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Abstract

We consider spin manifolds with an Einstein metric, either Rieman-

nian or indefinite, for which there exists a Killing spinor. We describe the

intrinsic geometry of nondegenerate hypersurfaces in terms of a PDE sat-

isfied by a pair of induced spinors, akin to the generalized Killing spinor

equation.

Conversely, we prove an embedding result for real analytic pseudo-

Riemannian manifolds carrying a pair of spinors satisfying this condition.

1 Introduction

A spinor Ψ on a pseudo-Riemannian spin manifold (Z, h) is Killing if it satisfies

∇XΨ = λX ·Ψ, (1)

where λ is a complex constant and · denotes Clifford multiplication; this includes
the case λ = 0, when the the spinor is parallel. Unless Ψ is identically zero, the
condition (1) forces the scalar curvature to be 4n(n − 1)λ2. This puts strong
constraints on the geometry, and forces λ to be either real or purely imaginary.

Riemannian and pseudo-Riemannian manifolds with a Killing spinor have
been studied in general relativity since [28], and later on in supersymmetry (see
[17]). Mathematically, Killing spinors on a compact Riemannian manifold with
positive curvature correspond to eigenvectors for the Dirac operator which attain
the lowest possible eigenvalue (see [20]); in both the Riemannian and indefinite
case, Killing and parallel spinors are studied in connection with holonomy (see
[29, 3, 7]).

The geometry of Riemannian manifolds with a Killing spinor is quite rigid
(see [3, 5]). In particular, the metric is Einstein, and Ricci-flat when λ = 0.
This is not always true for indefinite metrics. For instance, [9] shows that
there exist non-Einstein Lorentzian manifolds admitting a Killing spinor with
λ imaginary; on the other hand, it is shown in the same paper that Lorentzian
manifolds admitting Killing spinors with λ real are necessarily Einstein. In this
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paper, we will focus on the case in which the metric is Einstein. More precisely,
we study nondegenerate hypersufaces inside an Einstein pseudo-Riemannian
manifold with a Killing spinor.

The case in which the spinor Ψ is parallel has been considered in [4], showing
that the restriction of Ψ to the hypersurface satisfies

∇Xψ =
1

2
A(X) · ψ, (2)

where A is the Weingarten operator, under the assumption that the normal is
space-like; one then says that ψ is a generalized Killing spinor. If the normal is
time-like, one obtains the similar equation

∇Xψ =
i

2
A(X) · ψ; (3)

then ψ is called a generalized imaginary Killing spinor, or imaginary W-Killing
spinor (see e.g. [8]).

A natural problem to consider is whether this is a characterization, i.e.
whether any pseudo-Riemannian manifold (M, g) with a generalized (imagi-
nary) Killing spinor ψ can be embedded isometrically as a hypersurface inside
a manifold (Z, h) with a parallel spinor extending ψ, with the symmetric tensor
A corresponding to the Weingarten operator. We will then refer to (Z, h) as an
extension of (M, g).

Little is known for the case of general signature; the main result was proved
in [4], where the extension is shown to exist in the case that ∇A is totally
symmetric.

For Riemannian extensions of Riemannian metrics, the classification of the
holonomy groups of a manifold with a parallel spinor in [29] allows one to recast
the problem in terms of G-structures and differential forms. Extending the
metric amounts to solving appropriate evolution equations in the sense of [21]
(see also [14, 13]); for some instances of G, the existence of a solution can then be
proved using the integrability of an exterior differential system associated to the
G-structure (see [14, 10]). A general proof of the existence of the embedding
for real analytic data, using spinors rather than differential forms, was given
in [1]. We point out that there are examples of non-real-analytic Riemannian
manifolds with a generalized Killing spinor which cannot be extended (see [10]
and [1, Theorem 4.27]), indicating that the real analytic condition cannot be
eschewed in this context.

For Lorentzian extensions of Riemannian metrics, a proof of existence was
given in [8] for real analytic data, and [24] for smooth data, under the condition

Uψ · ψ = iuψψ,

with Uψ denoting the Riemannian Dirac current and uψ its norm. This algebraic
condition on the spinor corresponds to imposing that the parallel spinor on Z
is null. For the 4-dimensional case, an alternative proof using the polyform
associated to the square of the spinor was given in [27]. In these results, the
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metric on Z is not automatically Ricci-flat. In order to obtain a Ricci-flat metric,
one needs to impose additional constraints involving the tensor A and the scalar
curvature s, namely

s = trA2 − (trA)2, d trA+ δA = 0. (4)

It was shown in [26] that a Riemannian metric on a 3-manifold with a generalized
Killing spinor such that (4) holds can be extended to a Ricci-flat Lorentzian
manifold with a parallel spinor.

To our knowledge, hypersurfaces inside a manifold Z with a Killing spinor,
λ 6= 0 have only been studied in the Riemannian setting and with the language of
differential forms. By [3], Z is either Einstein-Sasaki, 3-Einstein Sasaki, nearly-
parallel G2, nearly Kähler of dimension 6 or a round sphere. The case where
Z has dimension three has been studied in [25]. Hypersurfaces inside a nearly-
Kähler 6-manifold have been studied in [18], where the corresponding evolution
equations are also introduced. Also in this context, solving the evolution equa-
tions can be used effectively to produce explicit metrics; this approach has been
instrumental in the construction of inhomogeneous nearly-Kähler manifolds in
[19]. For real analytic data, the existence of an extension for the geometries cor-
responding to nearly-Kähler, nearly-parallel G2 and Einstein-Sasaki structures
on Z has been proved in [11].

