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Abstract. We investigate the regularising properties of singular kernels at the
level of germs, i.e. families of distributions indexed by points in Rd. First we
construct a suitable integration map which acts on general coherent germs. Then
we focus on germs that can be decomposed along a basis (corresponding to the
so-called modelled distributions in Regularity Structures) and we prove a version of
Hairer’s multilevel Schauder estimates in this setting, with minimal assumptions.
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1. Introduction
It is well-known that the convolution of a (Schwartz) distribution against a kernel

admitting an integrable singularity on the diagonal yields a distribution with improved
Hölder-Besov regularity: this is the content of the celebrated Schauder estimates
which are a fundamental tool in the analysis of PDEs, since examples of regularising
kernels include the heat kernel and the Green’s function of many differential operators.

One of the key insights of Hairer’s theory of Regularity Structures [Hai14; BHZ19;
CH16; BCCH21] is that the same regularisation phenomenon still occurs when one
works at the level of families of distributions, as formalised by the notion of “modelled
distributions” (which one should think of as local approximations to a distribution of
interest). The resulting multilevel Schauder estimates [Hai14, Theorem 5.12] admit
powerful consequences, as they allow to solve via fixed point many singular stochastic
PDEs that are classically ill-posed, after lifting them in a suitable space of modelled
distributions; see [FH20; BH20; Ber22] for expository presentations. Let us also
mention the works [OSSW18; OW19; MW20; OSSW21] where Schauder estimates
are established at the level of families of functions, in particular with the aim of
establishing a priori estimates for solutions of stochastic PDEs.

The purpose of the present paper is to formulate Hairer’s multilevel Schauder
estimates as a standalone result in distribution theory, without any reference to the
formalism of Regularity Structures. In doing so, we sharpen and extend Hairer’s
original result under nearly optimal assumptions.

To provide some context, there has recently been an effort, see e.g. [Gub18; OSSW21;
MW20; CZ20; ZK22], to isolate the other key analytic result of Regularity Struc-
tures, namely the Reconstruction Theorem [Hai14, Theorem 3.10]. Given a family
F “ pFxqxPRd of distributions on Rd indexed by points in Rd, called a germ, the
Reconstruction Theorem as presented in [CZ20; ZK22] roughly states the following:

Under a simple condition on the germ F “ pFxqxPRd called coherence,
see (3.2), there exists a distribution RF , called reconstruction of F ,
which is “well approximated” by Fx around any base point x P Rd

(with a quantitative bound for the difference Fx ´ RF , see (3.8)).
The reconstruction map F ÞÑ RF is better understood if one recalls the classical

Taylor expansion of a smooth function: if f P C8pRdq and γ ą 0, we can set

Fxp¨q :“
ÿ

kPNd
0 : |k|ăγ

B
kfpxq

p¨ ´ xqk

k! , x P Rd , RF :“ f .
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By Taylor’s theorem, we know that |fpyq ´ Fxpyq| À |y ´ x|γ uniformly for x, y in
compact subsets of Rd, which shows that the function fp¨q is well approximated by
the function Fxp¨q around any point x P Rd, with a precise bound.

However, this situation is special because f “ RF is known in advance and we
associate the family of local approximations pFxqxPRd to it. In the Reconstruction
Theorem, this point of view is rather reversed: the family pFxqxPRd is assigned and
the (unknown) distribution f “ RF is (re-)constructed from pFxqxPRd . We refer to
[HL17; RS21; BL22; Ker21] for similar results. This point of view is strongly inspired
by the theory of rough paths, where the analog of the Reconstruction Theorem is the
Sewing Lemma [Lyo98; Gub04; FLP06; Dav08].

Coming back to the present paper, we can formulate the Schauder estimates in
great generality, at the level of coherent germs F “ pFxqxPRd : we prove that the
convolution K ˚ RF of a suitable regularising kernel K with a reconstruction RF can
be lifted to a map K acting on germs F , so that the following diagram commutes:

F KF

RF RpKF q

K

R R

K ˚
“ K ˚ RF .

More precisely, our first main result can be stated as follows, where we quantify the
coherence of a germ by an exponent γ P R (see Definition 3.2) and the regularisation
of a kernel by an exponent β ą 0 (see Definitions 2.3 and Lemma 2.9).

Theorem 1.1 (Schauder estimates for coherent germs). Let F “ pFxqxPRd

be a γ-coherent germ with a reconstruction RF . Let K be a β-regularising kernel.
Then, assuming γ ` β R N0, the germ KF “ ppKF qxqxPRd given by

pKF qx :“ K ˚ Fx ´
ÿ

|k|ăγ`β

Dk
pK ˚ tFx ´ RF uqpxq

p ¨ ´ xqk

k! (1.1)

is well-defined, it is pγ ` βq-coherent, and it satisfies RpKF q “ K ˚ RF .
(The “pointwise derivatives” Dkp. . .qpxq in (1.1) are defined by Lemma 3.15.)

We refer to Theorem 3.17 below for a more refined formulation of this result where,
as in the papers [Hai14; GH22; HP21; Lab19; HS23], we allow for non translation-
invariant kernels (so we talk of integration KFx rather than convolution K ˚ Fx)
and we prove that the map K is continuous for natural topologies on germs. Some
antecedents of Theorem 1.1 can be found in the works [OSSW18; OW19; MW20;
OSSW21], which are concerned with special classes of germs given by solutions to
appropriate (stochastic) PDEs.

A crucial property for germs in our context is homogeneity, which quantifies the
Hölder-like behavior of a germ through an exponent ᾱ P R, see (3.1) below, and its
variant weak homogeneity, that is homogeneity modulo polynomials, see Definition 5.1
below. For instance, the difference tFx´RF u which appears in (1.1) is a homogeneous
germ (by the Reconstruction Theorem) and understanding its convolution with K is
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essential. We prove the following result of independent interest, which extends the
classical Schauder estimates for distributions to general homogeneous germs.

Theorem 1.2 (Schauder estimates for homogeneous germs). Let F “

pFxqxPRd be a ᾱ-homogeneous germ and let K a β-regularising kernel. Then the
germ K ˚ F “ pK ˚ FxqxPRd is well-defined and it is pᾱ ` βq-weakly homogeneous.

We refer to Theorem 5.4 below for a precise statement, see in particular (5.7).
Theorems 1.1 and 1.2 show that convolving/integrating a germ by K improves both

coherence and homogeneity by β (modulo polynomials). The idea of considering
homogeneity and coherence as independent properties comes from [ZK22] (in the
context of the Reconstruction Theorem) and we adopt it throughout this paper.

Compared to Theorems 1.1 and 1.2, the Schauder estimates in Regularity Structures
[Hai14, Theorem 5.12] have a more narrow scope: they apply to restricted classes
of germs, corresponding to so-called “modelled distributions”, but at the same time
they yield sharper multilevel Schauder estimates, which are crucial to solve singular
PDEs. We recover and extend such multilevel estimates in our framework.

Let us fix a finite family Π “ pΠiqiPI of germs Πi “ pΠi
xqxPRd which, like ordinary

monomials, can be “reexpanded” around any base point via some coefficients Γ “ pΓjixyq:
such a pair M “ pΠ,Γq is called a model (see Definition 4.1). We think of the family
Π “ pΠiqiPI as a basis to build germs via linear combinations F “ xf,Πy, i.e.

Fx “ xf,Πyx “
ÿ

iPI

f ipxq Πi
x , (1.2)

parametrised by real coefficients f “ pf ipxqq. To ensure that such germs F “ xf,Πy

are γ-coherent, we require that coefficients f ip¨q satisfy multilevel Hölder-like bounds,
which define a vector space of γ-modelled distributions f for M (see Definition 4.5).

Our second main result, which includes both Hairer’s multilevel Schauder estimates
[Hai14, Theorem 5.12] and Hairer’s extension theorem [Hai14, Theorem 5.14], shows
that the map F ÞÑ KF from Theorem 1.1, for germs F “ xf,Πy of the form (1.2),
can be lifted to a map on modelled distributions f ÞÑ f̂ for a new model M̂ “ pΠ̂, Γ̂q,
such that the following diagram commutes:

f f̂

xf,Πy xf̂ , Π̂y

ˆ̈

x¨,Πy x¨,Π̂y

K
“ Kxf,Πy .

More precisely, we can prove the following.

Theorem 1.3 (Multilevel Schauder estimates). Let M “ pΠ,Γq be a model
and let f be a γ-modelled distribution for M , so that xf,Πy is a γ-coherent germ
with a reconstruction Rxf,Πy. Let K be a β-regularising kernel.
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Then, assuming γ ` β R N0, we can define a new explicit model M̂ “ pΠ̂, Γ̂q, and
a new explicit pγ ` βq-modelled distribution f̂ for M̂ , such that

xf̂ , Π̂y “ Kxf,Πy

where K is the map from Theorem 1.1; in particular, we have Rxf̂ , Π̂y “ K˚Rxf,Πy.

We refer to Theorem 4.13 below for a precise formulation of this result, where we also
show that the map pM, fq ÞÑ pM̂, f̂q is continuous in natural topologies.

The Schauder estimates in Theorems 1.1, 1.2 and 1.3 are the main results of this
paper. Together with the Reconstruction Theorem from [CZ20; ZK22], they provide
a standalone formulation of the core analytic results from [Hai14], without defining
the notion of Regularity Structures. We also obtain a number of improvements: let
us briefly describe the most significant ones.

(1) We do not assume that the kernel K annihilates polynomials, i.e. we do not
require that

ş

Kpx, yq yk dy “ 0 as was assumed (for convenience) in [Hai14,
Assumption 5.4]. Sometimes it is convenient (but not required) to assume that
K preserves polynomials, namely that

ş

Kpx, yq yk dy is a polynomial of degree
ď |k|, see e.g. Remark 4.11. Note that this always holds in the translation
invariant case Kpx, yq “ Kpx ´ yq.

(2) We prove Schauder estimates for γ-coherent germs and γ-modelled distributions
also for γ ď 0, whereas in the literature it is always assumed that γ ą 0. Since
the reconstruction of a γ-coherent germ is not unique when γ ď 0, a choice
must be given as an input in Theorems 1.1 and 1.3: this poses no problem and,
in fact, it decouples Schauder estimates from the Reconstruction Theorem. As
mentioned to us by Hendrik Weber, our Schauder estimates with γ ď 0 can be
useful to truncate modelled distributions associated with solutions to SPDEs.
Another application of this idea can be found in [HS24, Theorem 3.8].

(3) We introduce a new notion of weakly coherent germs, inspired by classical Hölder-
Zygmund spaces, see Definition 5.1. This allows us to give a “conceptual” proof
of Theorem 1.1 factorised in two steps, see Section 5, and also to recover in a
very clear way the classical Schauder estimates for distributions, see Remark 5.5.

(4) We relax the definition of a model M “ pΠ,Γq from [Hai14], as we do not need to
impose that the reexpansion coefficients Γ satisfy a group property, an analytic
bound, nor a triangular structure (see Remark 4.2). However, we prove that
these properties are preserved by the operation Γ ÞÑ Γ̂, see Proposition 4.16.

(5) Another key property of germs, besides coherence, is the homogeneity, see
Definition 3.2. Even though modelled distributions yield germs which are both
coherent and homogeneous, we keep these properties as distinct as possible in
our discussion, following the ideas of [ZK22]. This greater flexibility makes
proofs more transparent and, moreover, allows to consider interesting germs
which need not be associated to modelled distributions.
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In conclusion, in this paper we have improved some of the most powerful and
beautiful results from [Hai14], presenting them in a more general yet simpler setting,
without losing in sharpness. We hope that our formulation will make these results
even more useful and widespread.

Organisation of the paper. The paper is structured as follows.
‚ In Section 2 we set notations and recall classical results.
‚ In Section 3 we present our first main result Theorem 1.1 (Schauder estimates

for coherent germs), which we rephrase more precisely as Theorem 3.17.
‚ In Section 4 we present our second main result Theorem 1.3 (multilevel Schauder

estimates), which we formulate in a more detailed way in Theorem 4.13.
‚ In Section 5 we prove Theorem 3.17 and other auxiliary results.
‚ In Section 6 we give the proof of Theorem 4.13.
‚ Finally, some more technical results are deferred to the Appendix.

Acknowledgements. We thank Ismaël Bailleul, Martin Hairer, Cyril Labbé,
Felix Otto, Scott Smith, Hendrik Weber for very useful discussions.

2. Classical results (revisited)
We work in Rd, where d ě 1 is a fixed integer, with the Euclidean norm | ¨ |. Balls

are denoted by Bpx0, rq “ tx P Rd : |x ´ x0| ď ru. We use the shorthand
f À g ðñ DC ă 8 : f ď Cg .

Given r P N0 “ t0, 1, 2, . . .u, we denote by Cr the space of functions φ : Rd Ñ R
which admit partial derivatives of order k for all |k| ď r. The corresponding norm is

}φ}Cr :“ max
|k|ďr

}B
kφ}8 ,

where for a multi-index k P Nd
0 we set |k| “ k1 ` . . . ` kd. Similarly, given r,m P N0,

we denote by Cm,r the space of functions ψ : Rd ˆ Rd Ñ R which admit partial
derivatives of order pk1, k2q for all multi-indices |k1| ď m, |k2| ď r.

2.1. Test functions and distributions. We denote by D “ DpRdq the
space of smooth test functions φ : Rd Ñ R, i.e. C8 with compact support. We write
DpKq for the family of test functions φ P DpRdq that are supported in K Ă Rd.

Given a test-function φ, its scaled and centered version φλx is defined by
φλxp¨q :“ λ´dφpλ´1

p¨ ´ xqq , (2.1)
for x P Rd and λ ą 0. Note that

ş

φλx “
ş

φ.
We denote by D1 “ D1pRdq the space of distrbutions, i.e. the linear functionals

f : DpRdq Ñ R with the following property: for any compact K Ă Rd there are
r “ rK P N0 and c “ cK ă 8 such that

|fpφq| ď c }φ}Cr @φ P DpKq . (2.2)
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We say that f is a distribution of order r (meaning “at most r”) if the value of r in
(2.2) can be chosen independent of K, while the constant c may still depend on K.
In this case, we can canonically define fpφq for non-smooth test functions φ P Cr.

The derivative of any distribution is defined by duality:
Dkfpφq :“ p´1q

|k|fpB
kφq @k P Nd

0 .

We will later give conditions under which pointwise derivatives Dkfpxq can be defined
for suitable distributions, see Lemma 3.15.

2.2. Hölder-Zygmund spaces. For γ P R we denote by Zγ :“ Bγ
8,8,loc the

(local) Hölder-Zygmund spaces, see [FH20, Section 14.3], which coincide with the usual
(local) Hölder-Besov spaces Cγ when γ is not an integer. To recall their definition, we
first introduce for r P N0 and γ P R the families of test-functions

Br :“
␣

φ P DpBp0, 1qq : }B
kφ}8 ď 1 for all 0 ď |k| ď r (i.e. }φ}Cr ď 1)

(

,

Bγ :“
"

φ P DpBp0, 1qq :
ż

Rd

φpzqzkdz “ 0 for all 0 ď |k| ď γ

*

,
(2.3)

and we denote their intersection by
Br
γ :“ Br

X Bγ . (2.4)
Note that we have Br

γ “ Br
m where m “ tγu is the largest integer m ď γ. Also note

that for γ ă 0 the constraint 0 ď |k| ď γ is empty and we have Br
γ “ Br.

We can now define the spaces Zγ . Note that for γ ă 0 we denote by r “ t´γ ` 1u

the smallest positive integer r ą ´γ.

Definition 2.1 (Hölder-Zygmund spaces Zγ). Let γ P R, we define Zγ as the
set of distributions f P D1pRdq such that

}f}Zγ

K,λ̄
ă `8

for all compacts K Ă Rd and for some (hence any) λ̄ P r1,8q, where

}f}Zγ

K,λ̄
“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

sup
xPK, λPp0,λ̄s,

φPBr with r“t´γ`1u

ˇ

ˇfpφλxq
ˇ

ˇ

λγ
if γ ă 0,

sup
xPK
ψPB0

|fpψxq| ` sup
xPK, λPp0,λ̄s,

φPB0
γ

ˇ

ˇfpφλxq
ˇ

ˇ

λγ
if γ ě 0.

(2.5)

We often set λ̄ “ 1 and omit it from notation.

For later purpose, we reformulate the condition that a distribution is of finite order.

Remark 2.2 (Bounded order). A distribution f P D1 is of order r, see (2.2), if
and only if the following condition holds:

@z P Rd , @λ̄ P r1,8q : sup
φPBr, λPr1,λ̄s

|fpφλ̄z q| — Cpz, λ̄q ă 8 . (2.6)
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This is also equivalent to the seemingly weaker condition

Dz P Rd such that @λ̄ P N “ t1, 2, . . .u : sup
φPBr

|fpφλ̄z q| — C 1
pz, λ̄q ă 8 . (2.7)

We prove the equivalence between (2.2), (2.6) and (2.7) below.
It follows by (2.7) that any f P Zγ is a distribution of order r, for r P N0 with

r ą ´γ. If γ ă 0 this is a direct consequence of (2.5), since for z “ 0 (say) and any
given λ̄ P N we have |fpφλ̄q| À λ̄γ À 1 for every φ P Br. If γ ě 0, let us show that
f is a distribution of order 0: by (2.5) we know that |fpψxq| À 1 uniformly for x in
compact sets and ψ P B0; for λ̄ P N and φ P B0 we can decompose, using a partition
of unity, φλ̄ “

řn
k“1pψrksqxk

for suitable xk P Bp0, λ̄` 1q, ψrks P B0 and n (uniformly
bounded given λ̄); then it follows that |fpφλ̄q| À

řn
k“1 |fppψrksqxk

q| À 1 uniformly
over ψ P B0, which proves (2.7) with z “ 0 and r “ 0.

Proof of equivalence between (2.2), (2.6) and (2.7). For any fixed z P Rd, we can
deduce relation (2.6) from (2.2) with K “ Bpz, λ̄q because, for fixed λ̄ P p0,8q, we
have }φλ̄z }Cr À }φ}Cr (note that Bkpφλz qp¨q “ λ´|k|´dpBkφqpλ´1p¨ ´ zqq).

Since (2.6) clearly implies (2.7), it remains to show that (2.7) implies (2.2): given
z P Rd and a compact K Ă Rd, we fix λ̄ P N so that K Ď Bpz, λ̄q, then it suffices to
note that any ψ P DpKq can be written as ψ “ aφλ̄z for some φ P Br and a À }ψ}Cr

(e.g. we can take φ :“ ψλ̄
´1

´z {}ψλ̄
´1

´z }Cr P Br and c “ }ψλ̄
´1

´z }Cr ď λ̄r`d}ψ}Cr .) □

2.3. Singular kernels. We define a class of kernels Kpx, yq called β-regularising,
for reasons that will soon be clear. Intuitively, these kernels satisfy

|Kpx, yq| À
1

|x ´ y|d´β
1t|x´y|ďcu for some β, c ą 0 , (2.8)

but the precise assumptions are conveniently encoded via a dyadic decomposition of
Kpx, yq, as in [Hai14, Assumption 5.1]. We anticipate that in the translation invariant
case Kpx, yq “ Kpx´ yq these assumptions simplify considerably: we just require that
K and its derivatives satisfy a relation like (2.8), see Lemma 2.9.

Definition 2.3 (Regularising kernel). A function K : Rd ˆ Rd Ñ R is called
regularising kernel if there exist constants β ą 0, m, r P N0 and ρ ą 0 such that
one can write

Kpx, yq “

`8
ÿ

n“0
Knpx, yq for a.e. x, y P Rd , (2.9)

where for all n P N0 the functions Kn P Cm,r have the following support:
(1) supppKnq Ă tpx, yq : |x ´ y| ď ρ 2´nu,

and moreover, for any compact set K Ă Rd, there is a constant cK ą 0 such that
(2) for k, l P Nd

0 with |k| ď m, |l| ď r we have, for x, y P K,
ˇ

ˇB
k
1 B

l
2Knpx, yq

ˇ

ˇ ď cK 2pd´β`|l|`|k|qn ; (2.10)
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(3) for k, l P Nd
0 with |k|, |l| ď r we have, for y P K,

ˇ

ˇ

ˇ

ˇ

ż

Rd

py ´ xq
l
B
k
2Kn px, yq dx

ˇ

ˇ

ˇ

ˇ

ď cK 2´βn . (2.11)

We call such a function Kpx, yq a β-regularising kernel of order pm, rq with range ρ.

Let us show that assumptions (1), (2) and (3) are less restrictive than they might
appear, as they can be deduced from (2.8) and from translation invariance.

Remark 2.4 (Singular kernels). To fulfill assumptions (1) and (2), it is enough
that K satisfies condition (2.8) and, correspondingly, for |k| ď m, |l| ď r,

ˇ

ˇB
k
1 B

l
2Kpx, yq

ˇ

ˇ À
1

|x ´ y|d´β`|l|`|k|
1t|y´x|ďρu , (2.12)

uniformly for x, y in compact sets. This can be seen via a dyadic partition of unity:
given χ P D with 1t|z|ďρu ď χpzq ď 1t|z|ď2ρu, we set ϕpzq :“ χpzq ´ χp2zq and define

Knpx, yq :“ Kpx, yqϕp2npx ´ yqq . (2.13)
Since

ř

nPN0
ϕp2n|z|q “ 1tz‰0u, it follows that Kpx, yq “

ř8

n“0 Knpx, yq for x ‰ y, and
assumptions (1) and (2) follow by (2.12).

Interestingly, in the boundary case β “ d, we can weaken condition (2.8) allowing
for a logarithmic divergence (see [Hai14, Remark 5.6]):

|Kpx, yq| À logp1 ` |x ´ y|
´1

q1t|y´x|ďρu , (2.14)
and we can correspondingly weaken (2.12), for |k| ď m, |l| ď r:

ˇ

ˇB
k
1 B

l
2Kpx, yq

ˇ

ˇ À
logp1 ` |x ´ y|´1q

|x ´ y||l|`|k|
1t|y´x|ďρu . (2.15)

In this case, it is convenient to modify (2.13) as follows:

Knpx, yq :“ Kpx, yq

8
ÿ

m“n

1
m ` 1ϕp2mpx ´ yqq ,

so that (1) is satisfied and we still have Kpx, yq “
ř8

n“0 Knpx, yq for x ‰ y. To
see that condition (2) is satisfied too, we note that for ρ 2´ℓ´1 ď |x ´ y| ď ρ 2´ℓ

we can bound |Knpx, yq| À logp1 ` 2ℓ`1

ρ
q
ř

mPtℓ,ℓ`1u
1

m`1 À 1 by (2.14) and, similarly,
|Bk1 Bl2Knpx, yq| À 2p|l|`|k|qℓ by (2.15), uniformly over ℓ ě n.

Remark 2.5 (Translation invariance, I). If assumptions (1) and (2) are satisfied,
assumption (3) is easily seen to hold for |l| ě |k|. Then the issue is whether (3) is
satisfied for |l| ă |k|. This always holds in the translation invariant case:

Knpx, yq “ Knpx ´ yq @x, y P Rd , (2.16)
because the integral in the l.h.s. of (2.11) vanishes for |l| ă |k|, as one sees through
integration by parts, since Bk2Kn “ p´1q|k|Bk1Kn and Bkxpy ´ xql “ 0.
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In some cases, we will require a last assumption on the kernel.

Assumption 2.6 (Preserving polynomials). Let K : Rd ˆ Rd Ñ R admit
a decomposition K “

ř`8

n“0 Kn as in (2.9). For γ P R, we say that K preserves
polynomials at level γ if, for every n P N0 and for all k P Nd

0 with 0 ď |k| ď γ,

x ÞÑ

ż

Rd

Knpx, yq yk dy is a polynomial of degree ď |k| . (2.17)

(This condition is automatically satisfied for γ ă 0.)

Remark 2.7 (Translation invariance, II). A sufficient condition for (2.17) is that
ż

Rd

Knpx, yq py ´ xq
k dy does not depend on x .

This condition clearly holds if the kernels Kn are translation invariant, see (2.16), in
which case Assumption 2.6 is satisfied at any level γ.

Remark 2.8. In [Hai14, Assumption 5.4] much more than (2.17) is required, namely
that for all multi-indices k with |k| ď γ and any n P N0

@x P Rd :
ż

Rd

Knpx, yq yk dy “ 0 .

We finally show that for translation invariant kernels Kpx, yq “ Kpx´ yq the notion
of β-regularising kernel is greatly simplified.

Lemma 2.9 (Translation invariant regularising kernel). Let β, ρ ą 0 and
m, r P N0. Fix a function K : Rd Ñ R such that, for all k P Nd

0 with |k| ď m ` r,
ˇ

ˇB
kKpzq

ˇ

ˇ À
1

|z|d´β`|k|
1t|z|ďρu .

Then Kpx, yq :“ Kpx´ yq is a β-regularising kernel of order pm, rq with range ρ and
it preserves polynomial at any level γ P R (see Definition 2.3 and Assumption 2.6).

Proof. It suffices to apply Remarks 2.4, 2.5 and 2.7. □

Remark 2.10 (Scale-invariant kernels). Given a smooth function K : Rdzt0u Ñ R
with the scaling property Kpx{λq “ λd´β Kpxq for all λ ą 0, a β-regularising kernel is
obtained by Kpx, yq :“ Kpx ´ yqχpx ´ yq, where χ is any smooth function supported
in Bp0, ρq. This is a direct consequence of Lemma 2.9, see also [Hai14, Lemma 5.5].

Examples of kernels falling in this situation include the Heat kernel, the Green’s
function of usual differential operators with constant coefficients, the Green’s function
of the fractional Laplacian [BK17], etc.
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2.4. Singular integration and classical Schauder estimates. The
integration of a distribution f P D1pRdq with a kernel Kpx, yq is formally defined by

Kfpxq :“ fpKpx, ¨qq “

ż

Rd

Kpx, yq fpdyq ,

which makes sense when Kpx, ¨q is regular enough. If K is singular, then one expects
Kf to be a distribution, defined by duality on test functions ψ P DpRdq by

pKfqpψq :“ fpK˚ψq where pK˚ψqpyq :“
ż

Rd

ψpxq Kpx, yq dx , (2.18)

provided K˚ψ is regular enough, so that fpK˚ψq makes sense.

Remark 2.11 (Translation invariance, III). Formula (2.18) for Kf is always
well-defined if the kernel Kpx, yq “ Kpx´ yq is translation invariant with K : Rd Ñ R
compactly supported and integrable: indeed, pK˚ψqpyq “

ş

Rd ψpy ´ xq Kp´xq dx in
this case is the convolution of ψ with Kp´ ¨ q, hence K˚ψ is smooth (as ψ is smooth)
and compactly supported (as ψ and K are compactly supported).

We now consider the case of a β-regularising kernel K of order pm, rq, as in
Definition 2.3. From (2.10) and Fubini’s theorem we can formally write

pK˚ψqpyq “
ÿ

nPN0

pK˚
nψqpyq where pK˚

nψqpyq :“
ż

Rd

ψpxq Knpx, yq dx , (2.19)

and note that K˚
nψ is a well-posed Cr function, for any n P N0, because Knpx, ¨q P Cr.

This means that fpK˚
nψq is well-defined as soon as f is a distribution of order r, see

(2.2) and the following lines. In conclusion, we can set

Kfpψq :“
ÿ

nPN0

fpK˚
nψq, (2.20)

provided the series converges. This is guaranteed by the next result.

Proposition 2.12 (Singular integration). Given r P N0, if K is a regularising
kernel of order p0, rq and f is a distribution of order r, then the integration Kf is
well-defined by (2.20) and it is a distribution of order r.

If K is a regularising kernel of order p0, rq for any r P N0, then the integration
Kf is well-defined for any distribution f P D1.

We can finally show that the integration by a β-regularising kernel K improves the
Hölder regularity of a distribution by β: this result is known as the classical Schauder
estimates and can be stated as follows (see also [FH20, Theorem 14.17]).

Theorem 2.13 (Classical Schauder estimates). Let γ P R. Let K be a
β-regularising kernel of order pm, rq, where β ą 0 and m, r P N0 satisfy:

m ą γ ` β, r ą ´γ. (2.21)
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Also assume (if γ ě 0) that K preserves polynomials at level γ, see Assumption 2.6.
Then, integration by K in (2.20) defines a continuous linear map from Zγ to Zγ`β.

We prove Proposition 2.12 and Theorem 2.13 in Section 5.3 below.

3. Main result I: Schauder estimates for germs
3.1. Germs. Our first goal is to extend Theorem 2.13 in the context of germs, that
is, families of distributions indexed by Rd.

Definition 3.1 (Germs). A germ is a family F “ pFxqxPRd of distributions
Fx P D1pRdq, such that for any φ P DpRdq, the map x ÞÑ Fxpφq is measurable.

We will denote G the vector space of germs. In general, we will see a germ F P G
as a family of local approximations of a global distribution f . The reconstruction
problem, i.e. the problem of constructing a suitable f from F , has been previously
considered in a number of different contexts, see [Hai14; CZ20; ZK22]. In [CZ20], it
was established that this reconstruction can be performed under the assumption that
F satisfies properties named homogeneity and coherence, which we recall now.

Definition 3.2 (Homogeneity and coherence). Let F “ pFxqxPRd be a germ.
Let ᾱ, α, γ P R with ᾱ, α ď γ and r P N0.

‚ F is called ᾱ-homogeneous of order r, denoted F P Gᾱ
hom,r, if the following

homogeneity property holds, for any compact K Ă Rd and λ̄ P r1,8q:
|Fxpφλxq| À λᾱ

uniformly over x P K, λ P p0, λ̄s, φ P Br.
(3.1)

The space of ᾱ-homogenous germs (of any order) is Gᾱ
hom :“

Ť

rPN0

Gᾱ
hom,r.

‚ F is called pα, γq-coherent of order r, denoted F P Gα,γ
coh,r, if the following

coherence property holds, for any compact K Ă Rd and λ̄ P r1,8q:
|pFy ´ Fxqpφλxq| À λαp|y ´ x| ` λq

γ´α

uniformly over x, y P K, λ P p0, λ̄s, φ P Br.
(3.2)

The space of pα, γq-coherent germs (of any order) is Gα,γ
coh :“

Ť

rPN0

Gα,γ
coh,r.

‚ F is called pα, γq-coherent with homogeneity ᾱ if both (3.1) and (3.2) hold,
for some order r. The space of such germs is denoted by

Gᾱ;α,γ
“ Gᾱ

hom X Gα,γ
coh .

Remark 3.3 (Monotonicity). Increasing the exponents ᾱ, α, γ, homogeneity and
coherence become more restrictive: Gᾱ1;α1,γ1

Ď Gᾱ;α,γ for any ᾱ1 ě ᾱ, α1 ě α, γ1 ě γ.
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Remark 3.4 (Coherence almost implies homogeneity). Any coherent germ
automatically satisfies the homogeneity relation (3.1) with an exponent ᾱK that may
depend on the compact K, see [CZ20, Lemma 4.12]. Requiring that a coherent germ
is ᾱ-homogeneous simply means that we can take ᾱK ě ᾱ for any compact K.

Remark 3.5 (Homogeneity implies some coherence). In the definition of
pα, γq-coherent germs with homogeneity ᾱ, we require that ᾱ ď γ for convenience, to
rule out trivialities. Indeed, if a germ F is ᾱ-homogeneous, then arguing as in [CZ20,
Proposition 6.2] one can show that F is pα, γq-coherent with γ “ ᾱ (and suitable α).
This shows that the “interesting regime” for the coherence exponent is γ ě ᾱ.

Remark 3.6 (Uniformity of r for coherence + homogeneity). If either relation
(3.1) or (3.2) holds for some order r, then it holds for all orders r1 ą r, simply because
Br1

Ď Br. If these relations hold together, i.e. if a germ is both pα, γq-coherent and
ᾱ-homogeneous, then we can choose the “canonical” order r “ rᾱ,α given by

rᾱ,α :“ min
␣

r P N : r ą maxt´ᾱ,´αu
(

“ ptmaxt´ᾱ,´αuu ` 1q
` .

(3.3)

Indeed, if (3.1) and (3.2) hold for some r ą maxt´ᾱ,´αu, it turns out that they also
hold for r “ rᾱ,α, see Proposition B.1 in Appendix B.†

Remark 3.7 (Bounded order and singular integration). If a germ F “ pFxqxPRd

is ᾱ-homogeneous of order r, then each distribution Fx is of order r. This follows by
Remark 2.2, see (2.7) with z “ x, because |Fxpφλ̄xq| À λ̄ᾱ À 1 uniformly for φ P Br, by
(3.1), for any given λ̄ P N. As a consequence, we can define the germ KF “ pKFxqxPRd

for any regularising kernel K of order p0, rq, by Proposition 2.12.
Similarly, if a germ F “ pFxqxPRd is pα, γq-coherent of order r, then for any x, y P Rd

the difference Fy ´ Fx is a distribution of order r, because |pFy ´ Fxqpφλ̄xq| À 1 by
(3.2), uniformly for φ P Br, for any given λ̄ P p0,8q. Thus we can define KpFy ´ Fxq

for any regularising kernel K of order p0, rq, but not necessarily KFx.

Remark 3.8 (General scales). For germs F P Gᾱ;α,γ that are both coherent and
homogeneous we can get rid of λ̄: if we assume that both relations (3.1) and (3.2) hold
for λ̄ “ 1, then they hold for any λ̄ P r1,8q. To this goal, we claim that for λ P r1, λ̄s

we have |Fypφ
λ
xq| À 1, which is enough since 1 À λᾱ and 1 À λαp|y ´ x| ` λqγ´α.

First note that by (3.1) and (3.2) for λ P p0, 1s we have, for x, y P K and φ P Br,
|Fypφ

λ
xq| ď |pFy ´ Fxqpφλxq| ` |Fxpφλxq| À λα ` λᾱ À λmintᾱ,αu . (3.4)

If we now consider λ P r1, λ̄s, using a partition of unity we can write φλx “
řn
k“1pφ̂kq1

xk

for suitable xk P K, φ̂k P Br and n (uniformly bounded, depending on λ̄ and K).
Then by (3.4) for λ “ 1 we obtain |Fypφ

λ
xq| À 1 for λ P r1, λ̄s, as we claimed.

†We also point out [CZ20, Propositions 13.1 and 13.2]: leaving aside for simplicity the case γ “ 0,
it is shown that if both (3.1) and (3.2) hold for a single test function φ P D with

ş

φ ‰ 0, then they
hold uniformly over φ P Br for r “ rᾱ,α as in (3.3) (the proof requires α ď 0, however when α ą 0
one can show that a pα, γq-coherent germ must be constant, hence the conclusion still holds).
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Let us now introduce the semi-norms for the relations of homogeneity and coherence,
see (3.1) and (3.2): given a compact set K Ă Rd, r P N and λ̄ P r1,8q, we set

}F }Gᾱ
hom;K,λ̄,r

:“ sup
xPK,λPp0,λ̄s

φPBr

|Fxpφλxq|

λᾱ
, (3.5)

}F }Gα,γ

coh;K,λ̄,r
:“ sup

x,yPK,λPp0,λ̄s

φPBr

|pFy ´ Fxqpφλxq|

λαp|y ´ x| ` λqγ´α
. (3.6)

We next define the joint semi-norm for homogeneous and coherent germs, where we
fix r “ rᾱ,α as in Remark 3.6, see (3.3):

}F }Gᾱ;α,γ

K,λ̄

:“ }F }Gᾱ
hom;K,λ̄,rᾱ,α

` }F }Gα,γ

coh;K,λ̄,rᾱ,α

. (3.7)

We often set λ̄ “ 1 and omit it from notation. Note that a germ F is pα, γq-coherent
with homogeneity ᾱ if and only if }F }Gᾱ;α,γ

K
ă 8 for any compact set K Ă Rd.

3.2. Reconstruction. The Reconstruction Theorem was originally formulated
in [Hai14, Theorem 3.10], see also [OW19]. We present here the version given by
[CZ20, Theorem 5.1] and [ZK22] (we exclude the case γ “ 0 to avoid introducing
logarithmic corrections).

Theorem 3.9 (Reconstruction for γ ‰ 0). Let α, γ P R with α ď γ and γ ‰ 0.
For any germ F “ pFxqxPRd which is pα, γq-coherent, there exists a distribution

RγF P D1
pRd

q ,

called a γ-reconstruction of F , which is “locally approximated by F” in the following
sense: for any integer r P N0 with r ą ´α and for any compact K Ă Rd we have

|pFx ´ RγF qpφλxq| À λγ

uniformly over x P K, λ P p0, 1s, φ P Br.
(3.8)

Such a distribution RγF is unique if and only if γ ą 0. Furthermore:
‚ for any γ, one can define RγF so that the map F ÞÑ RγF is linear;
‚ if the germ F has homogeneity ᾱ ď γ, then RγF P Z ᾱ, i.e.

Rγ : Gᾱ;α,γ
Ñ Z ᾱ; (3.9)

‚ if ᾱ ą 0, then RγF “ 0.

With an abuse of notation, we sometimes write f “ RγF to mean that a distribution
f P D1 is a γ-reconstruction of F , i.e. it satisfies (3.8), but we stress that when γ ă 0
there are many such a reconstruction f is not unique. If the value of γ is clear from
the context, we may omit it and simply write that f “ RF is a reconstruction of F .

Remark 3.10 (Non uniqueness is tame). For γ ă 0 there is no unique γ-
reconstruction RγF , but any two γ-reconstructions differ by a distribution in Zγ.
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This follows comparing (3.8) and (2.5), because the precise value of r ą ´γ in the
definition of Zγ is immaterial, see Proposition B.1 in Appendix B.

Remark 3.11. The fact that Rγ “ 0 when ᾱ ą 0 follows by (3.1) and (3.8), which
yield |RγF pφλxq| À λᾱ ` λγ À λᾱ, since ᾱ ď γ. If ᾱ ą 0, this implies that RγF “ 0.

Remark 3.12 (Reconstruction bounds). If a germ F is pα, γq-coherent, the germ
F ´ RγF “ pFx ´ RγF qxPRd is not only pα, γq-coherent but also γ-homogeneous, as
the bound (3.8) shows, i.e. F ´ RγF P Gγ;α,γ. More precisely, by [CZ20; ZK22],

}F ´ RγF }Gγ;α,γ

K,λ̄

À }F }Gα,γ

coh;K1,λ̄

, (3.10)

for the enlarged compact K 1 “ K ‘ Bp0, λ̄ ` 1q. If F has homogeneity ᾱ, then

}RγF }Zᾱ
K,λ̄

À
›

›F
›

›

Gᾱ;α,γ

K1,λ̄

.

3.3. Schauder estimates for coherent germs. A natural and interesting
problem is to find a “nice” continuous linear map K which “lifts the integration with
K on the space of coherent (resp. coherent and homogeneous) germs”. More precisely,
given ᾱ, α, γ P R and a β-regularising kernel K, we look for a continuous linear map
K “ Kγ,β such that the following diagrams commute, for suitable ᾱ1, α1, γ1 P R:

Gα,γ Gα1,γ1

D1 D1

Kγ,β

Rγ Rγ1

K

Gᾱ;α,γ Gᾱ1;α1,γ1

Z ᾱ Z ᾱ1

Kγ,β

Rγ Rγ1

K

(3.11)

that is Rγ1

pKγ,βF q “ KpRγF q. In particular, we need to assume that the integration
KpRγF q is well-defined. This is a mild condition, as we now discuss.

Remark 3.13 (Integration of reconstruction). The integration KpRγF q is
always well-defined if the kernel K is translation invariant, see Remark 2.11.

For germs F that are ᾱ-homogeneous for some ᾱ P R, the integration KpRγF q is well
defined if the regularising kernel K is of order pm, rq with r ą ´ᾱ, by Proposition 2.12,
because RγF P Z ᾱ (see Theorem 3.9) is a distribution of order r (see Remark 2.2).

Finally, for non homogeneous germs F , the integration KpRγF q is still well defined
if the regularising kernel K is of order pm, rq for any r P N0, again by Proposition 2.12.

We next discuss the definition of pKγ,βF qx. A naive guess would be to define it as

KFx (3.12)

but this choice of germ is typically neither coherent nor homogeneous. However, it
turns out that we can nicely modify (3.12) by subtracting a suitable polynomial term.

Remark 3.14. One “trivial” solution would be to define pKγ,βF qx for all x P Rd by

KpRγF q .
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However, such a germ is independent of x and does not contain Fx. This is not useful
for applications (e.g. to stochastic equations) where one needs germs which do depend
on x, to reflect the local fluctuations of the noise.

As a first ingredient (of independent interest), we show in the next Lemma how to
define pointwise derivatives for any distribution which is “locally homogeneous” on
test functions that annihilate polynomials, and we prove that subtracting a Taylor
polynomial yields a homogeneity bound for general test functions.

Lemma 3.15 (Pointwise derivatives). Let f P D1 be a distribution which
satisfies a “weak” homogeneity bound at a given point x P Rd, for some δ ą 0:

for any φ P Bδ : |fpφλxq| À λδ uniformly for λ P p0, 1s (3.13)
where we recall that functions in Bδ annihilate polynomials of degree ď δ.

Then f admits “pointwise derivatives” of any order ă δ, defined by
Dkfpxq :“ lim

λÓ0
Dkfpηλxq P R @k P Nd

0 with 0 ď |k| ă δ , (3.14)

for any η P D with
ş

η “ 1 and
ş

ηpxqxl dx “ 0 for all 1 ď |l| ă δ (the limit does
not depend on the choice of such η). We can thus define the Taylor polynomial at x

T δ
x pfqp ¨ q :“

ÿ

0ď|k|ăδ

Dkfpxq
p ¨ ´ xqk

k! . (3.15)

If moreover δ R N, then f ´ T δ
x pfq satisfies a “strong” homogeneity bound at x:

|pf ´ T δ
x pfqqpψλxq| À λδ uniformly for λ P p0, 1s , (3.16)

for any test function ψ P DpBp0, 1qq which needs not annihilate polynomials.
Finally, the bound (3.16) holds also for δ P N if the following condition holds: for

any k P Nd
0 with |k| “ δ and any φ P DpBp0, 1qq, one has supλPp0,1s |Dkfpφλxq| À 1.

Remark 3.16. We point out that Lemma 3.15 provides a local version, for a fixed
base point x, of the following well-known result in Hölder spaces (see e.g. [BL22,
Proposition A.5], or [FH20, Proposition 14.15]): for a distribution f P D1pRdq and an
exponent δ ą 0 with δ R N, there is equivalence between:

(i) f P Cδ i.e. |fpφλxq| À λδ over x in compacts, λ P p0, 1s, φ P Bδ.

(ii) f is a Ctδu function and
ˇ

ˇ

ˇ
fpyq ´

ř

|k|ăδ
Bkfpxq

x! py ´ xqk
ˇ

ˇ

ˇ
À |y ´ x|δ.

In the case of integer exponents, only the implication (ii) ñ (i) holds.

