.1. PrROOF oF LEMMA [5.8] We proceed as in [FH20, Proposition 14.11].

We fix a f-regularising kernel K of order (m, ) which preserves polynomial at level
co € Ngu {—1}, see Assumption [2.6{ (when ¢y = —1 this imposes no extra assumption).
We also fix a test function ¢ € £, for some ¢ € Ny u {—1}, and we assume without
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loss of generality that ¢+ 1 > m (we can just redefine m as min{c+ 1, m}). Recalling

[2.1) and (2.19), we can express K¢ (y) as in (5.15]) provided we define

n(y) = nmAeel(y) = 2m(20)4 J P(2)Kn (7 + Az, 2 + 2)y)dz,

e (A.1)
((y) = ¢mAmel(y) = 2Pm(2nN) T (2p277)¢ J e(2)Kn( + Az, + 2p27"y)d2
]Rd

hence it only remains to prove (5.17) (which reduces to (5.16)) when ¢y = —1).
From Assumption , see (2.17)), we see that n and ¢ annihilate polynomials at
level min(c, ¢p). It remains to control the support and the C™ norm of 7 resp. .

SUPPORT OF 7. Let y € R? be such that n(y) # 0. By there is z € supp(p) <
B(0,1) such that K,,(z + Az, z + 2\y) # 0, hence A2y — z| < p2=" by property (1)) of
Definition 2.3} Since we are in the regime p2~" < A, this implies that |2y — z| < 1
and thus by triangle inequality 2|y| < |z| + 1 < 2, that is |y| < 1. This shows that
supp(n) < B(0,1) as wanted.

SUPPORT OF (. Let y € R? be such that ((y) # 0. By there is z € supp(p) <
B(0,1) such that K, (z + Az, z + 2p27"y) # 0, therefore |2p27 "y — \z| < p27™ by
property ((1)) of Definition . Then 2|y| < 1+ p2/\_ =|z| by the triangle inequality, and
since we consider A < p27", we obtain |y| < 1, that is supp(¢) < B(0,1).

BOUND ON C" NORM OF 7. Let [ € N be a multi-index with |I| < r, and y € R?,
then by differentiation under the integral,

d'n(y) = 2°m(21) 41 J ©(2)05K,, (x + Az, 2 + 2)y)dz.

R4

In this integral, we subtract and add the Taylor polynomial of ¢ at 2y of order || — 1:

d'n(y) = 27 (2))4H fRd (go(z) - Z Fe(2y) (z — 2y)k) LK, (z + Az, + 2)\y)d=

eI
(2 -
+ 28n (2 )y Z i(‘y) J}Rd(z — 29)" Ko (z + Az, m + Ay)dz.
|k|<|l]—1 ’

Using Taylor-Lagrange’s inequality in the first integral (and absorbing 29+l into the
implicit constant), we obtain

1
[o'n(y)| < 2ATH Y lelcn f |2 = 2oL K (2 + Az, 2 + 2Xy)|dz
k=il Re

1 9Pnyd+l Z Il
k!

k| <t]-1

f (z — 2y)"0L K, (x + Az, z + 2\y)dz| .
Rd
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The first integral can be estimated by the property (2.10)) of the kernel K. For the
second integral, we first rewrite it, by a change of variables, as

f (z — 2y)* 05K, (@ + Az, 2 + 2)\y)dz = )\_k_df (2 — 2 \y)f LK, (2 + 2, ¢ + 2)\y)d2
Rd R4
and then we use property (2.11)) of the kernel K. Overall, for x € K we get

10'n(y)| < cxr 2B”Ad”'\!<ﬁ\cz2(””')"f |2 — 2y|lldz
2€B(2y,p25")

Bn \d-+I Il y —a-ikjo-s
e 2T ) EE AT g,
k| <[l]-1

where K’ := K @ B(0,2)). It follows that

sup Inler < st s lellor < estgs
neN, Ae(0,A], ze K

where csty 5 < oo depends on K, A and on the kernel K (in particular, on p).

BOUND ON C" NORM OF (. Let [ € N be a multi-index with [I| < r, and y € R?,
then by differentiation under the mtegral

A'¢(y) = 2P (2mN) ™ (2p27 )41 J ©(2)05K, (2 + Az, 2 4+ 2p27"y)dz.

R4
Recall that by assumption ¢ annihilates polynomials of degree ¢ = m — 1 so in this
integral we can subtract the Taylor polynomial of diK,, (-, z + 2p27"y) based at x of
order m — 1. It is convenient to denote:
(A2)*
k7

RL”;}]yl(z) = ObK,(z + Az, z + 2p27"y) Z oY LK (z, @ + 2p27"y)
|k|<m—1
then
2¢n) = 25"<2"A>’n<2p2”>d+“'J"d<p<z>z%53wiii<z>dz.
By Taylor-Lagrange’s formula, :

1

Thus, by the property (2.10)) of the kernel K, for z € K and \ € (0, A]
)Rn)\xy ( )‘ < 2(d—5+m+‘l|)”>\m|z|m7

where the implicit multiplicative constant depends on the compact K, on A and on
the kernel K (and on the dimension d of the underlying space). Consequently,

Aol < [ oGl < [ oG <1,
R4 R4
because by assumption ¢ € ZA.. Thus, this establishes:

sup  |[Cfler S 1,
neN, Ae(0,A], ze K
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which concludes the proof. O

APPENDIX B. SPACES OF GERMS AND DISTRIBUTIONS ARE
“INDEPENDENT OF 7”

In this section we prove (using wavelet techniques) that the choice of the regularity
r of test-functions in the different spaces of distributions and germs studied in this
paper generally does not matter.

Proposition B.1. Let a,a,v € R with o, < ~y. Then:

(1) The Definition of Holder-Zygmund spaces Z7 does not depend on the
choice of r = 1, := min{r € No,r > —v}.

(2) The Deﬁm’tzbn of homogeneous and coherent germs G%*7 does not depend
on the choice of r = 15 o = min{r € No, r > max(—a, —a)}.

o,y

(3) The Deﬁm’tz’on of weakly homogeneous and coherent germs G_.i does not
depend on the choice of r = rg, = min{r € No,r > max(—a, —«)}.

A proof in the case of the Holder-Zygmund spaces Z7 can be found for instance in

[FH20, Lemma 14.13].

A proof in the case of the space of homogeneous and coherent germs G%*7 when
v # 0 can be found in [CZ20, Propositions 13.1 and 13.2], see Remark However
the approach in this reference fails to cover the case v = 0.

We prove Proposition using the following result from wavelet theory:

Theorem B.2 (Daubechies’ wavelets, see [Dau88; Dau92; Mey92|). For
any r,d € Ny, there exist a compactly supported function p € CT(R?) and a finite
family U of compactly supported functions ¢ € CL(R?) satisfying (g, 1 (x)a*dz =0
for all multi-indices k € N& with |k| < r, such that for all ng € Z, the family

(272 ke 2™ZY U {22 " n > ng, ke 2Z, e T},  (B.)
is a Hilbert basis of L*(R%).

In fact, the convergence along the basis (B.1)) holds in C" norm. This allows us to
prove Proposition [B.1]

Proof of Proposition[B.1]. As a proof in the case of the spaces Z7 can be found in the
literature, see [FH20, Lemma 14.13], we only consider the case of spaces of germs.
We argue slightly differently in the case of G and in the case of Gyeax:

e in the case of G, we exploit the decomposition (B.1]) starting from ngy € Z with
270~ )

e in the case of Gyeak, we exploit the decomposition (B.1]) starting from ng = 0.
Let a, @, € R be such that a < v, a < 7, and define

Toa = min{r € No,r > max{—a, —a}}.
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For any r € Ny arbitrary, we denote G the space of germs corresponding to the
family of seminorms given by (3.7)); and similarly Go:%" = corresponding to the family

weak;
of seminorms (5.6)).

Let r € Ny with r > r, 5, we shall show that

G = g, 5.2)
oy o00n7y
gweak;r - gweak; ra,a” (B3>

Proof of (B.2)). It suffices to show the inclusion

g;i;cm c gd;ow

Ta,a !

because the other one follows from the definitions. Let F' € G¥*7, we start with
the estimate of homogeneity. Let ¢, ¥ be as in Theorem applied to r. Let
K < R be compact, z € K, A € (0,1], n € B4, we want to estimate F,(n}). Set
N = N, :=min{n € N,;27" < A\}. From the decomposition starting at Ny, we
have:

_ -N -N
Fx(nfc\>: 2 2 NAd<772>:\a‘PZ DFE(gi )

ke2-Naz

+ Z Z ZQ_nd<n2a¢kin>Fx<wkin).

n=Ny ke2—"Z Ye¥

In the first line, for reasons of support one has |z — k| < A and only a finite
number of k£ contribute to the sum. In the second line, for reasons of support one
has |z — k| € X and ~ 2(*=™)4 values of k contribute to the sum. Thus, because of

the coherence and homogeneity of F, one has [F,(¢2 )| < A® + X7 < A% in the first
line, and |F, (17 )| < 27"% + 27"\~ in the second line. Also, since the functions
¢ cancel polynomials of degree up to r > 7,4, by subtracting a Taylor polynomial

of degree 7 := r, 4 — 1 in the integral one obtains [(n},¥? "> < ||In|cr+ /\_d(%)ﬂl.
Thus, collecting these estimate:

F )] € 222
+00 2771 1 )
b 35 e ot (1) e s ).
?’L:N)\

Recalling that by choice of 7 one has ¥ + 1 > —a and 7 + 1 > —a, by summing the
geometric series one obtains the wanted homogeneity estimate

|Fo(m)] < |nflcraa A%

We establish the estimate of coherence similarly. Let again ¢, U be as in Theo-
rem applied to r. Let K = R? be compact, z,y € K, A € (0,1], n € "=, we
want to estimate (F), — F}.)(n}). As above, set N := Ny = min{n € N, 27" < )}, from
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the decomposition (B.1]) starting at N, we have:
—N N
(Fy—=F)m) = ), 2™ (F, — B (er )

ke2-Naz
+0o0

+ 3N Do NE, - F) ().

n=N) ke2—"7Z Ye¥
We perform the same estimate as above except this time from the assumption
of coherence on the germ F' (and the fact that |z — k| < A for reasons of support)
one has |(F, — F,)(¢? )| < )\“(]y — x| + A)?~* in the first line, and similarly in
the second line |(F, — F,)(¢¢ )| < 27*(|ly — z| + A\)?~*. Thus, collecting all the
estimate, one obtains for 7 = r, a— L

[(Fy = Fo) ()] < 272N (ly — 2 + A~

+00 9—n 7+l
b 3 2 glonant (20) ey ol + 27
n=Ny A

so that using the fact that 7 +1 > —a one obtains after summing the geometric series
((Fy = F))] < [nlores X(ly — o] + A7,
This concludes the proof of (B.2] .
Proof of (B.3)). It suffices to show the inclusion

g&;ow - g&;an
weak; r weak; rq,a )

because the other one follows from the definitions. Let F € Ggiapl,, we start with
the estimate of homogeneity. Let again ¢, ¥ be as in Theorem applied to r. Let
K < R? be compact re K, Ae (0,1],ne %’TW, 1 e B We want to estimate

F,(n,) and F,(77}). From the decomposition (B.1) starting at 0, we have:
Fo(n,) = Y {0 010 Fa(y)

keZ

=3 N o, 0 DR,

n=0 ke2-nZ ¥

In the first line, for reasons of support one has |z — k| < 1 and only a finite
number of k contribute to the sum. In the second line, for reasons of support one
has |z — k| < 1 and ~ 2" values of k contribute to the sum. Thus, because of
the coherence and homogeneity of the germ F', one has |F.(p,)| < 1 in the first
line, and |F,(¢7 )| < 27™% + 27" in the second line. Also, since the functions v
cancel polynomials of degree up to r > r, 5, by subtracting a Taylor polynomial of
degree 7 := 1,4 — 1 in the integral one obtains |(n,,v¥? ") < ||n|cr 27"+, Thus,
collecting these estimates:

+oo
Fum)] < [nlee + 3 2792 gl ren 2705 (277 1 977
n=0
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so that summing the geometric series and recalling that 7 +1 > —a, 7+ 1 > —a, one
obtains [F3(1,)] < |nlcraa.
Similarly:

) = D 00, e Feley)

keZ

+ Z Z Z 277G, v OF (R )

n=0 ke2—"1Z eV
+00

O 2 22 DR

n=Nx+1 ke2—nZ eV

In the first line, for reasons of support one has |z — k| < 1 and only a finite
number of k contribute to the sum. Also, since 77 annihilate polynomials of degree
up to ||, by subtracting a Taylor polynomlal of ¢ of degree |@| in the integral one
obtains |7, o) < [117]AY ! < 7] A%. Furthermore, because of the coherence
and homogeneity of the germ F, |F,(¢,)| < 1.

