We consider spin manifolds with an Einstein metric, either Riemannian or indefinite, for which there exists a Killing spinor. We describe the intrinsic geometry of nondegenerate hypersurfaces in terms of a PDE satisfied by a pair of induced spinors, akin to the generalized Killing spinor equation. Conversely, we prove an embedding result for real analytic pseudo-Riemannian manifolds carrying a pair of spinors satisfying this condition.
Conti, D., Segnan Dalmasso, R. (2024). Killing spinors and hypersurfaces. INTERNATIONAL JOURNAL OF MATHEMATICS, 35(10) [10.1142/s0129167x24500356].
Killing spinors and hypersurfaces
Conti, Diego
;Segnan Dalmasso, Romeo
2024
Abstract
We consider spin manifolds with an Einstein metric, either Riemannian or indefinite, for which there exists a Killing spinor. We describe the intrinsic geometry of nondegenerate hypersurfaces in terms of a PDE satisfied by a pair of induced spinors, akin to the generalized Killing spinor equation. Conversely, we prove an embedding result for real analytic pseudo-Riemannian manifolds carrying a pair of spinors satisfying this condition.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Conti-Dalmasso-2024-International Journal of Mathematics-Arxiv-Preprint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Altro
Dimensione
246.84 kB
Formato
Adobe PDF
|
246.84 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.