Consider now an pα, γq-coherent germ F “ pFxqxPRd and a γ-reconstruction RγF
(which is unique if γ ą 0). Given a β-regularizing kernel K, we will show in Theorem 5.4
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that f “ KtFx ´ RγF u satisfies (3.13) with δ “ γ ` β, hence we can consider

pKγ,βF qx :“ KFx ´ T γ`β
x

`

KtFx ´ RγF u
˘

“ KFx ´
ÿ

0ď|k|ăγ`β

Dk
pKtFx ´ RγF uqpxq

p ¨ ´ xqk

k! ,
(3.17)

that is, we subtract from KFx the Taylor polynomial at x of KtFx ´ RγF u. In case
γ ` β ď 0, we agree that T γ`β

x ” 0, that is, we define pKγ,βF qx :“ KFx.
Note that the difference pKγ,βF qx ´ KpRγF q admits the expression

pKγ,βF qx ´ KpRγF q :“ KtFx ´ RγF u ´ T γ`β
x

`

KtFx ´ RγF u
˘

, (3.18)

which is always well-defined when F is a coherent germ, as we now discuss.

We can now state our first main result, that we prove in Section 5.

Theorem 3.17 (Schauder estimates for coherent germs). Let α, γ P R
with α ď γ and γ ‰ 0. Consider an pα, γq-coherent germ F “ pFxqxPRd and a
γ-reconstruction RγF (which is unique if γ ą 0), see (3.8). Let β ą 0 satisfy

α ` β ‰ 0, γ ` β R N0 , (3.19)
and consider a β-regularising kernel K with range ρ of order pm, rq large enough:

m ą γ ` β, r ą ´α . (3.20)
Then the germ Kγ,βF ´ KpRγF q is well-defined by (3.18) and it satisfies

Kγ,βF ´ KpRγF q P Gγ`β;pα`βq^0,γ`β , (3.21)
i.e. it is pγ ` βq-homogeneous and ppα` βq ^ 0, γ ` βq-coherent, with the following
continuity estimate: for any compact K Ď Rd and λ̄ P p0,8q we have

}Kγ,βF ´ KpRγF q}Gγ`β;pα`βq^0,γ`β

K,λ̄

ď cstK,λ̄ }F ´ RγF }Gγ;α,γ

K,λ̄1
, (3.22)

with λ̄1 “ 8pλ̄ ` ρ ` diampKqq, and the RHS can be bounded by (3.10).
If we further assume that KpRγF q is well-defined, see Remark 3.13, then also

the germ Kγ,βF is well-defined by (3.17) and the following holds:
‚ Kγ,βF is ppα ` βq ^ 0, γ ` βq-coherent and (with some abuse of notation)

Rγ`β
pKγ,βF q “ KpRγF q , (3.23)

i.e. KpRγF q is a pγ ` βq-reconstruction of Kγ,βF ;
‚ if F has homogeneity ᾱ ď γ, then Kγ,βF has homogeneity pᾱ ` βq ^ 0,

provided
ᾱ ` β ‰ 0 ;
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‚ the map F ÞÑ Kγ,βF is linear and continuous, both on Gα,γ
coh Ñ Gpα`βq^0,γ`β

coh
and on Gᾱ;α,γ Ñ Gpᾱ`βq^0;pα`βq^0,γ`β, with the following continuity estimate:
for any compact K Ď Rd and λ̄ P p0,8q,

}Kγ,βF }Gpα`βq^0,γ`β

coh;K,λ̄

À cstK,λ̄}F }Gα,γ

coh;K1,λ̄1
, (3.24)

}Kγ,βF }Gpᾱ`βq^0;pα`βq^0,γ`β

K,λ̄

À cstK,λ̄}F }Gᾱ;α,γ

K1,λ̄1
, (3.25)

with K 1 “ K ‘ Bp0, 1 ` 2λ̄q, λ1 “ 8pλ̄ ` ρ ` diampKqq.
As a consequence, if we set

pᾱ1, α1, γ1
q “ ppᾱ ` βq ^ 0, pα ` βq ^ 0, γ ` βq ,

both diagrams in (3.11) commute, where Kγ,β is linear and continuous.

We finally show that the definition (3.17) of the Kγ,βF is canonical, in the following
precise sense. The proof of the next result is also given in Section 5.

Proposition 3.18 (Canonicity of the germ Kγ,βF ). If we postulate that
Kγ,βF “ KFx ´ Px , (3.26)

then the only polynomial Px of degree ă γ ` β such that (3.23) holds (i.e. such that
the diagrams in (3.11) commute) is Px “ T γ`β

x pKtFx ´ RγF uq as in (3.17).

4. Main result II: multilevel Schauder estimates
In many applications, the space Gᾱ;α,γ of all coherent and homogeneous germs is

“too big”. This happens for instance when one wants to define singular operations
on germs, such as the product with a non smooth function, or even a distribution:
one can typically make sense of such a product only for a few germs Πi, hence the
best one can hope is to extend the product to those germs that are locally given by
linear combinations of the Πi’s. This leads to the notion of models and modelled
distributions, which are cornerstones of the theory of regularity structures [Hai14].

4.1. Models and modelled distributions. We fix a family Π “ pΠiqiPI of
germs Πi “ pΠi

xqxPRd on Rd indexed by a finite set I. We view this family as a basis
to build germs F “ xf,Πy through linear combinations with coefficients f ipxq:

Fx “ xf,Πyx :“
ÿ

iPI

f ipxq Πi
x . (4.1)

We will call the basis Π a model and the family of coefficients f a modelled distribution,
provided they satisfy assumptions that we now discuss.

To define a model Π “ pΠiqiPI , we require that each germ Πi is homogeneous, and
furthermore that the vector space SpantΠi

x : i P Iu Ă D1pRdq does not depend on x
(i.e. Πi

x is a linear combination of pΠj
yqjPI , for any x, y P Rd). This leads to:
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Definition 4.1 (Model). Fix a finite set I and a family α “ pαiqiPI of real
numbers. A pair M “ pΠ,Γq is called a model on Rd with homogeneities α if there
exists an integer r “ rΠ P N0 (called the “order” of the model) such that:

(1) Π “ pΠiqiPI is a family of germs on Rd that are αi-homogeneous of order r,
that is for any compact K Ă Rd and any λ̄ P r1,8q

|Πi
xpφλxq| À λαi

uniformly over x P K, λ P p0, λ̄s, φ P Br ;
(4.2)

(2) Γ “ pΓjixyq are real numbers such that, for all i P I and x, y P Rd,

Πi
y “

ÿ

jPI

Πj
x Γjixy . (4.3)

We denote by Mα the class of models with homogeneities α and we set, see
(3.5),

}Π}Mα
K,λ̄

:“ sup
iPI

}Πi
}Gαi

hom;K,λ̄,rΠ
. (4.4)

Remark 4.2 (Models in Regularity Structures). Our definition of a model is
more general than Hairer’s original definition [Hai14, Definition 2.17], because we do
not enforce the following requirements:

(1) Group Property: Γxy Γyz “ Γxz (that is
ř

kPI Γjkxy Γkiyz “ Γjixz);
(2) Triangular Structure: Γiixy “ 1,Γjixy “ 0 if j ‰ i and αj ě αi;
(3) Analytic Bound: |Γjixy| À |y ´ x|αi´αj .

Property (1) is natural, in view of (4.3) (indeed, when the Πi’s are linearly independent,
the coefficients Γjixy are univocally determined by (4.3) and (1) holds automatically).
The role of properties (2) and (3) is discussed below, see Remark 4.6.

If the analytic bound (3) holds, we can define the norm

}Γ}Mα
K

:“ max
i,jPI

sup
x,yPK

|Γjixy|
|x ´ y|αi´αj

. (4.5)

Remark 4.3 (Bounded order and general scales). Given a model M “ pΠ,Γq

of order r “ rΠ, each Πi
x is a distribution of order r, see Remark 3.7, hence we can

define KΠi
x for any regularising kernel of order p0, rq.

We also note that if px, yq ÞÑ Γjixy is locally bounded (e.g., if the analytic bound (3)
holds), then it is sufficient to require the homogeneity property (4.2) for λ̄ “ 1. This
can be shown as in Remark 3.8, see (3.4) and the following lines.

Example 4.4 (Polynomial model). The simplest choice of a model is obtained
taking as basis of germs the usual (normalized) monomials

Xk
x :“ p¨ ´ xqk

k! , k P Nd
0 . (4.6)
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More precisely, if we fix any ℓ P N0, the polynomial model at level ℓ is defined by

Πpoly
ďℓ :“

␣

Πk
“ Xk

(

kPNd
0 : |k|ďℓ

.

It is an exercise to check that Πpoly
ďℓ is indeed a model, as in Definition 4.1, with

αk :“ |k| , pΓpoly
q
lk
xy :“ px ´ yqk´l

pk ´ lq! 1tlďku , (4.7)

where by l ď k we mean l1 ď k1, l2 ď k2, . . . , ld ď kd. It is also easy to check that
the three additional properties (1), (2) and (3) described in Remark 4.2 are satisfied
by the polynomial model.

We next define modelled distributions. Consider a germ F “ xf,Πy as in (4.1), for
some model Π “ pΠiqiPI . Applying (4.3), for any x, y P Rd we can write

Fy ´ Fx “
ÿ

iPI

"

ÿ

jPI

Γijxy f jpyq ´ f ipxq

*

Πi
x . (4.8)

In order to ensure that F is coherent, it is natural to require scaling properties of the
quantities in brackets. This leads to the following definition:

Definition 4.5 (Modelled distribution). Consider a model M “ pΠ,Γq with
homogeneities α “ pαiqiPI and fix a real number γ ą max α :“ maxtαi : i P Iu.

A measurable function f “ pf ipxqqiPI : Rd Ñ RI is called modelled distribution
of order γ if for any compact set K Ă Rd and for any i P I, uniformly for x, y P K,

|f ipxq| À 1 and
ˇ

ˇ

ˇ

ˇ

ÿ

jPI

Γijxy f jpyq ´ f ipxq

ˇ

ˇ

ˇ

ˇ

À |y ´ x|
γ´αi .

We denote by Dγ “ Dγ
M “ Dγ

Γ,α the space of modelled distributions of order γ,
relative to a model M “ pΠ,Γq with homogeneities α. This is a vector space with a
Fréchet structure through the semi-norms

~f~Dγ
K

“ ~f~Dγ
Γ,α;K

:“ sup
xPK, iPI

|f ipxq| ` sup
x,yPK, iPI

ˇ

ˇ

ˇ

ř

jPI

Γijxy f jpyq ´ f ipxq

ˇ

ˇ

ˇ

|y ´ x|γ´αi
. (4.9)

Remark 4.6 (Consequences of additional properties). Our definition of
modelled distributions mimics Hairer’s original one [Hai14, Definition 3.1]. The
additional properties of the models enforced in [Hai14], see Remark 4.2, ensure
that modelled distributions can be truncated: given a model M “ pΠi,Γjiqi,jPI with
homogeneities α “ pαiqiPI , denoting by I 1 :“ ti P I : αi ă γ1u the truncation of the
index set I at a given level γ1 ą min α (so that I 1 ‰ H), then:

‚ the truncated family M 1 :“ M |I 1 “ pΠi,Γjiqi,jPI 1 is also a model, thanks to
property (2) (triangular structure);
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‚ given a modelled distribution f “ pf iqiPI of order γ ą γ1 relative to M , the
truncated function f 1 – f |I 1 “ pf iqiPI 1 is a modelled distribution of order γ1

relative to M 1, thanks to property (3) (analytic bound).
Property (2) also ensures that the spaces Dγ contain non-zero elements: if i0 P I is
such that αi0 “ min α, then Γji0 “ 1j“i0 , hence defining fi0pxq ” 1 and fjpxq ” 0 for
j ‰ i0 yields f ı 0 with f “ pfiqiPI P Dγ (note that xf,Πy “ Πi0).

For any modelled distribution f relative to a model M “ pΠ,Γq, we now check that
the germ F “ xf,Πy in (4.1) is coherent and homogeneous, see [CZ20, Example 4.10].

Proposition 4.7 (Modelled distributions yield coherent germs). Let
M “ pΠ,Γq be a model with homogeneities α “ pαiqiPI and set ᾱ :“ min α.

For any modelled distribution f P Dγ
M of order γ, the germ F “ xf,Πy in (4.1)

is γ-coherent, more precisely it is pᾱ, γq-coherent with homogeneity ᾱ:
f P Dγ

ùñ F “ xf,Πy P Gᾱ;ᾱ,γ .

Moreover, the map f ÞÑ F “ xf,Πy is continuous:
}F }Gᾱ;ᾱ,γ

K,λ̄

ď |I| }Π}Mα
K,λ̄

~f~Dγ
K
. (4.10)

Proof. By (3.5), the homogeneity semi-norm of F can be bounded by

}F }Gᾱ
hom;K,λ̄,r

ď |I| sup
xPK,iPI

|f ipxq| }Πi
}Gαi

hom;K,λ̄,r
ď |I| cf1 }Π}Mα

K,λ̄
, (4.11)

where cf1 denotes the first term in the r.h.s. of (4.9), see (4.4). Turning to coherence,
by (4.8) we can bound, arguing as in [CZ20, Example 4.10],

|pFy ´ Fxqpφλxq| ď |I| cf2 }Π}Mα
K,λ̄

pλ ` |y ´ x|q
γ´ᾱ λᾱ ,

where cf2 denotes the second term in the r.h.s. of (4.9). Then, by (3.6), we obtain

}F }Gᾱ,γ

coh;K,λ̄,r

ď |I| cf2 }Π}Mα
K,λ̄

,

which together with (4.11) yields (4.10). □

Example 4.8 (Polynomial modelled distributions). Let f : Rd Ñ R be a
function of class Cℓ, for some ℓ P N0. Its Taylor polynomial of order ℓ based at x is

Fxp¨q :“
ÿ

|k|ďℓ

B
kfpxqXk

xp¨q ,

where Xk
x are normalized monomials, see (4.6). The germ F “ pFxqxPRd can be

expressed as F “ xf ,Πpoly
ďℓ y, see (4.1), where Πpoly

ďℓ is the polynomial model in
Example 4.4 and f “ pfk

pxqq|k|ďℓ,xPRd is defined by fk
pxq :“ Bkfpxq.

If f is Hölder continuous with exponent γ ą 0 and ℓ “ tγu, it is an exercise to
show that f is a modelled distribution of order γ, see e.g. [CZ20, Example 4.11].
In particular, by Proposition 4.7, the germ F “ pFxqxPRd “ xf ,Πpoly

ďℓ y of Taylor
polynomials of f is γ-coherent (more precisely: p0, γq-coherent with homogeneity 0).
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4.2. Schauder estimates for modelled distributions. Given a model
M “ pΠ,Γq and a modelled distribution f P Dγ

M , by Proposition 4.7 we have that
F “ xf,Πy in (4.1) is γ-coherent .

If we fix a γ-reconstruction RγF (which is unique if γ ą 0) and a β-regularising
kernel K, the Schauder estimates in Theorem 3.17 yield that

Kγ,βF in (3.17) is pγ ` βq-coherent and Rγ`β
pKγ,βF q “ KpRγF q .

Since the germ F “ xf,Πy comes from a modelled distribution f , a natural question
arises: do we have Kγ,βF “ xf̂ , Π̂y for some model Π̂ and modelled distribution f̂ ?

Our next main result shows that the answer is positive: see Theorem 4.13 below,
which generalizes Hairer’s multilevel Schauder estimates [Hai14, Theorem 5.12] as
well as Hairer’s extension theorem [Hai14, Theorem 5.14]. We first need to define the
new model pΠ̂, Γ̂q and the new modelled distribution f̂ .

New model pΠ̂, Γ̂q. The new model is labelled by a new set Î, obtained by adding
to I all multi-indexes of homogeneity up to γ ` β:

Î :“ I \ polypγ ` βq where polyptq :“ tk P Nd
0 : |k| ă tu (4.12)

where \ denotes the disjoint union and we agree that polyptq “ H for t ď 0.
The germs Π̂ “ pΠ̂aqaPÎ in the new model are defined by

Π̂a
x :“

$

’

&

’

%

KΠi
x ´

ÿ

kPpolypαa`βq

Dk
pKΠi

xqpxqXk
x if a “ i P I ,

Xk
x if a “ k P polypγ ` βq ,

(4.13)

with homogeneities α̂ “ pα̂aqaPÎ given by

α̂a :“
#

αi ` β if a “ i P I ,

|k| if a “ k P polypγ ` βq .
(4.14)

We will show that Π̂a is well defined, thanks to Proposition 2.12 and Lemma 3.15,
and it satisfies the homogeneity condition (4.2) with exponent α̂a.

We next define the coefficients Γ̂ “ pΓ̂baxyqb,aPÎ . Using labels i, j P I and k, l P

polypγ ` βq for clarity, we have the triangular structure

Γ̂baxy “

ˆ

Γjixy 0
¨ ¨ ¨ pΓpolyqlkxy

˙

“

$

’

’

’

&

’

’

’

%

Γjixy if pb, aq “ pj, iq P I ˆ I ,

0 if pb, aq “ pj, kq P I ˆ polypγ ` βq ,

¨ ¨ ¨ if pb, aq “ pl, iq P polypγ ` βq ˆ I ,

pΓpolyqlkxy if pb, aq “ pl, kq P polypγ ` βq ˆ polypγ ` βq,

(4.15)
where Γ are the coefficients of the original model while Γpoly are those of the polynomial
model, see (4.7). It only remains to define ¨ ¨ ¨ “ Γ̂lixy for l P polypγ ` βq and i P I:

Γ̂lixy :“
ÿ

jPI :
αj`βą|l|

Dl
pKΠj

xqpxq Γjixy ´
ÿ

kPpolypαi`βq

pΓpoly
q
lk
xyD

k
pKΠi

yqpyq . (4.16)



MULTILEVEL SCHAUDER ESTIMATES WITHOUT REGULARITY STRUCTURES 23

(The second sum is restricted to k ě l, because pΓpolyqlkxy “ 0 otherwise, see (4.7).
Also note that Γ̂lixy ‰ 0 only for |l| ď max α ` β “ maxjPI αj ` β.)

We will check by direct computation that condition (4.3) in the definition of a
model is satisfied by Π̂ and Γ̂, see Section 6.1.1.

New modelled distribution f̂ . Given a modelled distribution f “ pf ipxqqiPI

relative to the original model pΠ,Γq, we define for a P Î “ I \ polypγ ` βq

f̂apxq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

f ipxq if a “ i P I ,

ÿ

jPI :
αj`βą|k|

f jpxqDk
pKΠj

xqpxq

´ Dk
pKtxf,Πyx ´ Rγ

xf,Πyuqpxq

if a “ k P polypγ ` βq .
(4.17)

(We point out that the three lines in the r.h.s. of (4.17) correspond precisely to the
three terms I,J ,N in the setting of Regularity Structures, see [Hai14, (5.15)].)

We will prove that f̂ is indeed a modelled distribution of order γ ` β relative to
the new model pΠ̂, Γ̂q, see Section 6.1.3.

Remark 4.9. For t P R, we define the restriction Qďtf of a modelled distribution
f “ pf ipxqqiPI where we only keep the components f ipxq with αi ď t, that is

Qďtfpxq :“
`

f ipxq1tαiďtu

˘

iPI
.

We can then rewrite (4.17) more compactly as follows:

f̂apxq :“

$

&

%

f ipxq if a “ i P I ,

Dk
`

K
␣

Rxf,Πy ´ xQď|k|´βf,Πyx
(˘

pxq if a “ k P polypγ ` βq .

Compatibility condition. Before stating our multilevel Schauder estimates, we
state a technical condition on the model M “ pΠ,Γq and the kernel K.

Assumption 4.10 (Compatibility). A model M “ pΠ,Γq with homogeneities
α “ pαiqiPI and a β-regularising kernel K are called compatible if

pDk
pKΠi

xqqxPRd is a 0-homogeneous germ whenever |k| “ αi ` β P N0 . (4.18)
We denote for K Ă Rd and λ̄ ą 0

rKΠsK,λ̄ :“
ÿ

iPI

ÿ

kPNd
0 : |k|“αi`β

}Dk
pKΠi

xq}G0
hom;K,λ̄,rΠ

, (4.19)

where we agree that rKΠsK,λ̄ :“ 0 if the sum is empty (i.e. αi `β R N0 for all i P I).

Remark 4.11 (Compatibility is mild). Condition (4.18) is trivially satisfied if
αi ` β is non-integer for any i P I. Even when some αi ` β is an integer, one can
ensure compatibility by slightly decreasing β ą 0 to β1 P p0, βq so that all αi ` β1 are
non integer (note that a β-regularising kernel K is also β1-regularising).
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We also note that condition (4.18) is fulfilled when KΠi
x is a polynomial of degree

ă αi ` β, because DkpKΠi
xq ” 0 in this case. In particular, if the kernel K preserves

polynomials (see Assumption 2.6), condition (4.18) only applies to non-polynomial
germs Πi. Thus, in practice, the assumption of compatibility is often void.

Remark 4.12 (Strong vs. weak homogeneity). Since by assumption each germ
Πi is αi-homogeneous, Theorem 5.4 below implies that when αi ` β “ |k| the germ
pDkpKΠi

xqqxPRd is always weakly 0-homogeneous, see Definition 5.1 below. This further
shows that Assumption 4.10 is not very demanding.

Multilevel Schauder estimates. We can finally state our second main result.
Recall the order rΠ P N0 of a model M “ pΠ,Γq, see Definition 4.1.

Theorem 4.13 (Multilevel Schauder estimates). Let M “ pΠ,Γq be a model
with homogeneities α “ pαiqiPI and order r “ rΠ P N0. Fix γ ą max α.

Let f P Dγ
M be a modelled distribution of order γ relative to M “ pΠ,Γq, so that

xf,Πy :“
ˆ

ÿ

iPI

f ipxq Πi
x

˙

xPRd

is a γ-coherent germ ,

and fix a γ-reconstruction Rγxf,Πy (which is unique if γ ą 0).
Fix β ą 0 with γ ` β R N0 and let K be a β-regularising kernel of order pm, rq

large enough:
m ą γ ` β, r ě rΠ , (4.20)

such that M “ pΠ,Γq and K are compatible (see Assumption 4.10 and Remark 4.11).
Then we can define:

‚ a new model M̂ “ pΠ̂, Γ̂q, see (4.13) and (4.15)-(4.16), indexed by Î in (4.12)
with homogeneities α̂ “ pα̂aqaPÎ in (4.14) and with order rΠ̂ “ rΠ;

‚ a new modelled distribution f̂ P Dγ`β

M̂
of order γ ` β relative to M̂ “ pΠ̂, Γ̂q,

see (4.17), so that

xf̂ , Π̂y :“
ˆ

ÿ

aPÎ

f̂apxq Π̂a
x

˙

xPRd

is a pγ ` βq-coherent germ ;

in such a way that the following equality holds, with Kγ,β defined by (3.17):
xf̂ , Π̂y “ Kγ,β

xf,Πy . (4.21)
In particular, by Theorem 3.17, we have (with some abuse of notation)

Rγ`β
xf̂ , Π̂y “ K pRγ

xf,Πyq , (4.22)
i.e. K pRγxf,Πyq is a pγ`βq-reconstruction of xf̂ , Π̂y (which is unique if γ`β ą 0).

The proof of Theorem 4.13 is given in Section 6.1, and we proceed as follows.
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‚ In Section 6.1.1, we prove that M̂ “ pΠ̂, Γ̂q is indeed a model: we first check
the condition of reexpansion (4.3) for Π̂ and Γ̂ by a direct computation; then
we show that each Π̂i

x satisfies the homogeneity relation (4.2) with exponent α̂i.
‚ In Section 6.1.2, we prove (4.21) by a simple calculation; then relation (4.22)

follows as an immediate consequence of Theorem 3.17, see (3.23).
‚ In Section 6.1.3, we prove that f̂ is indeed a modelled distribution, and we also

prove a continuity estimate, see (4.24) below.

Remark 4.14. We can rephrase Theorem 4.13 by stating that the map Kγ,β acting
on germs can be lifted to a map f ÞÑ f̂ acting on modelled distributions, defined by
(4.17), so that the following diagram commutes:

Dγ
M Dγ`β

M̂

Gγ Gγ`β

ˆ̈

x ¨ ,Πy x ¨ ,Π̂y

Kγ,β

where we set Gγ :“ Gᾱ;ᾱ,γ and Gγ`β :“ Gpᾱ`βq^0;pᾱ`βq^0,γ`β for short.

4.3. Continuity and further properties. Note that the maps Π ÞÑ Π̂
and f ÞÑ f̂ “ K̂γ,βf are affine. We will prove that they are also continuous: recalling
(4.4) and (4.9), as well as (4.19), we have

}Π̂}Mα̂
K

À }Π}Mα
K1

` rKΠsK1 , (4.23)

~f̂~Dγ`β
K

À
`

}Π}Mα
K1

` rKΠsK1

˘

~f~Dγ

K1
, (4.24)

for some compact K 1 Ě K, e.g. we can take K 1 :“ K‘Bp0, 2q as the 2-enlargement of
K. A similar continuity bound holds for the map Γ ÞÑ Γ̂, see (4.25) below, provided
Γ satisfies the analytical bound (3) in Remark 4.2.

We now discuss enhanced continuity estimates. Observe that the space Mα of
models is not a vector space, despite the semi-norm like notation } ¨ }Mα

K,λ̄
, see (4.4),

because the relation (4.3) between Π and Γ is non-linear. Nevertheless, given two
models M1 “ pΠ1,Γ1q and M2 “ pΠ2,Γ2q (with the same homogeneities α “ pαiqiPI
and the same value of r “ rΠ1 “ rΠ2), we can consider the distance

}Π1 ´ Π2}Mα
K

which is well defined by (4.4) (even though Π1 ´ Π2 needs not be a model).
We next compare two modelled distributions f1 P Dγ

M1 and f2 P Dγ
M2 of the same

order γ, but relative to different models M1 “ pΠ1,Γ1q and M2 “ pΠ2,Γ2q (with the
same homogeneities α “ pαiqiPI and r “ rΠ1 “ rΠ2), as in [Hai14, Remark 3.6]. To
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this purpose, we define for compacts K Ă Rd the distance
~f1; f2~Dγ

K
“ ~f1; f2~Dγ

M1,M2;K
“ ~f1; f2~Dγ

Γ1,Γ2,α;K

:“ sup
xPK, iPI

ˇ

ˇf i1pxq ´ f i2pxq
ˇ

ˇ

` sup
x,yPK, iPI

ˇ

ˇ

ˇ

ř

jPI

␣

pΓ1qijxy f
j
1 pyq ´ pΓ2qijxy f

j
2 pyq

(

´ pf i1pxq ´ f i2pxqq

ˇ

ˇ

ˇ

|x ´ y|γ´αi
.

We can improve the bound (4.24) via a local Lipschitz estimate, which shows that
the distance between f̂1 and f̂2 is controlled by the distances between f1 and f2 and
between the models Π1 and Π2, if }Πi}Mα

K1
and ~fi~Dγ

K1
are uniformly bounded.

Proposition 4.15 (Enhanced continuity). Given any two compatible models
Π1,Π2 such that rKΠ1sK1 “ rKΠ2sK1 “ 0, see Assumption 4.10, and given any
corresponding modelled distributions f1, f2, the following bound holds:

~f̂1; f̂2~Dγ`β
K

À }Π1}Mα
K1

~f1; f2~Dγ`β

K1
` }Π1 ´ Π2}Mα

K1
~f2~Dγ

K1
,

for some enlarged compact K 1 Ą K (e.g. we can take K 1 “ K ‘ Bp0, 2q).

We omit the proof of this result, since it is very similar to that of (4.24).
We finally come back to the additional properties (1), (2), (3) of the coefficients Γ

that one may require in a model M “ pΠ,Γq, see Remark 4.2. We show that these
properties are preserved when one considers the new model M̂ “ pΠ̂, Γ̂q.

Proposition 4.16 (Properties of reexpansion). Fix a model M “ pΠ,Γq, a
real number γ P R and a β-regularizing kernel K which satisfy the assumptions of
Theorem 4.13 (that is, condition (4.20) holds and Π and K are compatible).

Consider the new model M̂ “ pΠ̂, Γ̂q, see (4.13) and (4.15)-(4.16). If any of the
properties (1), (2), (3) in Remark 4.2 is satisfied by Γ, then the same property is
satisfied by Γ̂ (with respect to the homogeneities α̂ “ pα̂aqaPÎ in (4.14)).

Furthermore, if property (3) holds, then recalling the norm (4.5) one has the
continuity estimate

}Γ̂}Mα̂
K

À
`

}Π}Mα
K1

` rKΠsK1

˘

}Γ}Mα
K
, (4.25)

where K 1 :“ K ‘ Bp0, 2q is the 2-enlargement of K.

5. Proof of our Main Result I
In this section we establish our first main result, the Schauder estimates for coherent

germs in Theorem 3.17. Along the way, we also prove Proposition 3.18 (canonicity of
the germ Kγ,βF ), Proposition 2.12 (singular integration) and Theorem 2.13 (classical
Schauder estimates).

Rather than establishing Theorem 3.17 by direct calculation, we prefer to divide
our proof into two steps.
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(1) First we establish that the operation of integration F ÞÑ KF , that is, pFxqxPRd ÞÑ

pKFxqxPRd , maps the space of coherent and homogeneous germs Gᾱ;α,γ into a
new space of weakly coherent and homogeneous germs, denoted by Gᾱ`β;α`β,γ`β

weak ,
for which the coherence and homogeneity conditions (3.2) and (3.4) hold for
test-functions which annihilate suitable polynomials (this is reminiscent of
Hölder-Zygmund spaces Z, see Definition 2.1). This is a direct generalisation
of the classical Schauder estimates Theorem 2.13, see Remark 5.5 below. As a
consequence, by Remark 3.12, we have that

F ´ RγF P Gγ;α,γ
ùñ KtF ´ RγF u P Gγ`β;α`β,γ`β

weak . (5.1)

(2) Then we prove that a weakly γ1-coherent and γ1-homogeneous germ H (with
the same exponent of coherence and homogeneity) can be turned into a usual
coherent and homogeneous germ by subtracting a Taylor polynomial T γ1

pHq:

H P Gγ1;α1,γ1

weak ùñ H ´ T γ1

pHq P Gγ1;α1^0,γ1

(note that α1 becomes α1 ^ 0). For the germ H “ KtF ´ RγF u in (5.1), since
the difference H ´ T γ`βpHq equals Kγ,βF ´ K pRγF q, see (3.17), we obtain

F ´ RγF P Gγ;α,γ
ùñ Kγ,βF ´ K pRγF q P Gγ`β;pα`βq^0,γ`β .

This implies that Kγ,βF is ppα` βq ^ 0, γ ` βq-coherent, and also that K pRγF q

is a pγ ` βq-reconstruction of Kγ,βF .
If, furthermore, we assume that F has homogeneity ᾱ, then RγF P Z ᾱ

and consequently K pRγF q P Z ᾱ`β by the classical Schauder estimates. Then
K pRγF q satisfies the homogeneity bound (3.1) with exponent pᾱ`βq^0, which
implies that Kγ,βF has homogeneity pᾱ ` βq ^ 0 (since ᾱ ` β ď γ ` β).

5.1. Weakly coherent and homogeneous germs. We introduce a class
of weakly coherent and homogeneous germs, generalising Definition 3.2. We recall
that Br

δ denotes, for r P N0 and δ P R, the space of test functions φ P Br which
annihilate polynomials of degree ď δ, see (2.4).

Definition 5.1 (Weak homogeneity and weak coherence). Let F “ pFxqxPRd

be a germ. Let ᾱ, α, γ P R with ᾱ, α ď γ and r P N0.
‚ F is called weakly ᾱ-homogeneous of order r, denoted F P Gᾱ

weak hom; r, if for
any compact K Ă Rd and λ̄ P r1,8q the following bounds hold:

|Fxpφλxq| À λᾱ and |Fxpψxq| À 1 ,
uniformly over x P K, λ P p0, λ̄s, φ P Br

ᾱ and ψ P Br.
(5.2)

The space of weakly ᾱ-homogeneous germs (of any order) is Gᾱ
weak hom “

Ť

rPN0

Gᾱ
weak hom; r.
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‚ F is called weakly pα, γq-coherent of order r, denoted F P Gα,γ
weak coh; r, if for

any compact K Ă Rd and λ̄ P r1,8q the following bounds hold:
|pFy ´ Fxqpφλxq| À λαp|y ´ x| ` λq

γ´α and |pFy ´ Fxqpψxq| À 1
uniformly over x, y P K, λ P p0, λ̄s, φ P Br

γ and ψ P Br.
(5.3)

The space of weakly pα, γq-coherent germs (of any order) is Gα,γ
weak coh “

Ť

rPN0

Gα,γ
weak coh; r.

‚ F is called weakly pα, γq-coherent with homogeneity ᾱ if both (5.2) and (5.3)
hold, for some order r P N. The space of such germs is

Gᾱ;α,γ
weak “ Gᾱ

weak hom X Gα,γ
weak coh .

Remark 5.2 (Usual vs. weak homogeneity and coherence). The first conditions
in (5.2) and (5.3) involve different classes of test functions, namely φ P Br

ᾱ and φ P Br
γ ,

while the second conditions in (5.2) and (5.3) involve ψ P Br. However, when ᾱ ă 0
and γ ă 0 we have Br

ᾱ “ Br
γ “ Br, hence (5.2) and (5.3) reduce to the usual

homogeneity and coherence conditions (3.1) and (3.2).
In particular, coherent and homogeneous germs are weakly coherent and homoge-

neous: Gᾱ;α,γ Ď Gᾱ;α,γ
weak , and the inclusion is an equality when ᾱ ă 0 and γ ă 0.

Remark 5.3 (General scales). As in the Remark 3.8, for germs F “ pFxqxPRd

that are both weakly homogeneous and weakly coherent we can get rid of λ̄, i.e. if
both relations (5.2) and (5.3) holds for λ̄ “ 1, then they hold for any λ̄ P r1,8q.
To this purpose, for λ P r1, λ̄s we decompose φλx “

řn
k“1pψkq1

xk
for suitable xk P K,

ψk P Br and n (uniformly bounded, depending on λ̄ and K); by the second bounds
in (5.2) and (5.3) we get |Fyppψkq1

xq| ď |pFy ´ Fxqppψkq1
xq| ` |Fxppψkq1

xq| À 1, hence
|Fypφ

λ
xq| À 1 for λ P r1, λ̄s, from which the first bounds in (5.2) and (5.3) follow.

We introduce semi-norms for weakly homogeneous and coherent germs, correspond-
ing to (5.2) and (5.3):

}F }Gᾱ
weak hom;K,λ̄,r

:“ sup
xPK,λPp0,λ̄s

φPBr
ᾱ

|Fxpφλxq|

λᾱ
` sup

xPK,ψPBr
|Fxpψxq| , (5.4)

}F }Gα,γ

weak coh;K,λ̄,r
:“ sup

x,yPK,λPp0,λ̄s

φPBr
γ

|pFy ´ Fxqpφλxq|

λαp|y ´ x| ` λqγ´α
` sup

x,yPK,ψPBr
|pFy ´ Fxqpψxq| .

(5.5)
We next define the joint semi-norm where we fix r “ rᾱ,α as in (3.3), i.e. the smallest
non-negative integer r ą maxt´ᾱ,´αu (see Proposition B.1 in Appendix B):

}F }Gᾱ;α,γ

weak;K,λ̄

:“ }F }Gᾱ
weak hom;K,λ̄,rᾱ,α

` }F }Gα,γ

weak coh;K,λ̄,rᾱ,α

. (5.6)

By Remark 5.3, we may set λ̄ “ 1 and omit it from the notation.
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5.2. Conditional proof of Theorem 3.17. We state two basic results on
(weakly) coherent and homogeneous germs, which will yield Theorem 3.17 as a
corollary. We also deduce Proposition 3.18.

The first result, proved in Section 5.4 below, describes how a regularising kernel
K acts on germs F “ pFxqxPRd by integration, i.e. we consider KF :“ pKFxqxPRd . We
recall that KF is well-defined for homogeneous germs, see Remark 3.7. For coherent
germs, only KpFy ´ Fxq is ensured to be well-defined, see again Remark 3.7, but also
in this case we will consider the germ KF :“ pKFxqxPRd proving that it is weakly
coherent: this is an abuse of notation, justified by the fact that for the weak coherence
relation (5.3) only the differences KFy ´ KFx “ KpFy ´ Fxq matter.

Theorem 5.4 (Integration of germs). Let K be a β-regularising kernel of order
pm, rq with range ρ, see Definition 2.3. For every compact K Ď Rd and λ̄ P r1,8q

there is a constant cst1

K,λ̄
ă 8 such that the following holds, for any ᾱ, α, γ P R

with ᾱ, α ď γ:
‚ if m ą ᾱ ` β, integration by K maps continuously Gᾱ

hom,r to Gᾱ`β
weak hom; r:

@r P N : }KF }Gᾱ`β

weak hom;K,λ̄,r

ď cst1

K,λ̄ }F }Gᾱ
hom;K,2pλ̄`ρq,r

; (5.7)

‚ if m ą γ ` β, integration by K maps continuously Gα,γ
coh; r to Gα`β,γ`β

weak coh; r:
@r P N : }KF }Gα`β,γ`β

weak coh;K,λ̄,r

ď cst1

K,λ̄ }F }Gα,γ

coh;K,2pλ̄`ρq,r
. (5.8)

As a consequence (see Remark 3.6), if we assume that
r ą maxt´ᾱ,´αu , m ą γ ` β ,

then integration by K is a continuous linear map from Gᾱ;α,γ to Gᾱ`β;α`β,γ`β
weak :

}KF }Gᾱ`β;α`β,γ`β

weak;K,λ̄

ď cst1

K,λ̄ }F }Gᾱ;α,γ

K,2pλ̄`ρq

. (5.9)

If furthermore K preserves polynomials at level γ, see Assumption 2.6, then
integration by K is also a continuous linear map from Gᾱ;α,γ

weak to Gᾱ`β;α`β,γ`β
weak .

Remark 5.5 (Classical Schauder estimates). Given any ᾱ P R and any distribu-
tion f P Z ᾱ, see Definition 2.1, we can consider the constant germ pFx “ fqxPRd which
is clearly coherent for any exponents α, γ and weakly homogeneous with exponent ᾱ,
that is F P Gᾱ;α,γ

weak . By Theorem 5.4, we see that pKFxq P Gᾱ`β;α`β,γ`β
weak , which means

that Kf P Z ᾱ`β (compare (5.2) with (2.5)). We thus obtain the classical Schauder
estimates, Theorem 2.13, as a corollary of Theorem 5.4.

Our second basic result links weakly coherent and homogeneous germs with ordinary
ones, in the special case when homogeneity and coherence exponents coincide: ᾱ “ γ.
This will be proved in Section 5.6 below, together with Lemma 3.15 which ensures
the existence of pointwise derivatives for suitable distributions.
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Theorem 5.6 (Positive renormalisation). Let α, γ P R with α ď γ and
α ‰ 0, γ R N0.

If a germ F “ pFxqxPRd P Gγ;α,γ
weak is weakly pα, γq-coherent and weakly γ-homogeneous,

subtracting the family T γpF q “ pT γ
x pFxqqxPRd of its Taylor polynomials, see (3.15),

we obtain the germ

G “ F ´ T γF , that is
Gx :“ Fx ´ T γ

x pFxq

“ Fx ´
ÿ

0ď|k|ăγ

DkFxpxq
p ¨ ´ xqk

k! ,

which is well defined, pα ^ 0, γq-coherent and γ-homogeneous, i.e. G P Gγ;α^0,γ.
The map F ÞÑ G is linear and continuous: for any compact K Ď Rd and λ̄ ą 0

}G}Gγ;α,γ

K,λ̄
ď cstK,λ̄ }F }Gγ;α,γ

weak;K,λ̄1
(5.10)

for λ̄1 :“ 4pλ̄ ` diampKqq.

Remark 5.7. The terminology “positive renormalisation” is inspired by [BHZ19],
where this notion is related to an operator called ∆` which yields an algebraic
description of the subtraction of Taylor polynomials, see [BHZ19, Lemma 6.10 and
Remark 6.11] and [FH20, section 15.3].

We can now deduce Theorem 3.17 from Theorems 5.4 and 5.6.
Proof of Theorem 3.17. Let F be an pα, γq-coherent germ for some α ď γ. Let RγF
be a γ-reconstruction of F , see (3.8), so that (see Remark 3.12)

F ´ RγF P Gγ;α,γ.

We stress that F ´ RγF is both coherent and homogeneous, even when F is not
homogeneous. By Theorem 5.4, using the assumptions (3.20), it follows that

KtF ´ RγF u :“ pKtFx ´ RγF uqxPRd P Gγ`β;α`β,γ`β
weak . (5.11)

By assumption α`β ‰ 0, γ`β R N0, see (3.19), therefore we can apply Theorem 5.6
to the germ KtF ´ RγF u to obtain

KtF ´ RγF u ´ T γ`β
`

KtF ´ RγF u
˘

P Gγ`β;pα`βq^0,γ`β .

Recalling (3.17)-(3.18), this can be rewritten as
Kγ,βF ´ K pRγF q P Gγ`β;pα`βq^0,γ`β, (5.12)

which proves (3.21). If we assume that K pRγF q P D1 is well-defined (note that it is a
fixed distribution, which does not depend on x), it follows that Kγ,βF is well-defined
and is ppα ` βq ^ 0, γ ` βq-coherent. The property of homogeneity in (5.12) means
precisely that K pRγF q is a pγ ` βq-reconstruction of Kγ,βF , see (3.8), that is

Rγ`β
pKγ,βF q “ KpRγF q .

The continuity estimate (3.22) follows by (5.10) and (5.9).
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We finally assume that F is also ᾱ-homogeneous and we establish the homogeneity
of Kγ,βF . We know that RγF P Z ᾱ, see (3.9), hence KRγF P Z ᾱ`β by the classical
Schauder estimates, see Theorem 2.13. If we view KRγF as a constant germ, it is
pα1, γ1q-coherent for any α1, γ1 and has homogeneity pᾱ ` βq ^ 0, hence

KRγF P Gpᾱ`βq^0;α1,γ1

. (5.13)

Since ᾱ ď γ, summing (5.12) and (5.13) we obtain

Kγ,βF P Gpᾱ`βq^0;pα`βq^0,γ`β .

Finally, the continuity estimate (3.24) follows from (3.22)-(3.10). Furthermore, for
(3.25) we use the fact that

}KpRγF q}Gpᾱ`βq^0
hom;K,λ̄,r

À }KpRγF q}Zᾱ`β

K1,λ̄,r
,

for K 1 :“ K‘Bp0, λ̄q, which follows from the definition of homogeneity when ᾱ`β ă 0
and from (5.29) when ᾱ ` β ą 0. Now the right-hand side can be bounded by the
classical Schauder estimates and the reconstruction theorem. □

We then prove Proposition 3.18.

Proof of Proposition 3.18. Set Kγ,βF :“ KFx ´ Px as in (3.26), where P “ pPxqxPRd

for the moment is an arbitrary germ. Assume that (3.23) holds, i.e. that KpRγF q

is a pγ ` βq-reconstruction of Kγ,βF . Then, if we define G :“ KtF ´ RγF u, for any
ψ P DpBp0, 1qq we must have, as λ Ó 0,

pGx ´ Pxqpψλxq “ pKγ,βF ´ RγF qpψλxq “ Opλγ`β
q .

We already observed in (5.11) that G P Gγ`β;α`β,γ`β
weak , by Theorem 5.4. In particular,

for any x P Rd, the distribution f “ Gx satisfies the assumption (3.13) of Lemma 3.15
with δ “ γ ` β, hence pGx ´ T γ`β

x pGqqpψλxq “ Opλγ`βq by (3.16). We then obtain

pPx ´ T γ`β
x pGqqpψλxq “ Opλγ`β

q .

Assume now that Px is a polynomial of degree ă γ ` β. Then Qx :“ Px ´ T γ`β
x pGq

is a polynomial of degree ă γ ` β with Qxpψλxq “ Opλγ`βq, for any ψ P DpBp0, 1qq.
But this implies that Qx “ 0: indeed, for any k P Nd

0 with 0 ď |k| ă γ ` β we have

pB
kQxqpψλxq “ p´λq

´|k|QxppB
kψq

λ
xq “ Opλγ`β´|k|

q ÝÝÑ
λÓ0

0 ,

hence, if we choose ψ with
ş

ψ “ 1, we obtain BkQxpxq “ limλÓ0pBkQxqpψλxq “ 0. □

The rest of this section is devoted to the proof of Theorems 5.4 and 5.6. In the
next subsection we first discuss some technical tools, which will also yield the proof of
Proposition 2.12 (integration of K with a sufficiently nice distribution f is well-defined)
and Theorem 2.13 (classical Schauder estimate).
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5.3. Preliminary tools. Fix a test function φ P D. A key ingredient of our
proofs is a convenient representation for the function K˚

nφ
λ
x, recall (2.18), provided

by Lemma 5.8 below. This result is analogous to [FH20, Proposition 14.11], which
however only considers the translation invariant case Knpx, yq “ Knpy ´ xq.

We first describe heuristically the result, focusing for simplicity on K˚
nφ

λ “ K˚
nφ

λ
0 .

Given a β-regularising kernel K with range ρ, as in Definition 2.3, by properties (1)
and (2) we can write approximately

Knpz, yq » 2´βn ψρ2´n

py ´ zq

for some test-function ψ P D, and thus, by (2.19),

K˚
nφ

λ
pyq » 2´βn

ż

Rd

φλpzqψρ2´n

py ´ zq dz . (5.14)

For λ ě ρ2´n, we can pretend that the test function φλ, which has the larger scale, is
approximately constant on the support of ψρ2´n . This yields the approximation

for λ ě ρ2´n : K˚
nφ

λ
pyq » 2´βn η2λ

pyq pwith η » φq .

For λ ď ρ2´n, exchanging the roles of φ and ψ would yield K˚
nφ

λpyq » 2´βn ηρ2´n
pyq

with η » ψ, but a better approximation can be obtained if we assume that φ
annihilates polynomials up to some degree c P N0: subtracting the Taylor polynomial
of ψρ2´n at order c based at y in the integral in (5.14), we obtain

for λ ď ρ2´n : K˚
nφ

λ
pyq » 2´βn

p2nλq
c`1 ζp2ρq2´n

pyq (for some ζ P D) .

We can now state the precise result. Its proof is given in Appendix A.1.

Lemma 5.8 (Integrating Kn with test functions). Let K be a β-regularising
kernel of order pm, rq with range ρ, see Definition 2.3. Fix λ̄ P r1,8q and an
integer c P N0 Y t´1u. For every compact K Ď Rd and any test functions φ P Br

c

we can write, for all n P N0, x P K and λ P p0, λ̄s,

K˚
nφ

λ
xpyq “

#

2´βn η2λ
x pyq for ρ2´n

ď λ ,

2´βn
p2nλq

mintc`1,mu ζ2pρ2´nq
x pyq for ρ2´n

ě λ ,
(5.15)

for suitable (explicit) test-functions
η “ ηrn,λ,x,φs

P cstK,λ̄ Br, ζ “ ζ rn,λ,x,φs
P cstK,λ̄ Br . (5.16)

where cstK,λ̄ ă 8 depends only on K, λ̄ and on the kernel K.
If furthermore K preserves polynomials at some level c0 P N0, see Assumption 2.6,

we can improve (5.16) to
η “ ηrn,λ,x,φs

P cstK,λ̄ Br
minpc,c0q , ζ “ ζ rn,λ,x,φs

P cstK,λ̄ Br
minpc,c0q . (5.17)

Remark 5.9. It follows from the proof of this result that the constants cstK,λ̄
in (5.16) and (5.17) depend on the constants cK appearing in items (2) and (3) in
Definition 2.3, as well as on the range ρ of the kernel K.
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We close this subsection with the proofs of Proposition 2.12 (singular integration)
and Theorem 2.13 (classical Schauder estimates).

Proof of Proposition 2.12. Let K be a β-regularising kernel of order p0, rq with range ρ.
Let f be a distribution of order r, so that by Remark 2.2, see (2.6) with z “ 0,

@λ̄1
P r1,8q : sup

ηPBr, λPr1,λ̄1s

|fpηλ̄
1

q| — Cpλ̄1
q ă `8 . (5.18)

Let us show that Kf is well-defined by (2.20) as a distribution of order r, i.e. by (2.7)

@λ̄ P N : sup
φPBr

|Kfpφλ̄q| ă `8. (5.19)

Given λ̄ P r1,8q, we apply Lemma 5.8 with c “ ´1, in particular by (5.15)

K˚
nφ

λ̄
“

#

2´βn η2λ̄ if ρ2´n ď λ̄ ,

2´βn ζ2pρ2´nq if ρ2´n ě λ̄ ,

for some test-functions η, ζ P cst Br. Both scaling exponents 2λ̄ and 2pρ2´nq ě 2λ̄
take values in r1, λ̄1s, where we set λ̄1 :“ maxt2λ̄, 2ρu, hence by relation (5.18) we
can bound |fpK˚

nφ
λ̄q| ď Cpλ̄1q 2´βn uniformly over n P N. Thus, the sum in (2.20)

converges and furthermore (5.19) holds. □

Proof of Theorem 2.13. We give a simple proof of Theorem 2.13 exploiting Lemma 5.8,
in the same manner as in [FH20, Section 14]. We will also perform similar calculations
when proving Theorem 5.4 below.

We fix γ P R, a β-regularising kernel K of order pm, rq with range ρ, where we
assume that m ą γ ` β and r ą ´γ, see (2.21). When γ ě 0, we also assume that K
preserves polynomials at level γ, see Assumption 2.6.

Let us fix f P Zγ . First we note that f is a distribution of order r by Remark 2.2,
hence by Proposition 2.12 the integration Kf is well-defined by (2.20). It remains to
show that Kf P Zγ`β, that is, }Kf}Zγ`β

K
ă 8 for any compact K Ă Rd, see (2.5).

Fix K Ă Rd compact. We take x P K and λ P p0, 1s. We first estimate Kfpφλxq for
φ P Br

γ`β, see (2.5). We define

Nλ :“ mintn P N : ρ2´n
ď λu ,

and we cut the series (2.20) in two regimes. By Lemma 5.8 with λ̄ “ 1, c “ tγ`βu and
c0 “ tγu, we can express K˚

nφ
λ
x through formula (5.15) (where mintc ` 1,mu “ c ` 1,

since m ą γ ` β): for suitable test-functions η “ ηrn,λ,x,φs and ζ “ ζ rn,λ,x,φs we have

Kfpφλxq “

Nλ´1
ÿ

n“0
fpK˚

nφ
λ
xq `

`8
ÿ

n“Nλ

fpK˚
nφ

λ
xq

“

Nλ´1
ÿ

n“0
2´βn

p2nλq
c`1fpζ2ρ2´n

x q `

`8
ÿ

n“Nλ

2´βnfpη2λ
x q.

(5.20)

We have η, ζ P cstK,1 Br
γ, see (5.17). Since f P Zγ and r ą ´γ by assumption, we

can bound fpζ2ρ2´n

x q and fpη2λ
x q by (2.5) and sum the geometric series to get (note
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that c ` 1 ą γ ` β)
ˇ

ˇKfpφλxq
ˇ

ˇ À

Nλ´1
ÿ

n“0
2´βn

p2nλq
c`12´nγ

`

`8
ÿ

n“Nλ

2´βnλγ À λγ`β, (5.21)

where the multiplicative constant depends only on the kernel K, the compact K and
the distribution f , as well as on λ̄. This concludes our first estimate.

We next bound Kfpφxq for φ P Br which may not annihilate polynomials, see (2.5).
By Lemma 5.8 with λ̄ “ 1 and c “ ´1, we have an analogue of (5.20) with λ “ 1:

Kfpφxq “

N1´1
ÿ

n“0
2´βn fpζ2ρ2´n

x q `

`8
ÿ

n“N1

2´βn fpη2
xq ,

for suitable η, ζ P cstK,1 Br. Since 2 ď 2ρ2´n ď 2ρ for n ď N1 ´ 1, we can bound
|fpζ2ρ2´n

x q| À 1 and |fpη2
xq| À 1 by (2.6), because f is a distribution of order r, hence

|Kfpφxq| À
ÿ

nPN
2´βn

À 1. (5.22)

From the calculations above, the estimates (5.21) and (5.22) hold uniformly over
x P K, λ P p0, 1s, φ P Br

γ`β for any r ą ´γ. In fact, from the results of Appendix B,
see Proposition B.1, this remains true even for r ą ´γ ´ β, and thus f P Zγ`β.

By tracking the constants in the estimates, we have shown that
}Kf}Zγ`β

K
À }f}Zγ

K1
,

where the compact K 1 Ą K on the right-hand side depends only on K and the kernel
K, whence the continuity of the map Zγ Ñ Zγ`β, f ÞÑ Kf . □

5.4. Proof of Theorem 5.4. We are going to prove the bounds (5.7) and
(5.8). Then, in order to obtain the estimate (5.9) which proves continuity from
Gᾱ;α,γ to Gᾱ`β;α`β,γ`β

weak , it suffices to choose r “ rᾱ,α as in (3.3), recalling Remark 3.6
and Proposition B.1 in Appendix B. The second part, i.e. continuity from Gᾱ;α,γ

weak to
Gᾱ`β;α`β,γ`β

weak , is proved in the same way, using (5.17) rather than (5.16) of Lemma 5.8.
Let K be a β-regularising kernel of order pm, rq. We fix a compact K Ă Rd and

λ̄ P r1,8q and we derive estimates that are uniform for x, y P K and λ P p0, λ̄s. The
decomposition argument is the same as in the proof of Theorem 2.13.

(1) Weak homogeneity: proof of (5.7). We assume that m ą ᾱ` β. Recalling (5.4),
we need to show that there is a constant cst1 “ cst1

K,λ̄
ă 8 such that, uniformly

for x P K, for λ P p0, λ̄s and for φ P Br
ᾱ`β and ψ P Br,

ˇ

ˇKFxpφλxq
ˇ

ˇ ď cst1
}F }Gᾱ

hom;K,2pλ̄`ρq,r
λᾱ`β , |KFxpψxq| ď cst1

}F }Gᾱ
hom;K,2pλ̄`ρq,r

. (5.23)

Given φ P Br
ᾱ`β, we apply Lemma 5.8 with c :“ tᾱ ` βu (note that φ P Br

c ).
We set Nλ :“ mintn P N : ρ2´n ď λu and we split the sum in (2.20):

KFxpφλxq “

Nλ´1
ÿ

n“0
FxpK˚

nφ
λ
xq `

`8
ÿ

n“Nλ

FxpK˚
nφ

λ
xq.
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From (5.15), since mintc ` 1,mu “ c ` 1 because m ą ᾱ ` β,

KFxpφλxq “

Nλ´1
ÿ

n“0
2´βn

p2nλq
c`1Fxpζ2pρ2´nq

x q `

`8
ÿ

n“Nλ

2´βnFxpη2λ
x q , (5.24)

for ζ, η P cstK,λ̄ Br, see (5.16). Since F is ᾱ-homogeneous, see (3.5),

ˇ

ˇKFxpφλxq
ˇ

ˇ À cstK,λ̄ }F }Gᾱ
hom;K,2pλ̄`ρq,r

#

Nλ´1
ÿ

n“0
2´βn

p2nλq
c`12´nᾱ

`

`8
ÿ

n“Nλ

2´βnλᾱ

+

.

Since c ` 1 ą ᾱ ` β, the geometric series yield the first bound in (5.23).
Given ψ P Br (which needs not annihilate polynomials), we apply Lemma 5.8

with φ “ ψ and λ̄ “ 1, c “ ´1. Similarly to (5.24), with λ “ 1, we can write

KFxpψxq “

N1´1
ÿ

n“0
2´βnFxpζ2pρ2´nq

x q `

`8
ÿ

n“N1

2´βnFxpη2
xq (5.25)

for ζ, η P cstK,1 Br, see (5.16). Since F is ᾱ-homogeneous, see (3.5),

|KFypψxq| À cstK,1 }F }Gᾱ
hom;K,2p1`ρq,r

ÿ

nPN
2´βn , (5.26)

which completes the proof of (5.23).
(2) Weak coherence: proof of (5.8). We now assume m ą γ`β. Recalling (5.5), we

need to show that, uniformly for x P K, λ P p0, λ̄s and for φ P Br
γ`β, ψ P Br,

ˇ

ˇpKFy ´ KFxqpφλxq
ˇ

ˇ ď cst1
}F }Gα,γ

coh;K,2pλ̄`ρq,r
λα`β

p|y ´ x| ` λq
γ´α ,

|pKFy ´ KFxqpψxq| ď cst1
}F }Gα,γ

coh;K,2pλ̄`ρq,r
.

(5.27)

By (2.20)
pKFy ´ KFxqpφλxq “

ÿ

nPN
pFy ´ FxqpK˚

nφ
λ
xq

For φ P Br
γ`β, we apply Lemma 5.8 with c :“ tγ ` βu (note that φ P Br

c) and
we cut the sum as before, using (5.15) and mintc` 1,mu “ c` 1 by m ą γ ` β:

pKFy ´ KFxqpφλxq “

“

Nλ´1
ÿ

n“0
2´βn

p2nλq
c`1

pFy ´ Fxqpζ2pρ2´nq
x q `

`8
ÿ

n“Nλ

2´βn
pFy ´ Fxqpη2λ

x q ,

for ζ, η P cstK,λ̄ Br, see (5.16). Since F is pα, γq-coherent, see (3.6),
ˇ

ˇpKFy ´ KFxqpφλxq
ˇ

ˇ ď

ď cstK,λ̄ }F }Gα,γ

coh;K,2pλ̄`ρq,r

#

Nλ´1
ÿ

n“0
2´βn

p2nλq
c`12´nα

p|y ´ x| ` 2´n
q
γ´α

`

`8
ÿ

n“Nλ

2´βnλαp|y ´ x| ` λq
γ´α

+

.

(5.28)



36 LUCAS BROUX, FRANCESCO CARAVENNA, LORENZO ZAMBOTTI

Bounding p|y ´ x| ` 2´nqγ´α À |y ´ x|γ´α ` 2´npγ´αq and recalling that c` 1 ą

γ ` β ě α ` β, we can estimate the first sum in the r.h.s. by

λc`1
Nλ´1
ÿ

n“0

␣

2npc`1´α´βq
|y ´ x|

γ´α
` 2npc`1´γ´βq

(

À λα`β
|y ´ x|

γ´α
` λγ`β

À λα`β
p|y ´ x| ` λq

γ´α.

Also the second sum in (5.28) gives λα`βp|y ´ x| ` λqγ´α, therefore we obtain
the first bound in (5.27).

For the second bound in (5.27), we argue as in (5.25)-(5.26): given ψ P Br

(which needs not annihilate polynomials), we can write

pKFy ´ KFxqpψxq “

N1´1
ÿ

n“0
2´βn

pFy ´ Fxqpζ2pρ2´nq
x q `

`8
ÿ

n“N1

2´βn
pFy ´ Fxqpη2

xq

for ζ, η P cstK,1 Br, see (5.16). Since F is pα, γq-coherent, see (3.6),

|pKFy ´ KFxqpψxq| ď cstK,1 }F }Gα,γ
coh;K,2p1`ρq,r

ÿ

nPN
2´βn ,

which completes the proof of (5.27).
This completes the proof of Theorem 5.4. □

5.5. Proof of Theorem 5.6: homogeneity. In this subsection we prove
“half” of Theorem 5.6, showing that a weakly homogeneous germ can be turned into
an ordinary homogeneous germ by subtracting a suitable Taylor polynomial.

Theorem 5.10 (Positive renormalisation of weakly homogeneous germs).
If a germ F “ pFxqxPRd P Gᾱ

weak hom; r is weakly ᾱ-homogeneous of order r P N0, then
all pointwise derivatives DkFxpxq for x P Rd and 0 ď |k| ă ᾱ are well-defined by
(3.14) and they satisfy the following bound, for any compact K Ď Rd and λ̄ ą 0:

sup
xPK

|DkFxpxq| ď cst }F }Gᾱ
weak hom;K,λ̄,r

for 0 ď |k| ă ᾱ , (5.29)

where cst ą 0 is a constant depending only on ᾱ, λ̄, r and on the dimension d.
Recalling (3.15), we can then define the germ G :“ F ´ T ᾱpF q, that is

Gx :“ Fx ´ T ᾱ
x pFxq “ Fx ´

ÿ

0ď|k|ăᾱ

DkFxpxqXk
x .

(1) If ᾱ R N0, then G is ᾱ-homogenenous, i.e. G P Gᾱ
hom, and for all compact

K Ď Rd and λ̄ ą 0, r P N0

}G}Gᾱ
hom;K,λ̄,r

ď cst1
}F }Gᾱ

weak hom;K,λ̄,r

, (5.30)

where cst1 is a constant depending only on ᾱ, r and on the dimension d.
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(2) If ᾱ P N0 and if furthermore DkF P G0
hom for all multi-indices k with |k| “ ᾱ,

then G P Gᾱ
hom and, for all compact K Ď Rd and λ̄ ą 0, r P N0,

}G}Gᾱ
hom;K,λ̄,r

ď cst1
´

}F }Gᾱ
weak hom;K,λ̄,r

`
ÿ

|k|“ᾱ

›

›DkF
›

›

G0
hom;K,λ̄,r

¯

,

where cst1 is a constant depending only on ᾱ, r and on the dimension d.

This result turns out to be a corollary of Lemma 3.15, which we prove first.

Proof of Lemma 3.15. We fix a distribution f P D1 such that (3.13) holds, i.e.

for any φ P Bδ : |fpφλxq| À λδ uniformly for λ P p0, 1s , (5.31)

for some fixed x P Rd and δ ą 0 (recall the definition (2.3) of Bδ). We first show that
derivatives Dkfpxq defined as in (3.14) exist, then we prove the bound (3.16).

Let us fix any test function η P D with
ş

η “ 1 and
ş

ηpxqxl dx “ 0 for all 1 ď |l| ď δ.
Without loss of generality, we assume that supppηq Ă Bp0, 1q. We claim that

@k, l P Nd
0 with 0 ď |l| ď δ :

ż

Rd

xl

l! B
kηpxq dx “

#

p´1q|l| if l “ k ,

0 if l ‰ k .
(5.32)

If li ă ki for some i “ 1, . . . , d, this holds by integration by parts, because B
ki
i x

li
i “ 0.

If l ě k, again by integration by parts, the integral equals p´1q|k|
ş

Rd
xl´k

pl´kq! ηpxq dx,
which gives p´1q|l| for l “ k while it vanishes for l ‰ k, because 0 ă |l ´ k| ď |l| ď δ
and η annihilates monomials with this degree.

Let us check that the limit in (3.14) does not depend on the choice of η: if η̃ is
another such function, then Bkpη ´ η̃q annihilates monomials xl for any 0 ď |l| ď δ,
by (5.32), hence by (5.31) and the definition of distributional derivative, for |k| ă δ,

Dkfpηλxq ´ Dkfpη̃λxq “ p´λq
´|k|f

`

pB
k
pη ´ η̃qq

λ
x

˘

“ O
`

λδ´|k|
˘

ÝÝÑ
λÓ0

0 .

We next establish the limit in (3.14). For any λ P p0, 1s and N P N0, we can write

Dkfpηλ2´pN`1q

x q “ Dkfpηλxq `

N
ÿ

n“0
Dkfpηλ2´pn`1q

x ´ ηλ2´n

x q. (5.33)

Let us define the function

φp¨q :“ η
1
2 p¨q ´ ηp¨q “ 2d ηp2 ¨q ´ ηp¨q (5.34)

so that

Dkfpηλ2´pn`1q

x ´ ηλ2´n

x q “ p´λ´12n`1
q

|k|fppB
kηq

2´pn`1q

x q ´ p´λ´12nq
|k|fppB

kηq
2´n

x q

“ p´λ´12nq
|k|fppB

kφq
λ2´n

x q .

Note that Bkφ P Bδ for any k P Nd
0, by (5.32). Then our assumption (5.31) yields

ˇ

ˇDkfpηλ2´pn`1q

x ´ ηλ2´n

x q
ˇ

ˇ “ λ´|k| 2n|k|
ˇ

ˇfppB
kφq

λ2´n

x q
ˇ

ˇ À λδ´|k|2´npδ´|k|q , (5.35)
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hence the sum in (5.33) converges for 0 ď |k| ă δ. This shows that the limit

Dkfpx|λq :“ lim
NÑ8

Dkfpηλ2´N

x q (5.36)

exists in R for any fixed λ P p0, 1s.
Let us show that the limit in (5.36) does not depend on λ and it coincides with

the limit in (3.14). Fix λ, λ1 P p0, 1s and define φ̃ :“ ηλ ´ ηλ
1 , so that we can write

Dkfpx|λq ´ Dkfpx|λ1
q “ lim

NÑ8
Dkfpφ̃2´N

x q “ lim
NÑ8

2N |k|fppB
kφ̃q

2´N

x q . (5.37)

Note that (5.32) still holds if we replace η by ηλ (because
ş

ηλ “ 1 and
ş

ηλpxqxl dx “ 0
for all 1 ď |l| ď δ), and similarly for ηλ1 . It follows that Bkφ̃ P Bδ for any k P Nd

0,
hence |fppBkφ̃q2´N

x q| “ Op2´Nδq as N Ñ 8, by (5.31). In view of (5.37), we obtain
Dkfpx|λq “ Dkfpx|λ1q for 0 ď |k| ă δ, hence the limit in (5.36) does not depend on
λ and we simply call it Dkfpxq. Recalling (5.33), for any λ P p0, 1s we can write

Dkfpxq “ Dkfpηλxq `

`8
ÿ

n“0
Dkfpηλ2´pn`1q

x ´ ηλ2´n

x q

“ p´λ´1
q

|k|f ppB
kηq

λ
xq `

`8
ÿ

n“0
p´λ´12nq

|k|fppB
kφq

λ2´n

x q ,

(5.38)

with φ defined in terms of η by (5.34). The first line in (5.38) shows that Dkfpxq

does coincide with the limit in (3.14), because by (5.35), for |k| ă δ,

|Dkfpηλxq ´ Dkfpxq| À

`8
ÿ

n“0
λδ´|k| 2´npδ´|k|q

À λδ´|k|
ÝÝÑ
λÓ0

0 .

We now prove (3.16). Recalling (3.15), we set for short

g :“ f ´ T δ
x pfq “ f ´

ÿ

0ď|k|ăδ

DkfpxqXk
x where Xk

xp¨q :“ p ¨ ´ xqk

k! .

We fix an arbitrary ψ P DpBp0, 1qq and we need to prove that

gpψλxq “ fpψλxq ´
ÿ

0ď|k|ăδ

DkfpxqXk
xpψλxq “ Opλδq . (5.39)

First consider the case δ R N. Since Xk
xpψλxq “ λ|k|Xk

0pψq, the representation formula
(5.38) for Dkfpxq yields

gpψλxq “ fpψλxq ´
ÿ

0ď|k|ăδ

λ|k| Xk
0pψq p´λ´1

q
|k| fppB

kηq
λ
xq

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“:A

´
ÿ

0ď|k|ăδ

λ|k| Xk
0pψq

`8
ÿ

n“0
p´λ´12nq

|k| fppB
kφq

λ2´n

x q

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“:B

.

(5.40)
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Recalling (5.35), and summing the geometric series, we obtain

|B| À
ÿ

0ď|k|ăδ

λ|k| Xk
0pψq

`8
ÿ

n“0
λδ´|k| 2´npδ´|k|q

“ λδ
ÿ

0ď|k|ăδ

Xk
0pψq

1 ´ 2´pδ´|k|q
À λδ .

To prove (5.39), it remains to show that also |A| À λδ.
It is convenient to define the function

ψ̌ :“ ψ ´
ÿ

0ď|k|ďδ

p´1q
|k| Xk

0pψq B
kη . (5.41)

When δ R N, the sum ranges over 0 ď |k| ă δ and we can write A “ fpψ̌λxq. Then the
desired bound |A| À λδ follows by assumption (5.31), because we claim that

ψ̌ P Bδ . (5.42)

Indeed, we clearly have ψ̌ P DpBp0, 1qq and, moreover, Xl
0pψ̌q “

ş

xl

l! ψ̌pxq dx “ 0 for
any l P Nd

0 with 0 ď |l| ď δ, by (5.32).
Finally, consider the case where δ P N. We modify (5.40) writing A “ A1 `A2 with

A1 :“ fpψλxq ´
ÿ

0ď|k|ďδ

λ|k| Xk
0pψq p´λ´1

q
|k| fppB

kηq
λ
xq

A2 :“
ÿ

|k|“δ

λ|k| Xk
0pψq p´λ´1

q
|k| fppB

kηq
λ
xq .

We can bound |A1| À λδ as before, while A2 can be rewritten as

A2 “
ÿ

|k|“δ

λ|k| Xk
0pψqDkfpηλxq “ Opλδq, (5.43)

since when δ P N we furthermore assume |Dkfpηλxq| À 1. This completes the proof. □

Proof of Theorem 5.10. If ᾱ ď 0 there is nothing to prove, hence we assume ᾱ ą 0.
We use the same notation as in the proof of Lemma 3.15.

Given a weakly homogeneous germ F “ pFxqxPRd P Gᾱ
weak hom, the distribution

f “ Fx satisfies (3.13) with δ “ ᾱ, hence DkFxpxq is well-defined for x P Rd and
0 ď |k| ă ᾱ. To obtain the estimate (5.29), we apply the second line of (5.38) with
λ “ λ̄ and we note that, for any compact K Ď Rd and x P K, we can bound

|FxppB
kηq

λ̄
xq| ď λ̄ᾱ }F }Gᾱ

weak hom;K,λ̄,r
}B
kη}Cr ,

|FxppB
kφq

λ̄2´n

x q| ď λ̄ᾱ 2´nᾱ
}F }Gᾱ

weak hom;K,λ̄,r
}B
kφ}Cr ,

see (5.2) and (5.5) (we recall that η is a fixed suitable test function and φ “ η1{2 ´ η).
Then (5.29) follows by summing the second line of (5.38).

Furthermore |Gxpψλxq| ď cpψqλᾱ by (3.16), where cpψq can be estimated by (5.40)-
(5.43): more precisely, if we fix a compact K Ď Rd, λ̄ ą 0 and r P N, then for any
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λ P p0, λ̄s, x P K and ψ P DpBp0, 1qq we have, in the case where ᾱ R N0,

|Gxpψλxq| ď }F }Gᾱ
weak hom;K,λ̄,r

"

ÿ

0ď|k|ăδ

Xk
0pψq

1 ´ 2´pᾱ´|k|q
}B
kφ}Cr ` }ψ̌}Cr

*

λᾱ

ď cst1
}F }Gᾱ

weak hom;K,λ̄,r
}ψ}Cr λᾱ ,

where cst1 depends only on ᾱ, r and on the dimension d, whence the result recalling
the definition (3.5) of the homogeneity semi-norm }G}Gᾱ

hom;K,λ̄,r

.
The same argument also establishes the announced bound when ᾱ P N0. □

5.6. Proof of Theorem 5.6: coherence. In this subsection, we complete
the proof of Theorem 5.6. We first show how to decompose any test function ψ P Br

as the sum of a single test function localized at a large scale 2M plus a sum of test
functions which annihilate polynomials, localised at scales 2n for 0 ď n ď M .

Lemma 5.11 (Large scale decomposition). Fix r P N0 and c P N0 Y t´1u.
For any test function ψ P Br and for any M P N0, we can write

ψ “ pψ̃rMs
q

2M

`

M
ÿ

n“0
pψ̌rns

q
2n (5.44)

for suitable test-functions
ψ̃rMs

P cstBr , ψ̌rns
P cstBr

c , for 0 ď n ď M , (5.45)
where the constant cst ą 0 only depends on r, c and on the dimension d.

Proof. We fix c P N0 Y t´1u. We also fix a test-function η P DpBp0, 1qq such that
ş

ηpxqdx “ 1 and
ş

xk ηpxq dx “ 0 for multi-indices k with 1 ď |k| ď c.
Given any test function ψ P DpBp0, 1qq, we define ψ̌pxq by (5.41) with δ “ c and

we already showed that ψ̌ P Bc, see (5.42). We further observe that, given r P N0
and a multi-index l P Nd

0 with |l| ď r, we can bound

|B
lψ̌pxq| ď |B

lψpxq| `
ÿ

0ď|k|ďc

}ψ}8

|Bp0, 1q|

k! |B
kηpxq| ď cst }ψ}Cr ,

where cst ą 0 only depends on c, r, d (via the chosen η). Overall, we have proved that

ψ P Br
ùñ ψ̌ P cst Br

c . (5.46)

We next perform the following telescoping sum, for any |k| ď c:

B
kη “ 2´M |k|

pB
kηq

2M

`

M´1
ÿ

n“0

´

2´n|k|
pB
kηq

2n

´ 2´pn`1q|k|
pB
kηq

2n`1
¯

“ 2´M |k|
pB
kηq

2M

`

M´1
ÿ

n“0
2´pn`1q|k|

pB
kφq

2n`1
,
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where φ :“ η
1
2 ´ η was defined in (5.34) and it satisfies, for |k| ď c,

B
kφ P cst Br

c , (5.47)

see (5.32) (with δ “ c). Plugging this into (5.41), we obtain

ψ “ ψ̌ `
ÿ

|k|ďc

p´1q
|k|Xk

0pψq2´M |k|
pB
kηq

2M

`

M
ÿ

n“1

ÿ

|k|ďc

p´1q
|k|Xk

0pψq2´n|k|
pB
kφq

2n

,

which yields the decomposition (5.44) once we define
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ψ̃rMs
pxq :“

ÿ

|k|ďc

p´1q
|k| Xk

0pψq 2´M |k|
B
kηpxq ,

ψ̌r0s
pxq :“ ψ̌pxq ,

ψ̌rns
pxq :“

ÿ

|k|ďc

p´1q
|k| Xk

0pψq 2´n|k|
B
kφpxq for n “ 1, ¨ ¨ ¨ ,M .

Finally, relation (5.45) follows by (5.46) and (5.47). □

Proof of Theorem 5.6. We fix a germ F P Gγ;α,γ
weak “ Gγ

weak hom X Gα,γ
weak coh. We already

know from Theorem 5.10 that G is well-defined and it is γ-homogeneous, i.e. G P Gγ
hom.

Thus, it remains to show that G is pα ^ 0, γq-coherent, i.e. G P Gα^0,γ
coh .

Let us fix r P N, λ̄ ą 0 and a compact K Ă Rd. We shall estimate pGy´Gxqpψλxq for
λ P p0, λ̄s, x, y P K and a test function ψ P Br (which does not necessarily annihilate
polynomials), which yields a bound on the semi-norm }G}Gγ

hom;K,λ̄,r

, see (3.6).
A first heuristic observation is that when |y ´ x| À λ, then ψλx can also be seen

as a test function centered in y with scale λ, say ψλx » ψ̃λy . Since G P Gγ
hom is

γ-homogeneous (even against test-functions which do not annihilate polynomials),

|pGy ´ Gxqpψλxq| À |Gypψ̃
λ
y q| ` |Gxpψλxq| À λγ “ λα λγ´α

ď λαp|y ´ x| ` λq
γ´α,

implying that G is pα, γq-coherent. However, in general λ and |y ´ x| need not be
comparable, hence we resort to the large scale decomposition of Lemma 5.11.

More precisely, let us define

M :“ Mx,y,λ :“ min
"

n P N0 : 2´n
ď

λ

λ ` |y ´ x|

*

,

so that λ ` |y ´ x| ď λ2M ď 2pλ ` |y ´ x|q. Applying the decomposition (5.44), we
write

pGy ´ Gxqpψλxq “ pGy ´ Gxqppψ̃rMs
q
λ2M

x q
looooooooooooomooooooooooooon

A

`

M
ÿ

n“0
pGy ´ Gxqppψ̌rns

q
λ2n

x q

loooooooooooooomoooooooooooooon

B

.

We now estimate A and B separately.
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Estimate of A. Since the choice of M implies λ2M « λ ` |y ´ x|, we are at the
correct scale to apply the argument sketched above. We can recenter pψ̃rMsqλ2M

x at
point y, that is we can write

pψ̃rMs
q
λ2M

x “ p
˜̃ψrMs

q
λ2M`1

y where ˜̃ψrMs
“

˜̃ψrM,y,x,λs :“ pψ̃rMs
q

1
2

x´y

λ2M`1

Note that |
x´y
λ2M`1 | ď 1

2 by definition of M , therefore ˜̃ψrMs P cstBr. As a consequence,
using the fact that G P Gγ

hom and λ2M`1 ď 4pλ ` diampKqq “: λ̄1 by definition of M ,

|A| ď |Gypp
˜̃ψrMs

q
λ2M`1

y q| ` |Gxppψ̃rMs
q
λ2M

x q|

ď cst }G}Gγ

hom;K,λ̄1,r
pλ2Mq

γ

ď cst1
}F }Gγ

weak hom;K,λ̄1,r
λ0

pλ ` |y ´ x|q
γ´0,

(5.48)

where in the last estimate we used (5.30) and the definition of M .

Estimate of B. Since ψ̌rns annihilates polynomials up to degree γ, see (5.45), we
have pGy ´ Gxqppψ̌rnsqλ2n

x q “ pFy ´ Fxqppψ̌rnsqλ2n

x q. Since F is weakly pα, γq-coherent,

|B| ď cst }F }Gα,γ

weak coh;K,λ̄1,r

M
ÿ

n“0
pλ2nq

α
pλ2n ` |y ´ x|q

γ´α

À cst }F }Gα,γ

weak coh;K,λ̄1,r

"

λγ
M
ÿ

n“0
2nγ

loooomoooon

B1

` λα|y ´ x|
γ´α

M
ÿ

n“0
2nα

looooooooooomooooooooooon

B2

*

.

Let us estimate B1 and B2 for γ ‰ 0 and α ‰ 0 (by the assumptions in Theorem 5.6).
‚ Estimate of B1. If γ ă 0 then B1 À λγ ď λ0 pλ` |y ´ x|qγ´0, while if γ ą 0 we

can bound B1 À pλ2Mqγ ď 2λ0 pλ ` |y ´ x|qγ´0 by definition of M .
‚ Estimate of B2. If α ą 0 then B2 À pλ2Mqα|y ´ x|γ´α À λ0 pλ ` |y ´ x|qγ´0,

while if α ă 0 then B2 À λα|y ´ x|γ´α À λαp|y ´ x| ` λqγ´α.
In all cases, we have shown that for any r P N

|B| ď cst }F }Gα,γ

weak coh;K,λ̄1,r
λα^0

p|y ´ x| ` λq
γ´α^0. (5.49)

Conclusion. It follows from (5.48) and (5.49) that G is pα ^ 0, γq-coherent with

}G}Gα^0,γ

coh;K,λ̄,r

À cst
`

}F }Gγ

weak hom;K,λ̄1,r
` }F }Gα,γ

weak coh;K,λ̄1,r

˘

where λ̄1 :“ 4pλ̄`diampKqq and cst depends only on α, γ, d. Together with the bound
(5.30) on the coherence semi-norm that we obtained in Theorem 5.10, namely

}G}Gγ

hom;K,λ̄,r

ď cst }F }Gγ

weak hom;K,λ̄,r

,

we have proved the announced continuity of the map F ÞÑ G. □
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6. Proofs for of our Main Result II
In this section we establish our second main result, the multilevel Schauder estimates

in Theorem 4.13, alongside Proposition 4.15 (enhanced continuity). We will also
prove Proposition 4.16 (properties of reexpansion).

6.1. Proof of Theorem 4.13. We fix a model M “ pΠ,Γq, a modelled distri-
bution f P Dγ

M or order γ with a reconstruction Rγxf,Πy, and a β-regularising kernel
K that satisfy the assumptions of Theorem 4.13. We need to prove that:

‚ pΠ̂, Γ̂q in (4.13) and (4.15)-(4.16) is a model;
‚ f̂ in (4.17) is a modelled distribution;
‚ the equality (4.21) holds.

We correspondingly split the proof in three parts.

6.1.1. Proof that pΠ̂, Γ̂q is a model. We first show that Π̂ and Γ̂ are well-defined,
that is all terms appearing in (4.13) and (4.15)-(4.16) are well-posed. By assumption
(4.2), each germ Πi “ pΠi

xqxPRd is αi-homogeneous, hence KΠi “ pKΠi
xqxPRd is well-

defined and weakly pαi`βq-homogeneous, by Theorem 5.4; it follows by Theorem 5.10
that pointwise derivatives DkpKΠi

xqpxq are well-defined for |k| ă αi ` β, so the
definitions (4.13) and (4.15)-(4.16) of Π̂ and Γ̂ are well-posed.

It remains to show that the property of reexpansion (4.3) and the homogeneity
condition (4.2) hold for pΠ̂, Γ̂q. We recall that Î “ I \ polypγ ` βq, see (4.12).

Property of reexpansion. Let us first check condition (4.3) for pΠ̂, Γ̂q, that is

Π̂a
y “

ÿ

bPÎ

Π̂b
x Γ̂baxy . (6.1)

When a “ k P polypγ`βq, this holds by Example 4.4, because Π̂a “ Xk is a monomial
and Γ̂ba “ 0 for j P I while Γ̂ba “ pΓpolyqlk for b “ l P polypγ ` βq, see (4.15).

We then fix a “ i P I and we rephrase relation (6.1), that we need to prove, as

Π̂i
y “

ÿ

jPI

Π̂j
x Γjixy `

ÿ

lPpolypγ`βq

Xl
x Γ̂laxy (6.2)

(note that Γ̂ba “ Γji for pb, aq “ pj, iq P I ˆ I, see (4.15)). Let us set for short

Ai,lx :“ 1p|l|ăαi`βq D
l
pKΠi

xqpxq for x P Rd, i P I, l P Nd
0 , (6.3)

so that we can write, by (4.13),

Π̂i
y “ KΠi

y ´
ÿ

lPpolypγ`βq

Ai,ly Xl
y .
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Since Πi
y “

ř

jPI Πj
x Γjixy, we obtain

Π̂i
y “

ÿ

jPI

pKΠj
xq Γjixy ´

ÿ

lPpolypγ`βq

Ai,ly Xl
y

“
ÿ

jPI

Π̂j
x Γjixy `

ÿ

lPpolypγ`βq

ˆ

´ Ai,ly Xl
y `

ÿ

jPI

Aj,lx Γjixy Xl
x

˙

. (6.4)

The first term in the RHS matches with the one in (6.2). Let us show that also the
second terms match: for l P polypγ ` βq and i P I, we rewrite (4.16) as

Γ̂lixy “
ÿ

jPI

Aj,lx Γjixy ´
ÿ

kPpolypγ`βq

Ai,ky pΓpoly
q
lk
xy ,

therefore the last term in (6.2) equals
ÿ

lPpolypγ`βq

Xl
x Γ̂lixy “

ÿ

lPpolypγ`βq

ÿ

jPI

Aj,lx Γjixy Xl
x ´

ÿ

kPpolypγ`βq

Ai,ky
ÿ

lPpolypγ`βq

Xl
x pΓpoly

q
lk
xy

“
ÿ

lPpolypγ`βq

ÿ

jPI

Aj,lx Γjixy Xl
x ´

ÿ

kPpolypγ`βq

Ai,ky Xk
y ,

which coincides with the last term in (6.4) after renaming the sum index k as l.

Homogeneity condition. Let us now prove that each Π̂a
x, a P Î, satisfies the

homogeneity relation (4.2) with exponent α̂a. On the one hand, if a P polypγ ` βq,
this is straightforward, recall Example 4.4.

On the other hand, if a “ i P I, then since Πi
x P Gαi

hom and K is regularising of order
pm, rq with m ą γ ` β ą αi ` β and r ą rΠ, we have KΠi P Gα̂i

weak hom by Theorem 5.4.
Now we can apply Theorem 5.10 to KΠi, noting that when α̂i “ αi ` β P N0, the

assumptions are satisfied thanks to the compatibility condition, see (4.18). Thus,
we obtain Π̂i P Gα̂i

hom (recall the definition (4.13) of Π̂i
x), i.e. the estimate (4.2) with

exponent α̂i holds for Π̂i, as announced, and moreover in this relation we can take
φ P Br with r “ rΠ, by the estimates (5.30) and (5.7). This means that we can
take rΠ̂ “ rΠ for the model pΠ̂, Γ̂q, see Definition 4.1. Furthermore, the bound (4.23)
follows from by keeping track of the estimates.

6.1.2. Proof of relation (4.21). We next show that for any x P Rd

xf̂ , Π̂yx “
ÿ

aPÎ

f̂apxq Π̂a
x “

`

Kγ,β
xf,Πy

˘

x
, (6.5)

where we recall that Kγ,β is defined in (3.17).
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We obtain by (4.17), using the notation (6.3),
ÿ

aPÎ

f̂apxq Π̂a
x “

ÿ

iPI

f̂ ipxq Π̂i
x `

ÿ

kPpolypγ`βq

f̂kpxqXk
x

“
ÿ

iPI

f ipxq

ˆ

KΠi
x ´

ÿ

kPpolypγ`βq

Ai,kx Xk
x

˙

`
ÿ

kPpolypγ`βq

ˆ

ÿ

jPI

f jpxqAj,kx ´ Dk
pKtxf,Πyx ´ Rγ

xf,Πyuqpxq

˙

Xk
x

“ Kxf,Πyx ´
ÿ

kPpolypγ`βq

Dk
pKtxf,Πyx ´ Rγ

xf,ΠyuqpxqXk
x ,

which shows that (6.5) holds.

6.1.3. Proof that f̂ is a modelled distribution. We finally prove that f̂
defined in (4.17) is a modelled distribution of order γ`β relative to the model pΠ̂, Γ̂q,
more precisely the continuity estimate (4.24) holds. Recalling Definition 4.5, see (4.9),
we fix a compact K Ă Rd and we show that, uniformly for a P Î and x, y P K,

|f̂apxq| À }Π}Mα
K1,1

~f~Dγ

Γ,α;K1
, (6.6)

ˇ

ˇ

ˇ

ˇ

ÿ

bPÎ

Γ̂abxyf̂ bpyq ´ f̂apxq

ˇ

ˇ

ˇ

ˇ

À
`

}Π}Mα
K1,1

` rKΠsK1,1
˘

~f~Dγ

Γ,α;K1
|y ´ x|

γ´α̂a , (6.7)

where K 1 “ K ‘ Bp0, 2q and the implicit constants depend on the compact K (as
well as on the kernel K). We split the proof in two parts.

Proof of (6.6). We estimate |f̂apxq|. One the one hand, if a “ i P I then, by (4.9),

|f̂apxq| “ |f ipxq| ď ~f~Dγ
Γ,α;K

.

On the other hand, if a “ k P polypγ ` βq, then by (4.17)

f̂apxq “ f̂kpxq “
ÿ

jPI :
αj`βą|k|

f jpxqDk
pKΠj

xqpxq ´ DkGxpxq.

where we have introduced the shorthand
Gx :“ Ktxf,Πyx ´ Rγ

xf,Πyu . (6.8)
Since K is regularising of order pm, rq with m ą γ ` β ą αj ` β and r ě rΠ, the

fact that Πj P Gαj

hom, for any j P I, implies that KΠj P Gαj`β
weak hom by Theorem 5.4 and,

recalling (4.4), the estimate (5.7) yields, for any λ̄ ą 0,
}KΠj

}
G

αj `β

weak hom;K,λ̄,rΠ

À cst1

K,λ̄ }Πj
}G

αj

hom;K,2pλ̄`ρq,rΠ

ď cst1

K,λ̄ }Π}Mα
K,2pλ̄`ρq

. (6.9)

Applying Theorem 5.10, see (5.29) with λ̄ “ 1, for |k| ă αj ` β we can bound

|Dk
pKΠj

xqpxq| À cst1
K,1 }Π}Mα

K,2p1`ρq
.
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Similarly, since pxf,Πyx ´ Rγxf,ΠyqxPRd P Gγ
hom by the Reconstruction Theorem,

see (3.10), exploiting (5.7) from Theorem 5.4 and (4.10) we get, for any λ̄ ą 0,

}G}Gγ`β

weak hom;K,λ̄,rΠ
À cst1

K,λ̄ }Π}Mα
K1,2pλ̄`ρq

~f~Dγ

Γ,α;K1
, (6.10)

for K 1 “ K ‘ Bp0, λ̄ ` 1q Ą K. Then, setting λ̄ “ 1 and applying (5.29) from
Theorem 5.10, we obtain with K 1 :“ K ‘ Bp0, 2q,

|DkGxpxq| À cst1
K,1 }Π}Mα

K1,2p1`ρq
~f~Dγ

Γ,α;K1
.

Collecting the estimates above, we have established (6.6).

Proof of (6.7). We estimate |
ř

bPÎ Γ̂abxyf̂ bpyq´ f̂apxq|. Again we distinguish the cases
a P I and a P polypγ ` βq. If a “ i P I then by construction, see (4.15) and (4.17),

ˇ

ˇ

ˇ

ˇ

ÿ

bPÎ

Γ̂abxyf̂ bpyq ´ f̂apxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ÿ

jPI

Γijxyf jpyq ´ f ipxq

ˇ

ˇ

ˇ

ˇ

ď ~f~Dγ
Γ,α;K

|y ´ x|
γ´αi ,

whence the desired estimate (6.7), because γ ´ αi “ pγ ` βq ´ α̂i.
Now fix a “ l P polypγ ` βq, i.e. l denotes some multi-index with |l| ă γ ` β: by

definition (4.15) of Γ̂, since f̂ i “ f i for i P I, see (4.17), we can write
ÿ

bPÎ

Γ̂abxyf̂ bpyq ´ f̂apxq “
ÿ

kPpolypγ`βq

pΓpoly
q
lk
xyf̂

k
pyq `

ÿ

iPI

Γ̂lixy f ipyq ´ f̂ lpxq .

Plugging in Γ̂lixy from (4.16) and f̂ from (4.17) yields, after some simplifications,
ÿ

bPÎ

Γ̂abxyf̂ bpyq ´ f̂apxq “
ÿ

jPI :
αj`βą|l|

Dl
pKΠj

xqpxq

ˆ

ÿ

iPI

Γjixy f ipyq ´ f jpxq

˙

` DlGxpxq ´
ÿ

kPpolypγ`βq

pΓpoly
q
lk
xyD

kGypyq ,

(6.11)

where we recall that Gx was defined in (6.8).
We now replace pointwise derivatives in in the RHS of (6.11) by the multi-scale

formula (5.38): if we fix η P DpBp0, 1qq such that
ş

ηpxqdx “ 1 and
ş

ηpxqxl dx “ 0
for 1 ď |l| ď γ`β, and define φ :“ η

1
2 ´ η as in (5.34), then by (5.38) with λ “ λ̄ ą 0

Dl
pKΠj

xqpxq “ p´λ̄´1
q

|l|KΠj
xppB

lηq
λ̄
xq `

`8
ÿ

n“0
p´λ̄´1 2nq

|l|KΠj
xppB

lφq
λ̄2´n

x q (6.12)

DlGxpxq “ p´λ̄´1
q

|l|GxppB
lηq

λ̄
xq `

`8
ÿ

n“0
p´λ̄´1 2nq

|l|GxppB
lφq

λ̄2´n

x q,

and similarly for DkGypyq. Plugging these expressions into (6.11), we can write
ÿ

bPÎ

Γ̂abxyf̂ bpyq ´ f̂apxq “ ∆l;0
xypηq `

`8
ÿ

n“0
∆l;n
xy pφq, (6.13)
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where we recall that a “ l P polypγ ` βq and we set, for a test-function ψ and n P N0,

∆l;n
xy pψq :“

ÿ

jPI :
αj`βą|l|

p´λ̄´1 2nq
|l| KΠj

xppB
lψq

λ̄2´n

x q

ˆ

ÿ

iPI

Γjixy f ipyq ´ f jpxq

˙

` p´λ̄´1 2nq
|l| GxppB

lψq
λ̄2´n

x q ´
ÿ

kPpolypγ`βq

pΓpoly
q
lk
xy p´λ̄´1 2nq

|k| GyppB
kψq

λ̄2´n

y q.

It remains to show that the RHS of (6.13) satisfies the bound in the RHS of (6.7).
We already observed after (5.34) that Blφ P Bγ`β for all l P Nd

0, in view of (5.32).
Then, for r “ rΠ, we have Blφ P cst Br

γ`β for all |l| ď γ ` β, for a suitable cst ą 0.
Since KΠj P Gαj`β

weak hom and G P Gγ`β
weak hom, by (6.9) and (6.10) with λ̄ “ 1

2p1 ` ρq´1 we
can estimate, uniformly for x P K and n P N0,

|KΠj
xppB

lφq
λ̄2´n

x q| À }Π}Mα
K,1

2´pαj`βqn , (6.14)

|GxppB
kφq

λ̄2´n

x q| À }Π}Mα
K1,1

~f~Dγ

Γ,α;K1
2´pγ`βqn , (6.15)

where K 1 “ K ‘ Bp0, 2q and the implicit constants depend on the compact K and
on the kernel K. We can thus bound ∆l;n

xy pφq: recalling (4.9) and (4.7) we have
ˇ

ˇ

ˇ

ˇ

ÿ

iPI

Γjixy f ipyq´f jpxq

ˇ

ˇ

ˇ

ˇ

ď ~f~Dγ
Γ,α;K

|y´x|
γ´αj , |pΓpoly

q
lk
xy| ď |x´y|

|k|´|l|1tlďku , (6.16)

therefore by (6.14) and (6.15) we get

|∆l;n
xy pφq| À

˜

ÿ

jPI :
αj`βą|l|

2´npαj`β´|l|q
|y ´ x|

γ´αj

`
ÿ

kPNd
0 :

kěl, |k|ăγ`β

|x ´ y|
|k|´|l| 2´npγ`β´|k|q

¸

}Π}Mα
K1

~f~Dγ

Γ,α;K1
.

(6.17)

We now estimate the tail of the sum in the RHS of (6.13): if we set
Nxy – mintn P N0 : 2´n

ď |y ´ x|u , (6.18)
summing the geometric series we get from (6.17), since 2´Nxy ď |y ´ x|,

ˇ

ˇ

ˇ

ˇ

`8
ÿ

n“Nxy

∆l;n
xy pφq

ˇ

ˇ

ˇ

ˇ

À }Π}Mα
K1

~f~Dγ

Γ,α;K1
|y ´ x|

γ`β´|l|,

which agrees with the RHS of (6.7) since α̂a “ |l| for a “ l P polypγ ` βq, see (4.14).
We finally bound the contribution of ∆l;n

xy pφq for n ď Nxy and of ∆l;0
xypηq in the

RHS of (6.13). Observe that by the reexpansion property (4.3) we can write
ÿ

jPI

ˆ

ÿ

iPI

Γjixy f ipyq ´ f jpxq

˙

KΠj
x “ Kxf,Πyy ´ Kxf,Πyy “ Gy ´ Gx,



48 LUCAS BROUX, FRANCESCO CARAVENNA, LORENZO ZAMBOTTI

where we recall that Gx is defined in (6.8). Then we can rewrite

∆l;n
xy pφq “ ´

ÿ

jPI :
αj`βď|l|

p´λ̄´1 2nq
|l| KΠj

xppB
lφq

λ̄2´n

x q

ˆ

ÿ

iPI

Γjixy f ipyq ´ f jpxq

˙

` p´λ̄´1 2nq
|l| Gy

ˆ

pB
lφq

λ̄2´n

x ´
ÿ

kPpolypγ`βq

pΓpoly
q
lk
xy p´λ̄´1 2nq

|k|´|l|
pB
kφq

λ̄2´n

y

˙

.

Let us single out the contribution of those j P I (if any) such that αj ` β “ |l|,
which we bound separately using the Assumption 4.10 of compatibility: denote

∆l;n
“;xypφq :“ ´

ÿ

jPI :
αj`β“|l|

p´λ̄´1 2nq
|l| KΠj

xppB
lφq

λ̄2´n

x q

ˆ

ÿ

iPI

Γjixy f ipyq ´ f jpxq

˙

,

∆l;n
ă;xypφq :“ ∆l;n

xy pφq ´ ∆l;n
“;xypφq,

then

∆l;0
“;xypηq `

Nx,y
ÿ

n“0
∆l;n

“;xypφq

“ ´

ˆ

ÿ

iPI

Γjixy f ipyq ´ f jpxq

˙

ÿ

jPI :
αj`β“|l|

DlKΠj
x

´

ηλ̄x `

Nx,y
ÿ

n“0
φλ̄2´n

x

¯

“ ´

ˆ

ÿ

iPI

Γjixy f ipyq ´ f jpxq

˙

ÿ

jPI :
αj`β“|l|

DlKΠj
x

´

ηλ̄2´pNx,y`1q

x

¯

,

which is bounded by the fact that f is a modelled distribution, the assumption of
compatibility, see (4.19), and the observation that γ ´ αj “ γ ` β ´ |l|, by

ˇ

ˇ

ˇ

ˇ

∆l;0
“;xypηq `

Nx,y
ÿ

n“0
∆l;n

“;xypφq

ˇ

ˇ

ˇ

ˇ

À rKΠsK1,1~f~Dγ

Γ,α;K1
|y ´ x|

γ`β´|l|.

Now we bound ∆ă: note that for n ď Nxy we we have |x´ y| ď 2´n, hence we can
apply Lemma 6.1 below (with c “ rγ ` βs` ´ 1): we can thus write

pB
lφq

λ̄2´n

x ´
ÿ

kPpolypγ`βq

pΓpoly
q
lk
xy p´λ̄´1 2nq

|k|´|l|
pB
kφq

λ̄2´n

y

“ pλ̄´1 2npx ´ yqq
rγ`βs`

ψ2λ̄2´n

y

(6.19)
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for a suitable ψ “ ψrx,y,λ̄2´ns P cst Br
γ`β with r “ rΠ. Recalling the property of

homogeneity of Gy, see (6.10), as well as (6.14) and (6.16), we obtain

|∆l;n
ă;xypφq| À

ˆ

ÿ

jPI :
αj`βă|l|

2np|l|´αj´βq
|y ´ x|

γ´αj

` 2np|l|´pγ`βq`rγ`βs`q
|y ´ x|

rγ`βs`

˙

}Π}Mα
K1,1

~f~Dγ

Γ,α;K1
,

and, with similar arguments, the same bound with n “ 0 also applies to ∆l;0
ă;xypηq.

Since γ`β R N0, we have |l|´pγ`βq` rγ`βs` ą 0 and we can sum the geometric
series to obtain, since 2Nxy ď 2|y ´ x|´1,

ˇ

ˇ

ˇ
∆l;0
xypηq `

Nx,y
ÿ

n“0
∆l;n
xy pφq

ˇ

ˇ

ˇ
À
`

}Π}Mα
K1,1

` rKΠsK1,1
˘

~f~Dγ

Γ,α;K1
|y ´ x|

γ`β´|l|,

which agrees with the RHS of (6.7), since α̂a “ |l| for a “ l P polypγ ` βq. This
concludes the proof that f̂ is a modelled distribution with the estimate (4.24). □

Lemma 6.1 (Taylor remainder). Given r P N0, c P N0 Y t´1u.
Then there exists a constant cst ą 0 depending only on r, c, d, such that for all
test-functions φ P Br`c`1

c and x, y P Rd, n P N0 with |y ´ x| ď 2´n, there exists a
test-function

ψ “ ψrx,y,ns
P cstBr

c ,

such that for such x, y, n,

φ2´n

x ´
ÿ

|k|ďc

px ´ yqk

k! p´2nq
|k|

pB
kφq

2´n

y “ p2npx ´ yqq
c`1

pψrx,y,ns
q

2´n`1

y .

Remark 6.2. Note that the scale 2´n`1 may be greater than 1 for n “ 0.

Proof. The test-function ψrx,y,ns is defined by:

ψrx,y,ns
p¨q :“ 2dp2npx ´ yqq

´c´1

˜

φp2 ¨ `2npy ´ xqq ´
ÿ

|k|ďc

p2npy ´ xqqk

k! B
kφp2¨q

¸

.

The required properties on ψ follow from this expression, in particular after applying
Taylor-Lagrange’s formula. □

6.2. Proof of Proposition 4.16. We first look at the group property (1) from
Remark 4.2. It follows by direct computation from the definition (4.15)-(4.16) of Γ̂
that, using labels i, j P I and k, l P polypγ ` βq for clarity,

Γ̂xy Γ̂yz “

ˆ

pΓ̂xy Γ̂yzqji pΓ̂xy Γ̂yzqjk
pΓ̂xy Γ̂yzqli pΓ̂xy Γ̂yzqlk

˙

“

ˆ

pΓxy Γyzqji 0
‹ pΓpoly

xy Γpoly
yz qlk

˙
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where, after some cancelation, we obtain

‹ “
ÿ

jPI :
αj`βą|l|

Dl
pKΠj

xqpxq pΓxy Γyzqji ´
ÿ

kPpolypαi`βq

pΓpoly
xy Γpoly

yz q
lkDk

pKΠi
zqpzq .

Since the group property holds for Γpoly, that is Γpoly
xy Γpoly

yz “ Γpoly
xz (see Remark 4.4),

it follows that the group property holds for Γ̂ as soon as it holds for Γ.
We next consider the triangular structure (2) (which we know to hold for Γpoly).

Assuming that it is satisfied by Γ, that is Γiixy “ 1 and Γjixy “ 0 for j ‰ i with α̂j ě α̂i,
let us prove that it is satisfied by Γ̂. By (4.15), we only need to check that

Γ̂li “ 0 for all i P I, l P polypγ ` βq with α̂l “ |l| ě α̂i “ αi ` β .

It suffices to note that, in the definition (4.16) of Γ̂li, both sums vanish for |l| ě αi`β:
indeed, the first sum is restricted to αj ` β ą |l|, hence αj ą αi and then Γjixy “ 0 by
the triangular structure of Γ; similarly, the second sum is restricted to |k| ă αi ` β,
hence |k| ă |l| and then pΓpolyqlkxy “ 0 by the triangular structure of Γpoly.

We finally focus on the analytic bound (3), that we assume to hold for Γ, that
is |Γjixy| À |y ´ x|αi´αj . By definition (4.15)-(4.16) of Γ̂, the corresponding bound
|Γ̂baxy| À |y ´ x|α̂a´α̂b is immediate to check except when b “ l P polypγ ` βq and
a “ i P I, which is the case we tackle now: we need to show that

@i P I, @l P polypγ ` βq : |Γ̂lixy| À |y ´ x|
αi`β´|l| , (6.20)

uniformly for x, y in compact sets, where we recall that Γ̂lixy is defined in (4.16).
We argue as in the proof that f̂ is a modelled distribution, see Section 6.1.3:

replacing the pointwise derivatives in (4.16) by formula (6.12), we can write

Γ̂lixy “ Γ̂li;0xy pηq `

`8
ÿ

n“0
Γ̂li;nxy pφq, (6.21)

where for a test-function ψ P D and n P N0 we set

Γ̂li;nxy pψq :“
ÿ

jPI :
αj`βą|l|

p´λ̄´12nq
|l|

pKΠj
xqppB

lψq
λ̄2´n

x q Γjixy

´
ÿ

kPpolypαi`βq

p´λ̄´12nq
|k|

pΓpoly
q
lk
xy pKΠi

yqppB
kψq

λ̄2´n

y q .

It follows by the property of homogeneity (6.14) and the analytic bound on Γ that

|Γ̂li;nxy pφq| À
ÿ

jPI :
αj`βą|l|

2´npαj`β´|l|q
|y ´ x|

αi´αj `
ÿ

kPpolypαi`βq :
kěl

2´npαi`β´|k|q
|y ´ x|

|k|´|l|.

We can then bound the tail of the sum in (6.21): recalling Nxy from (6.18), we have
ˇ

ˇ

ˇ

ˇ

`8
ÿ

n“Nx,y

Γ̂li;nxy pφq

ˇ

ˇ

ˇ

ˇ

À |y ´ x|
αi`β´|l| ,
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which agrees with (6.20).
On the other hand, since

ř

jPI KΠj
x Γjixy “ KΠj

y by the reexpansion property (4.3),
we can rewrite, recalling (6.19),

Γ̂li;nxy pφq “ ´
ÿ

jPI :
αj`βď|l|

p´λ̄´12nq
|l|

pKΠj
xqppB

lφq
λ̄2´n

x q Γjixy

` p´λ̄´12nq
|l|

pλ̄´1 2npx ´ yqq
rγ`βs` KΠi

ypψ
2λ̄2´n

y q ,

for a suitable ψ “ ψrx,y,λ̄2´ns P cst Br
γ`β with r “ rΠ, thanks to Lemma 6.1.

We again single out the indices j P I such that αj ` β “ |l| which we tackle using
the assumption of compatibility: denote

Γ̂li;n“;xypφq “ ´
ÿ

jPI :
αj`β“|l|

p´λ̄´12nq
|l|

pKΠj
xqppB

lφq
λ̄2´n

x q Γjixy,

Γ̂li;nă;xypφq :“ Γ̂li;nxy pφq ´ Γ̂li;n“;xypφq,

so that arguing as in the proof of 4.13,
ˇ

ˇ

ˇ
Γ̂li;0“;xypηq `

Nx,y
ÿ

n“0
Γ̂li;n“;xypφq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ÿ

jPI :
αj`β“|l|

ΓjixyDl
pKΠj

xqpφλ̄2´n

x q

ˇ

ˇ

ˇ

À
ÿ

jPI :
αj`β“|l|

|y ´ x|
αi´αj À |y ´ x|

αi´|l|`β,

while for the other terms, recalling the property of homogeneity (6.9), we obtain

|Γ̂li;nă;xypφq| À
ÿ

jPI :
αj`βă|l|

p2nq
|l|´αj´β

|y ´ x|
αi´αj ` p2nq

|l|`rγ`βs`´αi´β
|y ´ x|

rγ`βs`

,

and the same estimate with n “ 0 also applies to Γ̂li;nxy pηq. Since αi ` β ă γ ` β ď

rγ ` βs`, a geometric sum yields
ˇ

ˇ

ˇ

ˇ

Γ̂li;0xy pηq `

Nx,y
ÿ

n“0
Γ̂li;nxy pφq

ˇ

ˇ

ˇ

ˇ

À |y ´ x|
αi`β´|l| ,

which completes the proof of (6.20) and of the whole Proposition 4.16. The continuity
bound (4.25) follows from keeping track of the constants in the estimates above. □

Appendix A. Technical proofs
A.1. Proof of Lemma 5.8. We proceed as in [FH20, Proposition 14.11].

We fix a β-regularising kernel K of order pm, rq which preserves polynomial at level
c0 P N0 Y t´1u, see Assumption 2.6 (when c0 “ ´1 this imposes no extra assumption).
We also fix a test function φ P Br

c , for some c P N0 Y t´1u, and we assume without
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loss of generality that c` 1 ě m (we can just redefine m as mintc` 1,mu). Recalling
(2.1) and (2.19), we can express K˚

nφ
λ
xpyq as in (5.15) provided we define

ηpyq “ ηrn,λ,x,φs
pyq :“ 2βnp2λq

d

ż

Rd

φpzqKnpx ` λz, x ` 2λyqdz,

ζpyq “ ζ rn,λ,x,φs
pyq :“ 2βnp2nλq

´m
p2ρ2´n

q
d

ż

Rd

φpzqKnpx ` λz, x ` 2ρ2´nyqdz ,

(A.1)

hence it only remains to prove (5.17) (which reduces to (5.16) when c0 “ ´1).
From Assumption 2.6, see (2.17), we see that η and ζ annihilate polynomials at

level minpc, c0q. It remains to control the support and the Cr norm of η resp. ζ.

Support of η. Let y P Rd be such that ηpyq ‰ 0. By (A.1) there is z P supppφq Ă

Bp0, 1q such that Knpx` λz, x` 2λyq ‰ 0, hence λ|2y ´ z| ď ρ2´n by property (1) of
Definition 2.3. Since we are in the regime ρ2´n ď λ, this implies that |2y ´ z| ď 1
and thus by triangle inequality 2|y| ď |z| ` 1 ď 2, that is |y| ď 1. This shows that
supppηq Ă Bp0, 1q as wanted.

Support of ζ. Let y P Rd be such that ζpyq ‰ 0. By (A.1) there is z P supppφq Ă

Bp0, 1q such that Knpx ` λz, x ` 2ρ2´nyq ‰ 0, therefore |2ρ2´ny ´ λz| ď ρ2´n by
property (1) of Definition 2.3. Then 2|y| ď 1 ` λ

ρ2´n |z| by the triangle inequality, and
since we consider λ ď ρ2´n, we obtain |y| ď 1, that is supppζq Ă Bp0, 1q.

Bound on Cr norm of η. Let l P Nd
0 be a multi-index with |l| ď r, and y P Rd,

then by differentiation under the integral,

B
lηpyq “ 2βnp2λq

d`|l|

ż

Rd

φpzqB
l
2Knpx ` λz, x ` 2λyqdz.

In this integral, we subtract and add the Taylor polynomial of φ at 2y of order |l| ´ 1:

B
lηpyq “ 2βnp2λq

d`|l|

ż

Rd

ˆ

φpzq ´
ÿ

|k|ď|l|´1

Bkφp2yq

k! pz ´ 2yq
k

˙

B
l
2Knpx ` λz, x ` 2λyqdz

` 2βnp2λq
d`|l|

ÿ

|k|ď|l|´1

Bkφp2yq

k!

ż

Rd

pz ´ 2yq
k
B
l
2Knpx ` λz, x ` λ̄λyqdz.

Using Taylor-Lagrange’s inequality in the first integral (and absorbing 2d`|l| into the
implicit constant), we obtain

|B
lηpyq| À 2βnλd`|l|

ÿ

|k|“|l|

1
k!}φ}C|l|

ż

Rd

|z ´ 2y|
|l|

|B
l
2Knpx ` λz, x ` 2λyq|dz

` 2βnλd`|l|
ÿ

|k|ď|l|´1

}φ}C|l|

k!

ˇ

ˇ

ˇ

ˇ

ż

Rd

pz ´ 2yq
k
B
l
2Knpx ` λz, x ` 2λyqdz

ˇ

ˇ

ˇ

ˇ

.
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The first integral can be estimated by the property (2.10) of the kernel K. For the
second integral, we first rewrite it, by a change of variables, as
ż

Rd

pz ´ 2yq
k
B
l
2Knpx ` λz, x ` 2λyqdz “ λ´|k|´d

ż

Rd

pz̃ ´ 2λyq
k
B
l
2Knpx ` z̃, x ` 2λyqdz̃

and then we use property (2.11) of the kernel K. Overall, for x P K we get

|B
lηpyq| À cK1 2βnλd`|l|

}φ}C|l|2pd´β`|l|qn

ż

zPBp2y,ρ 2´n

λ
q

|z ´ 2y|
|l|dz

` cK1 2βnλd`|l|
ÿ

|k|ď|l|´1

}φ}C|l|

k! λ´d´|k|2´βn ,

where K 1 :“ K ‘ Bp0, 2λ̄q. It follows that
sup

nPN, λPp0,λ̄s, xPK

}η}Cr À cstK,λ̄ }φ}Cr ď cstK,λ̄ ,

where cstK,λ̄ ă 8 depends on K, λ̄ and on the kernel K (in particular, on ρ).

Bound on Cr norm of ζ. Let l P Nd
0 be a multi-index with |l| ď r, and y P Rd,

then by differentiation under the integral,

B
lζpyq “ 2βnp2nλq

´m
p2ρ2´n

q
d`|l|

ż

Rd

φpzqB
l
2Knpx ` λz, x ` 2ρ2´nyqdz.

Recall that by assumption φ annihilates polynomials of degree c ě m ´ 1 so in this
integral we can subtract the Taylor polynomial of Bl2Knp¨, x ` 2ρ2´nyq based at x of
order m ´ 1. It is convenient to denote:

R
rm´1s

n,λ,x,y,lpzq :“ B
l
2Knpx ` λz, x ` 2ρ2´nyq ´

ÿ

|k|ďm´1
B
k
1 B

l
2Knpx, x ` 2ρ2´nyq

pλzqk

k! ,

then
B
lζpyq “ 2βnp2nλq

´m
p2ρ2´n

q
d`|l|

ż

Rd

φpzqR
rm´1s

n,λ,x,y,lpzqdz.

By Taylor-Lagrange’s formula,
ˇ

ˇ

ˇ
R

rm´1s

n,λ,x,y,lpzq

ˇ

ˇ

ˇ
ď

ÿ

|k|“m

1
k!

›

›B
k
1 B

l
2Kn

›

›

8
|λz|

m.

Thus, by the property (2.10) of the kernel K, for x P K and λ P p0, λ̄s
ˇ

ˇ

ˇ
R

rm´1s

n,λ,x,y,lpzq

ˇ

ˇ

ˇ
À 2pd´β`m`|l|qnλm|z|

m,

where the implicit multiplicative constant depends on the compact K, on λ̄ and on
the kernel K (and on the dimension d of the underlying space). Consequently,

ˇ

ˇB
lζpyq

ˇ

ˇ À

ż

Rd

|φpzq||z|
mdz ď

ż

Rd

|φpzq|dz À 1 ,

because by assumption φ P Br
c . Thus, this establishes:

sup
nPN, λPp0,λ̄s, xPK

}ζ}Cr À 1 ,
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which concludes the proof. □

Appendix B. Spaces of germs and distributions are
“independent of r”

In this section we prove (using wavelet techniques) that the choice of the regularity
r of test-functions in the different spaces of distributions and germs studied in this
paper generally does not matter.

Proposition B.1. Let ᾱ, α, γ P R with ᾱ, α ď γ. Then:
(1) The Definition 2.1 of Hölder-Zygmund spaces Zγ does not depend on the

choice of r ě rγ :“ mintr P N0, r ą ´γu.
(2) The Definition 3.2 of homogeneous and coherent germs Gᾱ;α,γ does not depend

on the choice of r ě rᾱ,α :“ mintr P N0, r ą maxp´ᾱ,´αqu.
(3) The Definition 5.1 of weakly homogeneous and coherent germs Gᾱ;α,γ

weak does not
depend on the choice of r ě rᾱ,α :“ mintr P N0, r ą maxp´ᾱ,´αqu.

A proof in the case of the Hölder-Zygmund spaces Zγ can be found for instance in
[FH20, Lemma 14.13].

A proof in the case of the space of homogeneous and coherent germs Gᾱ;α,γ when
γ ‰ 0 can be found in [CZ20, Propositions 13.1 and 13.2], see Remark 3.6. However
the approach in this reference fails to cover the case γ “ 0.

We prove Proposition B.1 using the following result from wavelet theory:

Theorem B.2 (Daubechies’ wavelets, see [Dau88; Dau92; Mey92]). For
any r, d P N0, there exist a compactly supported function φ P Cr

c pRdq and a finite
family Ψ of compactly supported functions ψ P Cr

c pRdq satisfying
ş

Rd ψpxqxkdx “ 0
for all multi-indices k P Nd

0 with |k| ď r, such that for all n0 P Z, the family

t2
´n0d

2 φ2´n0
k : k P 2´n0Zu Y t2

´nd
2 ψ2´n

k : n ě n0, k P 2´nZ, ψ P Ψu, (B.1)
is a Hilbert basis of L2pRdq.

In fact, the convergence along the basis (B.1) holds in Cr norm. This allows us to
prove Proposition B.1.
Proof of Proposition B.1. As a proof in the case of the spaces Zγ can be found in the
literature, see [FH20, Lemma 14.13], we only consider the case of spaces of germs.
We argue slightly differently in the case of G and in the case of Gweak:

‚ in the case of G, we exploit the decomposition (B.1) starting from n0 P Z with
2´n0 „ λ,

‚ in the case of Gweak, we exploit the decomposition (B.1) starting from n0 “ 0.
Let α, ᾱ, γ P R be such that α ď γ, ᾱ ď γ, and define

rα,ᾱ :“ mintr P N0, r ą maxt´α,´ᾱuu.
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For any r P N0 arbitrary, we denote Gᾱ;α,γ
r the space of germs corresponding to the

family of seminorms given by (3.7); and similarly Gᾱ;α,γ
weak; r corresponding to the family

of seminorms (5.6).
Let r P N0 with r ě rα,ᾱ, we shall show that

Gᾱ;α,γ
r “ Gᾱ;α,γ

rα,ᾱ
, (B.2)

Gᾱ;α,γ
weak; r “ Gᾱ;α,γ

weak; rα,ᾱ
. (B.3)

Proof of (B.2). It suffices to show the inclusion

Gᾱ;α,γ
r Ă Gᾱ;α,γ

rα,ᾱ
,

because the other one follows from the definitions. Let F P Gᾱ;α,γ
r , we start with

the estimate of homogeneity. Let φ,Ψ be as in Theorem B.2 applied to r. Let
K Ă Rd be compact, x P K, λ P p0, 1s, η P Brα,ᾱ , we want to estimate Fxpηλxq. Set
N :“ Nλ :“ mintn P N, 2´n ď λu. From the decomposition (B.1) starting at Nλ, we
have:

Fxpηλxq “
ÿ

kP2´NλZ

2´Nλdxηλx , φ
2´Nλ

k yFxpφ2´Nλ

k q

`

`8
ÿ

n“Nλ

ÿ

kP2´nZ

ÿ

ψPΨ
2´nd

xηλx , ψ
2´n

k yFxpψ2´n

k q.

In the first line, for reasons of support one has |x ´ k| À λ and only a finite
number of k contribute to the sum. In the second line, for reasons of support one
has |x ´ k| À λ and „ 2pn´Nλqd values of k contribute to the sum. Thus, because of
the coherence and homogeneity of F , one has |Fxpφ2´Nλ

k q| À λᾱ ` λγ À λᾱ in the first
line, and |Fxpψ2´n

k q| À 2´nᾱ ` 2´nαλγ´α in the second line. Also, since the functions
ψ cancel polynomials of degree up to r ě rα,ᾱ, by subtracting a Taylor polynomial
of degree r̃ :“ rα,ᾱ ´ 1 in the integral one obtains |xηλx , ψ

2´n

k y| À }η}C r̃`1λ´d
`2´n

λ

˘r̃`1.
Thus, collecting these estimate:

|Fxpηλxq| À 2´Nλd}η}82Nλd2´Nλᾱ

`

`8
ÿ

n“Nλ

2´nd2pn´Nλqd
}η}C r̃`1λ´d

ˆ

2´n

λ

˙r̃`1
`

2´nᾱ
` 2´nαλγ´α

˘

.

Recalling that by choice of r̃ one has r̃` 1 ą ´α and r̃` 1 ą ´ᾱ, by summing the
geometric series one obtains the wanted homogeneity estimate

|Fxpηλxq| À }η}Crα,ᾱλᾱ.

We establish the estimate of coherence similarly. Let again φ,Ψ be as in Theo-
rem B.2 applied to r. Let K Ă Rd be compact, x, y P K, λ P p0, 1s, η P Brα,ᾱ , we
want to estimate pFy ´Fxqpηλxq. As above, set N :“ Nλ :“ mintn P N, 2´n ď λu, from
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the decomposition (B.1) starting at Nλ, we have:

pFy ´ Fxqpηλxq “
ÿ

kP2´NλZ

2´Nλdxηλx , φ
2´Nλ

k ypFy ´ Fxqpφ2´Nλ

k q

`

`8
ÿ

n“Nλ

ÿ

kP2´nZ

ÿ

ψPΨ
2´nd

xηλx , ψ
2´n

k ypFy ´ Fxqpψ2´n

k q.

We perform the same estimate as above except this time from the assumption
of coherence on the germ F (and the fact that |x ´ k| À λ for reasons of support)
one has |pFy ´ Fxqpφ2´Nλ

k q| À λαp|y ´ x| ` λqγ´α in the first line, and similarly in
the second line |pFy ´ Fxqpψ2´n

k q| À 2´nαp|y ´ x| ` λqγ´α. Thus, collecting all the
estimate, one obtains for r̃ :“ rα,ᾱ ´ 1:

|pFy ´ Fxqpηλxq| À 2´Nλd}η}82Nλdλαp|y ´ x| ` λq
γ´α

`

`8
ÿ

n“Nλ

2´nd2pn´Nλqd
}η}C r̃`1λ´d

ˆ

2´n

λ

˙r̃`1

2´nα
p|y ´ x| ` λq

γ´α,

so that using the fact that r̃` 1 ą ´α one obtains after summing the geometric series
|pFy ´ Fxqpηλxq| À }η}Crα,ᾱλαp|y ´ x| ` λq

γ´α.

This concludes the proof of (B.2).
Proof of (B.3). It suffices to show the inclusion

Gᾱ;α,γ
weak; r Ă Gᾱ;α,γ

weak; rα,ᾱ
,

because the other one follows from the definitions. Let F P Gᾱ;α,γ
weak; r, we start with

the estimate of homogeneity. Let again φ,Ψ be as in Theorem B.2 applied to r. Let
K Ă Rd be compact, x P K, λ P p0, 1s, η P Brα,ᾱ , η̌ P B

rα,ᾱ

ᾱ . We want to estimate
Fxpηxq and Fxpη̌λxq. From the decomposition (B.1) starting at 0, we have:

Fxpηxq “
ÿ

kPZ
xηx, φkyFxpφkq

`

`8
ÿ

n“0

ÿ

kP2´nZ

ÿ

ψPΨ
2´nd

xηx, ψ
2´n

k yFxpψ2´n

k q.

In the first line, for reasons of support one has |x ´ k| À 1 and only a finite
number of k contribute to the sum. In the second line, for reasons of support one
has |x ´ k| À 1 and „ 2nd values of k contribute to the sum. Thus, because of
the coherence and homogeneity of the germ F , one has |Fxpφkq| À 1 in the first
line, and |Fxpψ2´n

k q| À 2´nᾱ ` 2´nα in the second line. Also, since the functions ψ
cancel polynomials of degree up to r ě rα,ᾱ, by subtracting a Taylor polynomial of
degree r̃ :“ rα,ᾱ ´ 1 in the integral one obtains |xηx, ψ

2´n

k y| À }η}C r̃`12´npr̃`1q. Thus,
collecting these estimates:

|Fxpηxq| À }η}8 `

`8
ÿ

n“0
2´nd2nd}η}C r̃`12´npr̃`1q

`

2´nᾱ
` 2´nα

˘

,
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so that summing the geometric series and recalling that r̃` 1 ą ´α, r̃` 1 ą ´ᾱ, one
obtains |Fxpηxq| À }η}Crα,ᾱ .

Similarly:

Fxpη̌λxq “
ÿ

kPZ
xη̌λx , φkyFxpφkq

`

Nλ
ÿ

n“0

ÿ

kP2´nZ

ÿ

ψPΨ
2´nd

xη̌λx , ψ
2´n

k yFxpψ2´n

k q

`

`8
ÿ

n“Nλ`1

ÿ

kP2´nZ

ÿ

ψPΨ
2´nd

xη̌λx , ψ
2´n

k yFxpψ2´n

k q.

In the first line, for reasons of support one has |x ´ k| À 1 and only a finite
number of k contribute to the sum. Also, since η̌ annihilate polynomials of degree
up to tᾱu, by subtracting a Taylor polynomial of φ of degree tᾱu in the integral one
obtains |xη̌λx , φky| À }η̌}8λ

tᾱu`1 À }η̌}8λ
ᾱ. Furthermore, because of the coherence

and homogeneity of the germ F , |Fxpφkq| À 1.
In the second line, for reasons of support one has |x ´ k| À 2´n and only a finite

number of k contribute to the sum. Also, since η̌ annihilate polynomials of degree
up to tᾱu, by subtracting a Taylor polynomial of φ of degree tᾱu in the integral one
obtains |xη̌λx , ψ

2´n

k y| À }η̌}82nd
`

λ
2´n

˘tᾱu`1. Furthermore, because of the coherence
and homogeneity of the germ F , |Fxpψ2´n

k q| À 2´nγ ` 2´nᾱ À 2´nᾱ (since we assume
ᾱ ď γ).

In the third line, for reasons of support one has |x´ k| À λ and „ 2pn´Nλqd values
of k contribute to the sum. Also, since the functions ψ cancel polynomials of degree
up to r ě rα,ᾱ, by subtracting a Taylor polynomial of η̌ of degree r̃ :“ rα,ᾱ ´ 1 in
the integral one obtains |xη̌λx , ψ

2´n

k y| À }η̌}C r̃`12´npr̃`1q. Furthermore, because of the
coherence and homogeneity of the germ F , |Fxpψ2´n

k q| À 2´nαλγ´α ` 2´nᾱ.
Collecting these estimates yields:

|Fxpη̌λxq| À }η̌}8λ
ᾱ

`

Nλ
ÿ

n“0
2´nd

}η̌}82nd
ˆ

λ

2´n

˙tᾱu`1

2´nᾱ

`

`8
ÿ

n“Nλ`1
2´nd2pn´Nλqd

}η̌}C r̃`12´npr̃`1q
`

2´nαλγ´α
` 2´nᾱ

˘

,

so that summing the geometric series and recalling that r̃ ` 1 ą ´α, r̃ ` 1 ą ´ᾱ,
tᾱu ` 1 ą ᾱ, one obtains:

|Fxpη̌λxq| À }η̌}Crα,ᾱλᾱ.

Once again, we establish the property of coherence similarly. Let φ,Ψ be as
in Theorem B.2 applied to r. Let K Ă Rd be compact, x, y P K, λ P p0, 1s,
η P Brα,ᾱ , η̌ P Brα,ᾱ

γ , we want to estimate pFy ´Fxqpηxq and pFy ´Fxqpη̌λxq. From the
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decomposition (B.1) starting at 0, we have:
pFy ´ Fxqpηxq “

ÿ

kPZ
xηx, φkypFy ´ Fxqpφkq

`

`8
ÿ

n“0

ÿ

kP2´nZ

ÿ

ψPΨ
2´nd

xηx, ψ
2´n

k ypFy ´ Fxqpψ2´n

k q.

We perform the same estimates as in the case of the homogeneity, except for the
fact that in the first line |pFy ´ Fxqpφkq| À 1 because of the assumption of coherence
of F (and the fact that |x ´ k| À 1 for reasons of support); and the fact that in the
second line, |pFy ´ Fxqpψ2´n

k q| À 2´nα because of the assumption of coherence of F
(and the facts that x, y P K for a compact K and |x ´ k| À 1 for reasons of support).
Thus this yields for r̃ :“ rα,ᾱ ´ 1:

|pFy ´ Fxqpηxq| À }η}8

`

`8
ÿ

n“0
2´nd2nd}η}C r̃`12´npr̃`1q2´nα,

so that summing the geometric series yields |pFy ´ Fxqpηxq| À 1.
Similarly:

pFy ´ Fxqpη̌λxq “
ÿ

kPZ
xη̌λx , φkypFy ´ Fxqpφkq

`

Nλ
ÿ

n“0

ÿ

kP2´nZ

ÿ

ψPΨ
2´nd

xη̌λx , ψ
2´n

k ypFy ´ Fxqpψ2´n

k q

`

`8
ÿ

n“Nλ`1

ÿ

kP2´nZ

ÿ

ψPΨ
2´nd

xη̌λx , ψ
2´n

k ypFy ´ Fxqpψ2´n

k q.

We perform the same estimates as in the case of the homogeneity above except
that here, in the first line |pFy ´ Fxqpφkq| À 1; in the second line |pFy ´ Fxqpψ2´n

k q| À

2´nαp|y´x| ` 2´nqγ´α; and in the third line |pFy ´Fxqpψ2´n

k q| À 2´nαp|y´x| `λqγ´α.
Thus this yields for r̃ :“ rα,ᾱ ´ 1:

|pFy ´ Fxqpη̌λxq| À }η̌}8λ
γ

`

Nλ
ÿ

n“0
2´nd

}η̌}82nd
ˆ

λ

2´n

˙tγu`1

2´nα
p|y ´ x| ` 2´n

q
γ´α

`

`8
ÿ

n“Nλ`1
2´nd2pn´Nλqd

}η̌}C r̃`12´npr̃`1q2´nα
p|y ´ x| ` λq

γ´α,

so that after summing the geometric series and recalling that r̃ ` 1 ą ´α and
tγu ` 1 ą γ ě α, we obtain:

|pFy ´ Fxqpη̌λxq| À }η̌}Crα,ᾱλαp|y ´ x| ` λq
γ´α.

This concludes the proof. □
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