In the second line, for reasons of support one has |z — k| < 27" and only a finite
number of k contribute to the sum. Also, since 77 annihilate polynomials of degree
up to |/, by subtracting a Taylor polynomlal of ¢ of degree |@| in the integral one
obtains |(72, v | < [1]02" (5 ’\n)l B Furthermore, because of the coherence
and homogeneity of the germ F, |F,(v7 )| <27 +27"% < 27" (since we assume
a<7).

In the third line, for reasons of support one has |z — k| < A and ~ 2"=")4 values
of k contribute to the sum. Also, since the functions 1 cancel polynomials of degree
up to r = r, 4, by subtracting a Taylor polynomial of 7j of degree 7 := r, 5 — 1 in
the integral one obtains [(77},¢? "> < [ cr+12 "7, Furthermore, because of the
coherence and homogeneity of the germ F, |F, (¢ )| < 27"\~ 4 27,

Collecting these estimates yields:

o ()] < 7]l0 A

)\ A I_dJ+1
—nd||~ nd —na
il ()
+00

+ Z 2—nd2(n—NA)d”ﬁ|
7Z=N)\+1

or 27D (2_"0‘/\7—‘1 + 2—na) 7

so that summing the geometric series and recalling that ¥ +1 > —a, 7+ 1 > —a,
|a] + 1 > &, one obtains:

Fe ()] < il craaA®.
Once again, we establish the property of coherence similarly. Let ¢, ¥ be as

in Theorem applied to 7. Let K < R? be compact, =,y € K, A € (0,1],
ne P, i) e Blew, we want to estimate (F, — F,)(n,) and (F, — F,)(77;). From the
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decomposition (B.1)) starting at 0, we have:

(Fy = Fo)(n,) = D 01 0 (Fy — Fu)(gy)

+ 0> D2 EF, - F) ().

n=0 ke2—"7Z el
We perform the same estimates as in the case of the homogeneity, except for the
fact that in the first line |(F, — F;)(y,)| < 1 because of the assumption of coherence
of F' (and the fact that |x — k| < 1 for reasons of support); and the fact that in the
second line, |(F, — F,.)(¢ )| < 27" because of the assumption of coherence of F'
(and the facts that x,y € K for a compact K and |z — k| < 1 for reasons of support).
Thus this yields for 7 :=r, 4 — 1:

|(Fy = E2) ()] < [l

+00 }
+ Y 272 | a2 T
n=0
so that summing the geometric series yields |(F, — F,)(n,)| < 1.
Similarly:

(Fy = F) (1) = D00 o) (Fy — Fu) ()

keZ

+Z SN 2GR W N~ F) (@)

n=0 ke2-nZ el
+00

+ YN Yol uE NE, — Fa) (W),

n=Nx+1 ke2—nZ eV
We perform the same estimates as in the case of the homogeneity above except
that here, in the first line |(F, — F,)(¢;)| < 1; in the second line |(F, — F,)(¢7 )| <
27"(Jly — 2| +27")""*; and in the third line |(F, — F;) (¥ ") < 27" (Jly — x| + A\
Thus this yields for 7 :=r, 5 — 1:

[(Fy = Fo) ()] < JijlleA”

N)\ J J )\ l’YJ+1
bl () 2y -+ 2

n=0
+00

N Z 2_nd2(n_N>‘)d||1Y]||CF+ n(7’+1 2~ na(’y ,T‘ + )\)’Y—oa’
n=Ny+1

so that after summing the geometric series and recalling that 7 + 1 > —a and
7] +1 >~ > «, we obtain:

[(Ey = E) ()] S 7l erea A (Jy — ] +X)77°
This concludes the proof. O
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