In this paper, we describe in spinorial terms the geometry of a hypersurface
inside an Einstein manifold with a Killing spinor Ψ, generalizing (2) and (3)
(Theorem 3.1, Theorem 3.2). When the hypersurface has even dimension, the
geometry of the hypersurface is described by a single equation involving the
restricted spinor ψ, which originally appears in [25] in the context of surfaces.
In odd dimensions, a complete description requires two spinors. In the case
that the orthogonal distribution to the hypersurface is space-like, generated by
a unit normal ν, the spinors ψ, φ correspond to the restrictions of Ψ and ν ·Ψ,
and they satisfy

{

∇MX ψ = 1
2A(X)⊙ ψ + λX ⊙ φ,

∇MX φ = λX ⊙ ψ − 1
2A(X)⊙ φ;

similar equations hold in the case that the orthogonal distribution is time-like.
The case of even dimension can be subsumed in this system by introducing a

second spinor φ = i
3p+q+2

2 ωM ⊙ ψ, where (p, q) is the signature and ωM the
volume form. In analogy to (4), the fact that the ambient manifold is assumed
to be Einstein implies d trA+δA = 0. We dub the resulting geometry a harmful
structure, meaning to suggest the fact that such a structure potentially leads to
a Killing spinor on the extension.

The main result of this paper is that any real analytic harmful structure can
be extended to an Einstein manifold with a Killing spinor. The proof is akin to
[1]; however, some work is needed to handle the more general signature. Indeed,
the characterization of real analytic hypersurfaces inside Riemannian Einstein
manifolds given in [22] extends to the pseudo-Riemannian case (Corollary 2.2,
Corollary 2.3). We prove that the spinors defining the harmful structure can
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be extended to Killing spinors on Z by parallel translation relative to a suit-
able connection. This shows that any pseudo-Riemannian spin manifold with a
harmful structure can be extended to an Einstein manifold with a Killing spinor
(Theorem 5.4). Our result generalizes the known results quoted above in two
respects: we consider pseudo-Riemannian metrics, and we allow λ 6= 0 in the
Killing equation. By contrast, we restrict the geometry by imposing that the
metric on Z is Einstein.

Working with arbitrary signature forces us to restrict to the real analytic
case. However, we note that the results of [15] indicate that smooth Rieman-
nian hypersurfaces inside a Lorentzian Einstein manifold have a characteriza-
tion similar to [22]. This indicates that the harmful structure corresponding to
this signature always extends to an Einstein Lorentzian manifold. Determining
whether the spinor can be extended to obtain a Killing spinor will be the object
of future work.

2 Hypersurfaces in Einstein manifolds

In this section we recall Koiso’s characterization of n-dimensional real analytic
pseudo-Riemannian manifolds (M, g) which can be immersed as hypersurfaces
in an Einstein manifold (see [22]). Whilst Koiso works in Riemannian signature,
the proof works in the same way for arbitrary signature, though statements need
to be adapted slightly.

The Einstein manifold will take the form of a generalized cylinder in the
sense of [4], i.e. a product Z = M × (a, b) endowed with a metric of the form
gt+ dt2, with {gt} a one-parameter family of metrics on M . In calculations, we
will often drop the subscript t for simplicity. To be precise, this description will
be valid locally, i.e. around each point x there will be an open neighbourhood
U such that U × (a, b) is contained in Z, and the metric can be written down
as a generalized cylinder; however, the interval of definition may shrink to zero
as the point x moves, if M is not compact.

The isometric embedding of (M, g) in the generalized cylinder will be ob-
tained by imposing the initial condition g0 = g. The Einstein condition is a
PDE which can be expressed purely in terms of {gt}; however, it will be conve-
nient to write it in terms of both {gt} and the Weingarten operators {At}, with
the convention that for X,Y tangent to M the normal component of ∇ZXY is
gt(At(X), Y ) ∂∂t , so At = −∇

∂
∂t . Notice that setting ġt(X,Y ) = d

dt (gt(X,Y )),
one has

ġt(X,Y ) = −2gt(At(X), Y ). (5)

We will also consider hypersurfaces with time-like normal direction, which lo-
cally take the form of generalized cylinders g2t − dt

2; in this case, At = ∇
∂
∂t and

(5) has the opposite sign.
We will need to consider the operator δ acting on tensors of type (k, h) as

{

(δT )(v1, . . . , vk, α
1, . . . , αh−1) = −

∑n
i=1(∇eiT )(v1, . . . , vk, e

i, α1, . . . , αh−1), h > 0

(δT )(v1, . . . , vk−1) = −
∑n
i=1(∇eiT )((e

i)♯, v1, . . . , vk−1), h = 0
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Here, {ei} denotes any frame, and {ei} its dual frame. In general, we will often
consider orthonormal frames {ei}, so that the metric takes the form

ǫ1e
1 ⊗ e1 + · · ·+ ǫne

n ⊗ en,

where ǫi = ±1.
Notice that for vector fields, δX = −DivX , and for 1-forms δα = d∗α; in

particular, ∆f = δ(df) for any function f .

Theorem 2.1 (Koiso [22]). Let {gt} and {At} be real analytic one-parameter
families of metrics (resp. symmetric (1,1) tensors) on M defined on the interval
(a, b), satisfying

{

ġt(X,Y ) = −2gt(At(X), Y )

Ȧ = −Ric(gt) + (trA)A+K id

Assume further that

s = (n− 1)K − trA2
0 + (trA0)

2, d trA0 + δA0 = 0. (6)

Then gt + dt2 is an Einstein metric on M × (a, b) with Einstein constant K.

Applying the Cauchy-Kovaleskaya theorem (see [1]), one obtains:

Corollary 2.2. A real analytic pseudo-Riemannian manifold (M, g) of signa-
ture (p, q) embeds isometrically as a hypersurface in an Einstein manifold of
signature (p+1, q) with RicZ = K id if and only if it admits a symmetric (1, 1)
tensor A such that

s = (n− 1)K − trA2 + (trA)2, d trA+ δA = 0. (7)

Corollary 2.3. A real analytic pseudo-Riemannian manifold (M, g) of signa-
ture (p, q) embeds isometrically as a hypersurface in an Einstein manifold of
signature (p, q+1) with RicZ = K id if and only if it admits a symmetric (1, 1)
tensor A such that

s = (n− 1)K + trA2 − (trA)2, d trA+ δA = 0. (8)

Proof. Let g̃ = −g be the opposite metric, with signature (q, p). Then R̃ic =
−Ric, s̃ = −s, and δ̃A = δA. Write also Ã = −A. Then

s̃ = (n− 1)(−K)− tr Ã2 + (tr Ã)2, d tr Ã+ δÃ = 0.

Therefore, we obtain a metric with RicZ = −K id, which locally takes the form
of a generalized cylinder g̃t + dt2. If we reverse the sign of the metric, we find
a metric locally of the form gt − dt

2 satisfying RicZ = K id.
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3 Killing spinors and hypersurfaces

In this section we study the geometry of a hypersurface embedded in a pseudo-
Riemannian manifold with a (nonzero) Killing spinor. We show that the hyper-
surface inherits two spinors which satisfy a coupled differential system involving
a symmetric tensor A, which corresponds to the second fundamental form.

Let Clp,q be the Clifford algebra of signature (p, q), and let Σp,q be the
complex spinor representation. By definition, Σp,q is a representation of Clp,q;
if p + q is even and positive, Σp,q splits into the sum of two representations of
Spinp,q, denoted by Σ+

p,q and Σ−
p,q, which can be identified as the ±1-eigenspaces

of Clifford multiplication by the volume form when p− q is a multiple of 4, or
the ±i-eigenspaces if p− q is not a multiple of 4.

Let N be a spin manifold of dimension n endowed with a pseudo-Riemannian
metric of signature (p, q), and let ΣN denote the bundle of complex spinors;
recall that ΣN splits as Σ+N ⊕ Σ−N when n is even. Clifford multiplication
gives a bundle map

TN ⊗ ΣN → ΣN, v ⊗ ψ 7→ v · ψ.

Let e1, . . . , en be a positively-oriented orthonormal basis of TN . Recall from
[23, Proposition 3.3] that the volume element ω = e1 · · · ep+q in Clp,q, p+ q = n
satisfies

ω2 = (−1)
n(n+1)

2 +q, eiω = (−1)n−1ωei.

In other words,

ω2 =

{

1 p− q = 0, 3 mod 4

−1 p− q = 1, 2 mod 4
.

Conventionally, if n is odd, ω acts on Σp,q as multiplication by iq+n(n+1)/2; if n
is even, it acts on each of Σ±

p,q as multiplication by ±iq+n(n+1)/2.
Now suppose (Z, h) is a pseudo-Riemannian spin manifold with a Killing

spinor Ψ, i.e. ∇ZXΨ = λX ·Ψ for any vector field X of Z, where λ is a complex
constant. As there will not be any ambiguity, we will not use distinct symbols
for the covariant derivative relative to the Levi-civita connection and the one
relative to the spin connection. Since we are interested in hypersurfaces of Z, we
will denote by n+ 1 the dimension of Z. As the volume element ωZ is parallel,
we have

∇ZX(ωZ ·Ψ) = ωZ · ∇
Z
XΨ = λωZ ·X ·Ψ = (−1)nλX · (ωZ ·Ψ).

Thus, ωZ ·Ψ is also Killing. Assume n is even. Then if λ 6= 0, Ψ and ωZ ·Ψ are
necessarily independent, since they have opposite Killing numbers. In general,
we can decompose Ψ as Ψ+ +Ψ− and hence we obtain

∇ZXΨ+ = λX ·Ψ−, ∇ZXΨ− = λX ·Ψ+.

Let (M, g) be a nondegenerate oriented hypersurface, call ι : M → Z the
embedding, and let ν be a normal vector field, normalized so that h(ν, ν) = 1
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(or h(ν, ν) = −1). We have a bundle morphism from the complex Clifford
bundle ClM to ι∗ ClZ,

v 7→ ν · v (resp. v 7→ iν · v), v ∈ TM. (9)

Recall that the Clifford algebra is graded over Z2 (see e.g. [23]); accordingly we
have a splitting ClZ = Cl0 Z ⊕ Cl1 Z. The bundle map (9) is an isomorphism
onto ι∗ Cl0 Z; indeed, it restricts to an algebra isomorphism on each fibre, which
denoting by ⊙ the multiplication by a vector in ClM and by · multiplication in
ClZ satisfies

v ⊙ w 7→ ν · v · w (resp. v ⊙ w 7→ iν · v · w).

Recalling that n denotes the dimension of M , we obtain the identifications

ΣM = Σ+M ⊕ Σ−M = ι∗ΣZ, n even,

ΣM = ι∗Σ+Z, n odd.
(10)

Through the identifications (10), the covariant derivatives of a spinor Ψ and its
restriction ψ are related by

∇ZXΨ = ∇MX ψ −
1

2
ν ·A(X) · ψ, X ∈ TM (11)

(see equation (3.5) in [4]). If Ψ is Killing, then

∇MX Ψ =
1

2
ν · A(X) · ψ + λX ·Ψ.

This leads to an intrinsic formula for the covariant derivative of the restriction
ψ in terms of the geometry of the hypersuface M . We will first introduce this
formula assuming p + q even and ν space-like, noting that the special case of
surfaces in three-dimensional Riemannian manifolds was treated in [25]. If p+ q
is even, the volume element ωZ = e1 · . . . · en · ν acts as

ωZ ·Ψ = iq+(n+1)(n+2)/2Ψ = iq+n/2+1Ψ,

so that

X ·Ψ = ν ·X · ν ·Ψ = i−q−n/2−1ν ·X · ωZ · ν ·Ψ

= i−q−n/2+1ν ·X · e1 · . . . · en ·Ψ

= i−q−n/2+1(−1)n(n−1)/2+n/2ν ·X · (ν · e1) · . . . · (ν · en) ·Ψ

= i−q−n/2+1X ⊙ ωM ⊙Ψ

Therefore, a Killing spinor on a manifold of signature (p+ 1, q) with p+ q even
induces on a hypersurface of signature (p, q) a spinor satisfying

∇MX ψ =
1

2
A(X)⊙ ψ + λi

2−3q−p

2 X ⊙ ωM ⊙ ψ. (12)

For p+ q odd, we have the following:
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Theorem 3.1. Let Z be a pseudo-Riemannian spin manifold of dimension n+1
and signature (p+ 1, q), with n odd, endowed with a Killing spinor Ψ such that

∇ZXΨ = λX ·Ψ, λ ∈ C,

and let M be an oriented hypersurface of signature (p, q), with Weingarten op-
erator A(X) = −∇ZXν. Write Ψ = Ψ++Ψ−, and define spinors ψ and φ on M
by restricting Ψ+ and ν · Ψ− and applying the isomorphism (10). Then φ and
ψ satisfy the coupled differential system

{

∇MX ψ = 1
2A(X)⊙ ψ + λX ⊙ φ

∇MX φ = λX ⊙ ψ − 1
2A(X)⊙ φ

(13)

and the restriction of Ψ to M is given by ψ − ν · φ.

Proof. Using (11), (9), ν · ν = −1 and the fact that Clifford multiplication by a
vector interchanges Σ+ and Σ−, we obtain

∇MX ψ = λν ·X · (ν ·Ψ−) +
1

2
A(X)⊙ ψ = λX ⊙ φ+

1

2
A(X)⊙ ψ.

Similarly, we get

∇MX φ−
1

2
ν · A(X) · φ = ∇ZX(ν ·Ψ−) = ν · λX ·Ψ+ −A(X) ·Ψ−.

Thus

∇MX φ =
1

2
ν · A(X) · φ+ λX ⊙ ψ +A(X) · ν · φ = λX ⊙ ψ −

1

2
A(X)⊙ φ.

In the case that the normal is time-like, (11) still holds, but (9) gives

∇ZXΨ = ∇MX ψ −
1

2
ν · A(X) · ψ = ∇MX ψ +

i

2
A(X)⊙ ψ;

with appropriate definitions and similar computations one obtains a similar
system with a factor −i, i.e.

Theorem 3.2. Let Z be a pseudo-Riemannian spin manifold of dimension n+1
and signature (p, q + 1), with n odd, endowed with a Killing spinor Ψ, so that

∇ZXΨ = λX ·Ψ, λ ∈ C,

and let M be an oriented hypersurface of signature (p, q) with Weingarten op-
erator A(X) = ∇ZXν.

Write Ψ = Ψ+ + Ψ−, and define spinors ψ and φ on M by restricting Ψ+

and −ν · Ψ− and applying the isomorphism (10). Then φ and ψ satisfy the
coupled differential system

{

∇MX ψ = − i
2A(X)⊙ ψ − iλX ⊙ φ

∇MX φ = iλX ⊙ ψ + i
2A(X)⊙ φ,

(14)

and the restriction of Ψ to M is given by ψ − ν · φ.
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Remark 3.1. In the even case, (13) and (14) still hold if one sets φ = i
2−3q−p

2 ωM⊙
ψ, where ωM is the volume form in M . In this case, φ is the restriction of ν ·Ψ
(respectively −ν · Ψ) under the isomorphism (10). Notice that this is simply a
different way of writing (12) or its time-like analogue.

Recall that the constant λ appearing in the Killing spinor equation, and
hence equations (13) and (14), is either real or purely imaginary.

These equations characterize a geometry that gives rise to a Killing spinor
in one dimension higher, but only potentially; in accord with their “potentially
killing nature”, we will dub them harmful structures. More precisely, given a
pseudo-Riemannian spin manifold (M, g) of signature (p, q), we will say that
a weakly harmful structure on (M, g) is a pair of nowhere vanishing spinors
(φ, ψ) satisfying either (13) or (14) for some symmetric tensor A and some
constant λ, either real or purely imaginary; if p+ q is even, we further require

that φ = i
2−3q−p

2 ωM ⊙ ψ, where ωM is the volume form. The weakly harmful
structure will be called real if (13) holds and imaginary if (14) holds. If the
symmetric tensor A additionally satisfies

d trA+ δA = 0,

(φ, ψ) will be called a harmful structure.

Remark 3.2. We will see in Corollary 4.4 that, on a Riemannian manifold, a
real weakly harmful structure is necessarily harmful.

Theorem 3.1 and its time-like counterpart, Theorem 3.2, show that any non-
degenerate hypersurface inside an Einstein pseudo-Riemannian manifold (Z, h)
endowed with a Killing spinor inherits a harmful structure. If (Z, h) is not as-
sumed to be Einstein, one obtains a weakly harmful structure (see Corollary 2.2
and Corollary 2.3).

Notice that for λ = 0, ψ satisfies an equation analogous to the generalized
Killing spinor equation of [4], with a factor −i if one takes the normal to be
time-like, rather than space-like.

4 Embedding into a pseudo-Riemannian Einstein

spin manifold

In this section we show that a real analytic pseudo-Riemannian spin manifold
of signature (p, q) with a harmful structure can be embedded isometrically in
a pseudo-Riemannian Einstein manifold, of signature (p + 1, q) or (p, q + 1)
accordingly to whether the harmful structure is real or imaginary. We will give
the detailed proofs only for real harmful structures, as the imaginary case is
entirely similar.

Since in this section all spinors are on the same manifold M , we will omit
the symbol ⊙ and indicate Clifford multiplication by juxtaposition.

Given a harmful structure satisfying (13) or (14), we will denote by

F (X,Y ) = (∇XA)(Y )− (∇Y A)(X),
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the exterior covariant derivative of A (often denoted by d∇A). We begin with
the following:

Lemma 4.1. Let (M, g) be a pseudo-Riemannian spin manifold with a real
(weakly) harmful structure (φ, ψ), and let X,Y ∈ TM be two vector fields.
Then the curvature of the spinor bundle of M satisfies

RMXY ψ =
1

2

(

F (X,Y ) +A(Y )A(X) + g
(

A(Y ), A(X)
)

)

ψ

+ 2λ2
(

Y X + g(X,Y )
)

ψ.
(15)

Proof. We compute

RMXY ψ =∇X∇Y ψ −∇Y∇Xψ −∇[X,Y ]ψ

(13)
= ∇X

(

1

2
A(Y )ψ + λY φ

)

−∇Y

(

1

2
A(X)ψ + λXφ

)

−
1

2
A([X,Y ])ψ − λ[X,Y ]φ

=
1

2
(∇X(A(Y ))ψ +A(Y )∇Xψ) + λ(∇XY φ+ Y∇Xφ)

−
1

2
(∇Y (A(X))ψ +A(X)∇Y ψ)− λ(∇YXφ+X∇Y φ)

−
1

2
A([X,Y ])ψ − λ[X,Y ]φ

(13)
= λT∇(X,Y )φ+

1

2

(

(∇XA)(Y )− (∇Y A)(X) +A
(

T∇(X,Y )
)

)

ψ

+
1

2

[

A(Y )

(

1

2
A(X)ψ + λXφ

)

+ λY

(

λXψ −
1

2
A(X)φ

)]

−
1

2

[

A(X)

(

1

2
A(Y )ψ + λY φ

)

+ λX

(

λY ψ −
1

2
A(Y )φ

)]

,

where T∇ = 0 is the torsion of the Levi Civita connection. We get

RMXY ψ =
λ

2

(

A(Y )X − Y A(X)−A(X)Y +XA(Y )
)

φ

+
(1

2
F (X,Y ) +

1

4

(

A(Y )A(X)−A(X)A(Y )
)

+ λ2
(

Y X −XY
)

)

ψ

Since for the Clifford product vw + wv = −2g(v, w) and A is self-adjoint, the
coefficient of φ equals zero and the statement follows.

The following Lemma gives an expression for the Ricci tensor on a manifold
for which the curvature satisfies (15).

Lemma 4.2. Assume that (M, g) is an n-dimensional pseudo-Riemannian spin
manifold with a real (weakly) harmful structure and fix an orthonormal frame
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(e1, . . . , en) for TM . Then the Ricci operator of M satisfies

Ric(X)ψ =
(

4(n− 1)λ2X + (trA)A(X)−A2(X)
)

ψ

+

(

∇X(trA) +
n
∑

k=1

ǫkek(∇ekA)(X)

)

ψ.

Proof. It is known, for example from equation (1.13) of [6], that

Ric(X)ψ = −2

n
∑

k=1

ǫkskRXskψ, (16)

which holds for any orthonormal basis (s1, . . . , sn), where 〈si, sj〉 = ǫiδij . Fix
now an orthonormal frame (e1, . . . , en) for TM , so that 〈ei, ej〉 = gij = ǫiδij .

Ric(X)ψ =− 2

n
∑

k=1

ǫkek

(

2λ2(ekX + g(X, ek)) +
1

2
F (X, ek)

+
1

2

(

A(ek)A(X) + g
(

A(ek), A(X)
)

)

)

ψ

=

(

4λ2(n− 1)X −

n
∑

k=1

ǫkek

(

(∇XA)(ek)− (∇ekA)(X)
)

−

n
∑

k=1

ǫkek

(

A(ek)A(X) + g
(

A(ek), A(X)
)

)

)

ψ.

Recall that for any symmetric tensor W we have

n
∑

i=1

ǫieiW (ei) = − tr(W ). (17)

Then we get

Ric(X)ψ =

(

4(n− 1)λ2X −

n
∑

k=1

ǫkek

(

A(ek)A(X) + g
(

ek, A
2(X)

)

)

+
(

tr(∇XA) +
n
∑

k=1

ǫkek(∇ekA)(X)
)

)

ψ

=

(

4(n− 1)λ2X + (trA)A(X) −A2(X)

+
(

∇X(trA) +
n
∑

k=1

ǫkek(∇ekA)(X)
)

)

ψ.

The next lemma relates the scalar curvature of M to the tensor A.
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Lemma 4.3. Let (M, g) be pseudo-Riemannian spin manifold endowed with a
real (weakly) harmful structure (φ, ψ). Then

scalg ψ = (4n(n− 1)λ2 − tr(A2) + (trA)2)ψ − 2(d trA+ δgA)ψ. (18)

Proof. By (17), we can write

− scalg ψ =

n
∑

j=1

ǫjej Ric(ej)ψ =

n
∑

j=1

ǫjej

[

4(n− 1)λ2ej + (trA)A(ej)−A
2(ej)

+
(

∇ej (trA) +

n
∑

k=1

ǫkek (∇ekA)(ej)
)

]

ψ.

All terms are straightforward to compute, except the last one that yields

n
∑

j=1

ǫjej

n
∑

k=1

ǫkek (∇ekA)(ej) =

n
∑

j,k=1

ǫjǫk(−ek ej − 2〈ej , ek〉) (∇ekA)(ej)

=−

n
∑

j,k=1

ǫk

(

ek
(

ǫjej (∇ekA)(ej)
)

+ 2ǫ2jδjk (∇ekA)(ej)
)

=

n
∑

k=1

ǫkek tr
(

∇ekA
)

− 2

n
∑

k=1

ǫk(∇ekA)(ek)

=d trA+ 2δgA.

Putting everything together we get

scalg ψ =
(

4n(n− 1)λ2 + (trA)2 − tr(A2)
)

ψ − 2
(

d trA+ δgA
)

ψ.

As an immediate consequence we have the following

Corollary 4.4. On a Riemannian spin manifold, any real weakly harmful struc-
ture is harmful.

Proof. We write (18) as

(

scalg −4n(n− 1)λ2 − (trA)2 + tr(A2)
)

ψ = −2(d trA+ δgA)ψ;

this equation has the form fψ = Xψ, which implies that f = X = 0 since

f2ψ = fXψ = XfΨ = X2ψ = −|X |2ψ,

and ψ is nowhere zero. Thus

scalg = 4n(n− 1)λ2 − tr(A2) + (trA)2, d trA+ δgA = 0.
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Remark 4.1. Notice that positive definiteness of g is essential in the proof of
Corollary 4.4, as otherwise the vanishing of |X |2 would not imply the vanishing
ofX . Notice also that considering an imaginary weakly harmful structure rather
than real one would make an imaginary unit appear, invalidating the argument.

Analogous results to Lemma 4.1, Lemma 4.2 and Lemma 4.3 can be proved
for imaginary harmful structures; the proofs are completeley analogous. We
summarize these results in the following:

Lemma 4.5. Assume that (M, g) is an n-dimensional pseudo-Riemannian spin
manifold with an imaginary harmful structure. Then:

• the curvature satisfies

RMXY ψ =
1

2

(

A(X)A(Y ) + g
(

A(Y ), A(X)
)

− iF (X,Y )
)

ψ

+ 2λ2(Y X + g(X,Y ))ψ;

• the Ricci operator satisfies

Ric(X)ψ =
(

4(n− 1)λ2X − (trA)A(X) +A2(X)
)

ψ

− i

(

∇X(trA) +
n
∑

k=1

ǫkek(∇ekA)(X)

)

ψ;

• the scalar curvature satisfies

scalg ψ = (4n(n− 1)λ2 + tr(A2)− (trA)2)ψ + 2i(d trA+ δgA)ψ.

We can now prove the main result of this section. It can be viewed as a
generalization of a result of [1] for generalized Killing spinors in Riemannian
manifolds; our results differs in that it allows nonzero λ, though the proof is
similar.

Proposition 4.6. Let (M, g) be a real analytic pseudo-Riemannian spin man-
ifold of dimension n and signature (p, q) with a real (resp. imaginary) harm-
ful structure (φ, ψ). Then (M, g) can be embedded isometrically in a pseudo-
Riemannian Einstein manifold (Z, h) of signature (p + 1, q) (resp. (p, q + 1)),
with constant scalar curvature 4n(n+ 1)λ2.

Proof. It is sufficient to apply Corollaries 2.2 or 2.3 appropriately; d trA+ δgA
is zero by assumption, and the scalar curvature satisfies (7) or (8) thanks to
Lemma 4.3 and Lemma 4.5.

5 Extension of the spinor

In this section we improve the results of Section 4, showing that the spinors
defining the harmful structure actually extend to Killing spinors on (Z, h).
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As the arguments for the real and imaginary case are quite similar, we will
give the complete proof of only the first one, hence the unit normal ν satisfies
h(ν, ν) = 1. Throughout this section, we fix a real analytic pseudo-riemannian
manifold (M, g) with a real harmful structure (φ, ψ), and we embed M into an
Einstein manifold (Z, h). We will extend ν to a vector field in a neighbourhood of
M in Z by taking the tangent direction to geodesics normal toM . Following [1],
we exploit the fact that a spinor on Z is Killing if and only if is parallel relative
to the modified connection

∇̃XΦ = ∇ZXΦ− λX · Φ.

Now define a spinor Ψ on Z by parallel transport of ψ (n even) or ψ − ν · φ (n
odd) relative to ∇̃ along the geodesics tangent to ν. Clearly, since ∇̃νΨ = 0, we
get that

∇Zν Ψ = λν ·Ψ. (19)

Hence we extended the spinor and we proved that it satisfies the Killing equation
for ν at least. The next part is not as trivial. We start by computing ∇̃XΨ|(M,0),

i.e. the restriction of ∇̃XΨ to M seen as a hypersurface embedded in Z. We
need to consider the even and odd case separately: the former gives

∇̃XΨ|(M,0) = ∇
Z
XΨ|(M,0) − λX ·Ψ = ∇MX ψ −

1

2
ν ·A(X) ·Ψ− λX ·Ψ

= λX ⊙ φ+
1

2
A(X)⊙ ψ −

1

2
A(X)⊙ ψ − λX ·Ψ

= λν ·X · (ν · ψ)− λX ·Ψ|(M,0) = λX · ψ − λX · ψ = 0,

while the latter is

∇̃XΨ|(M,0) =∇
Z
XΨ|(M,0) − λX ·Ψ = ∇MX (ψ − ν · φ)−

1

2
ν ·A(X) ·Ψ− λX ·Ψ

=
1

2
A(X)⊙ ψ + λX ⊙ φ−∇MX ν ⊙ φ− ν ·

(

λX ⊙ ψ −
1

2
A(X)⊙ φ

)

−
1

2
A(X)⊙ (ψ − ν · φ)− λX · (ψ − ν · φ) = 0.

Thus, the restriction of Ψ to M is parallel with respect to this connection both
in the even and in the odd case. Following [4], we prove that Ψ is Killing by
showing that ∇̃XΨ is zero for all vector fields X on Z obtained by extending a
vector field on M by parallel transport along ν, meaning that ∇νX = 0; this
condition implies

[X, ν] = ∇ZXν = −At(X).

Throughout this section, the vector fields denoted by X or Y will be assumed
to be of this type.

In order to show that ∇̃XΨ vanishes on Z, it will be sufficient to prove

∇Zν ∇̃XΨ = 0, (20)
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as ∇̃XΨ is identically zero on M .
In the rest of the section we shall work on Z, and write for simplicity ∇,

R instead of ∇Z , RZ . Furthermore, we will omit the Clifford multiplication
symbol ·, except in expressions such as RXY U ·Ψ, which represents (RXY U) ·Ψ
rather than RXY (U ·Ψ).

Lemma 5.1. Fix a spinor ψ on M and consider its extension Ψ to Z via
∇̃-parallel transport along ν. Then

∇ν∇̃XΨ = RνXΨ+ 2λ2νXΨ+ λν∇̃XΨ+ ∇̃A(X)Ψ.

Proof. We have

∇ν∇̃XΨ = ∇ν∇XΨ− λ
(

∇νXΨ+X∇νΨ
)

= ∇ν∇XΨ− λ2XνΨ

0 = ∇X∇̃νΨ = ∇X∇νΨ− λ
(

∇XνΨ+ ν∇XΨ
)

= ∇X∇νΨ+ λ
(

A(X)Ψ− ν∇XΨ
)

.

Thus, subtracting the second one from the first we obtain

∇ν∇̃XΨ = RνXΨ+∇A(X)Ψ− λ
2XνΨ− λ

(

A(X)Ψ− ν∇XΨ
)

= RνXΨ+ λ
(

λνXΨ+ ν∇XΨ
)

+ ∇̃A(X)Ψ

= RνXΨ+ 2λ2νXΨ+ λν∇̃XΨ+ ∇̃A(X)Ψ.

Recall that (Z, h) is an Einstein manifold, that is RicZ = ch, where c = 4nλ2,
as seen in Section 4. Following [1], we define sections L, P of (ν⊥)∗ ⊗ ΣZ and

a section Q of
∧2

(ν⊥)∗ ⊗ ΣZ by

P (X) =RνXΨ+ 2λ2νXΨ, L(X) =∇̃XΨ,

Q(X,Y ) =RXYΨ+ 2λ2
(

XY + 〈X,Y 〉
)

Ψ,

and note that by Lemma 5.1

(∇νL)(X) = ∇ν∇̃XΨ = P (X) + λνL(X) + L(A(X)). (21)

The strategy of [1] is to show that L, P,Q satisfy a linear, homogeneous PDE;
zero is a solution, so by uniqueness one deduces that L vanishes identically. We
will simplify a bit by observing that P can be obtained from Q by means of a
contraction, so that the PDE can be expressed in terms of L and Q alone.

For the remainder of the section, the sum over repeated indices will be
implied.

Lemma 5.2. The sections P and Q are related by

P (X) = νǫjejQ(ej , X).
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Proof. Writing (16) as Ric(Y )ψ = 2(ǫkek · RekY + νRνY )ψ, we have

νRνY ψ =
1

2
Ric(Y )ψ − ǫjejRejY ψ

= 2λ2nY ψ − ǫjejQ(ej, Y ) + 2λ2ǫjejejY ψ + 2λ2ǫjej〈ej , Y 〉ψ

= 2λ2Y ψ − ǫjejQ(ej , Y ),

and by multiplying by ν we get P (X) = νǫjejQ(ej , X).

The previous lemma shows that P is obtained from Q by a contraction, so
the right-hand side of (21) can be expressed in terms of L and Q. The derivative
of Q along ν is given by the following:

Proposition 5.3. The section Q satisfies

∇νQ(X,Y ) = νǫjej
(

(∇XQ)(ej , Y )− (∇YQ)(ej , X)
)

+ L2(X,Y ). (22)

where L2 depends linearly on L and Q.

Proof. By definition of P and Lemma 5.2, we have

∇X(RνY Ψ) =∇X(P (Y )− 2λ2ν YΨ) = ∇X(νǫjejQ(ej, Y )− 2λ2νYΨ)

=νǫjej
(

(∇XQ)(ej , Y ) +Q(∇Xej, Y ) +Q(ej,∇XY )
)

−A(X)ǫjejQ(ej , Y ) + νǫj(∇Xej)Q(ej , Y )

+ 2λ2
(

A(X)YΨ− ν∇XYΨ− νY∇XΨ
)

=νǫjej(∇XQ)(ej , Y ) + 2λ2
(

A(X)YΨ − ν(∇XY )Ψ− λνY XΨ
)

+ U(X,Y ),

where

U(X,Y ) = νǫjej
(

Q(∇Xej , Y ) +Q(ej,∇XY )
)

−A(X)ǫjejQ(ej , Y ) + νǫj(∇Xej)Q(ej , Y )− 2λ2νY L(X)

depends linearly on L and Q; notice that U also depends on the connection
form.

On the other hand,

∇X(RνY Ψ) =(∇XR)νYΨ−RA(X)YΨ+Rν∇XYΨ+RνY (L(X) + λXΨ)

=(∇XR)νYΨ−Q(A(X), Y ) + 2λ2
(

A(X)Y + 〈A(X), Y 〉
)

Ψ

+ νǫjejQ(ej ,∇XY )− 2λ2ν(∇XY )Ψ +RνY L(X)

+ λRνYX ·Ψ+ λX
(

νǫjejQ(ej, Y )− 2λ2νYΨ)

=(∇XR)νYΨ+ 2λ2
(

A(X)Y + 〈A(X), Y 〉
)

Ψ− 2λ2ν(∇XY )Ψ

+ λRνYX ·Ψ− 2λ3XνYΨ+ V (X,Y ),

where

V (X,Y ) = −Q(A(X), Y ) + νǫjejQ(ej ,∇XY ) +RνY L(X) + λXνǫjejQ(ej, Y )
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depends linearly on L and Q; notice that V also depends on the connection
form and the curvature.

Equating the terms and isolating (∇XR)νYΨ we get

(∇XR)νYΨ =νǫjej(∇XQ)(ej , Y ) + 2λ2
(

A(X)YΨ− ν(∇XY )Ψ− λνY XΨ
)

− 2λ2
(

A(X)Y + 〈A(X), Y 〉
)

Ψ+ 2λ2ν(∇XY )Ψ− λRνYX ·Ψ

+ 2λ3XνYΨ+ U(X,Y )− V (X,Y )

=νǫjej(∇XQ)(ej , Y )− 2λ2〈A(X), Y 〉Ψ+ 4λ3ν〈X,Y 〉Ψ

− λRνYX ·Ψ+ S(X,Y ),

where S(X,Y ) = U(X,Y )− V (X,Y ) depends linearly on L and Q.
By applying the second and first Bianchi identities we obtain

∇νQ(X,Y ) = (∇νR)XYΨ+ λRXY ν ·Ψ+ λνRXYΨ+ 2λ3ν
(

XY + 〈X,Y 〉
)

Ψ

=(∇XR)νYΨ − (∇YR)νXΨ+ λRXY ν ·Ψ+ λνRXY Ψ

+ 2λ3ν
(

XY + 〈X,Y 〉
)

Ψ

=νǫjej(∇XQ)(ej , Y )− 2λ2〈A(X), Y 〉Ψ+ 4λ3ν〈X,Y 〉Ψ − λRνYX ·Ψ

−νǫjej(∇YQ)(ej , X) + 2λ2〈A(Y ), X〉Ψ− 4λ3ν〈Y,X〉Ψ+ λRνXY ·Ψ

+λRXY ν ·Ψ+ λνRXY Ψ+ 2λ3ν
(

XY + 〈X,Y 〉
)

Ψ+ S(X,Y )− S(Y,X)

=νǫjej
(

(∇XQ)(ej , Y )− (∇YQ)(ej , X)
)

+ L2(X,Y ),

where L2(X,Y ) = λνQ(X,Y ) + S(X,Y )− S(Y,X).

We are now able to prove the main theorem, which improves Proposition
4.6.

Theorem 5.4. Assume (M, g) is a real analytic pseudo-Riemannian spin man-
ifold of signature (p, q) with a harmful structure (φ, ψ). Then:

• if (φ, ψ) is real, (M, g) embeds isometrically in a pseudo-Riemannian Ein-
stein spin manifold (Z, h) with signature (p+1, q) and Weingarten operator
A;

• if (φ, ψ) is imaginary, (M, g) embeds isometrically in a pseudo-Riemannian
Einstein spin manifold (Z, h) with signature (p, q+1) and Weingarten op-
erator A.

In both cases ψ extends to a Killing spinor Ψ on Z satisfying ∇ZXΨ = λXΨ for
any X ∈ TZ.

Proof. The isometric embedding follows from Proposition 4.6; as explained at
the beginning of this section, we can extend ψ to a spinor Ψ in such a way that
(19) holds. We only need to prove that Ψ satisfies the Killing equation; this is
equivalent to showing that L(X) ≡ 0 on Z. We have already proved that L(X)
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is zero on M×{0}. To see that Q vanishes onM ×{0}, let X,Y be vector fields
on M , and write

Q(X,Y ) = ∇X∇YΨ−∇Y∇XΨ−∇[X,Y ]Ψ+ 2λ2(XY + 〈X,Y 〉)Ψ

= ∇X(λYΨ)−∇Y (λ∇XΨ)− λ[X,Y ]Ψ + 2λ2(XY + 〈X,Y 〉)Ψ

= λ(∇XY + λY X −∇YX − λXY − [X,Y ] + 2λXY + 2λ〈X,Y 〉)Ψ = 0.

Using (21) and Proposition 5.3 we see that L and Q satisfy the linear PDE
system

{

(∇νL)(X) = λνL(X) + νǫjejQ(ej , X) + L(A(X))

(∇νQ)(X,Y ) = νǫjej
(

(∇XQ)(ej , Y )− (∇YQ)(ej , X)
)

+ L2(L,Q).

By the Cauchy-Kowalewskaya Theorem we know that the solution to the PDE
system is unique and, since L = 0 = Q is a solution, it is the only one. In
particular L = 0 on Z and Ψ is a Killing spinor.

Theorem 5.4 is not quite a generalization of the results of [1] for parallel
spinors, in that it entails the extra hypothesis d trA+ δA = 0. However, if we
restrict to the Riemannian case, we can use Corollary 4.4 to remove this extra
hypothesis:

Corollary 5.5. Assume (M, g) is a real analytic Riemannian spin manifold
with a real weakly harmful structure (φ, ψ). Then (M, g) embeds isometrically in
a Riemannian spin manifold (Z, h) with Weingarten operator A, and ψ extends
to a Killing spinor Ψ on Z satisfying ∇ZXΨ = λXΨ for any X ∈ TZ.

Example 5.6. We now present an example in the invariant setting. By con-
sidering a Lie group with a left-invariant metric, we are able to work at the
Lie algebra level by extending each object by left translation. Consider the Lie
algebra

g = (−2e23, 3e13 − 3e34,−3e12 + 3e24, 2e23)

where the notation means that for some basis {e1, . . . , e4} of g∗, the Chevalley-
Eilenberg operator d satisfies

de1 = −2e2∧e3, de2 = 3e1∧e3−3e3∧e4, de3 = −3e1∧e2+3e2∧e4, de4 = 2e2∧e3.

Consider a Lie group with Lie algebra g, and extend the coframe e1, . . . , e4 by
left-invariance, so that d becomes the usual exterior derivative, and consider the
metric

g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 − e4 ⊗ e4.

By Theorem 4.3 of [23] we know that Cl3,1 = M(2,H). Since we ultimately
want to extend a spinor to a 5-dimensional manifold, we also need to consider
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H2 as a Cl(4, 1)-module; writing out quaternionic matrices in complex terms,
we obtain an orthonormal basis of R4,1 given by

Ẽ1 =









i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i









, Ẽ2 =









0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0









, Ẽ3 =









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









,

Ẽ4 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, Ẽ5 =









0 −i 0 0
−i 0 0 0
0 0 0 i
0 0 i 0









,

where the time-like vector is Ẽ4. The inclusion Cl3,1 → Cl4,1 of (9) is then

realized by ei 7→ Ei = