We consider spin manifolds with an Einstein metric, either Riemannian or indefinite, for which there exists a Killing spinor. We describe the intrinsic geometry of nondegenerate hypersurfaces in terms of a PDE satisfied by a pair of induced spinors, akin to the generalized Killing spinor equation. Conversely, we prove an embedding result for real analytic pseudo-Riemannian manifolds carrying a pair of spinors satisfying this condition.

Conti, D., Segnan Dalmasso, R. (2024). Killing spinors and hypersurfaces. INTERNATIONAL JOURNAL OF MATHEMATICS, 35(10) [10.1142/s0129167x24500356].

Killing spinors and hypersurfaces

Conti, Diego
;
Segnan Dalmasso, Romeo
2024

Abstract

We consider spin manifolds with an Einstein metric, either Riemannian or indefinite, for which there exists a Killing spinor. We describe the intrinsic geometry of nondegenerate hypersurfaces in terms of a PDE satisfied by a pair of induced spinors, akin to the generalized Killing spinor equation. Conversely, we prove an embedding result for real analytic pseudo-Riemannian manifolds carrying a pair of spinors satisfying this condition.
Articolo in rivista - Articolo scientifico
Cauchy problem; Einstein metric; Killing spinor; pseudo-Riemannian metric;
English
21-mag-2024
2024
35
10
2450035
open
Conti, D., Segnan Dalmasso, R. (2024). Killing spinors and hypersurfaces. INTERNATIONAL JOURNAL OF MATHEMATICS, 35(10) [10.1142/s0129167x24500356].
File in questo prodotto:
File Dimensione Formato  
Conti-Dalmasso-2024-International Journal of Mathematics-Arxiv-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 246.84 kB
Formato Adobe PDF
246.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516963
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact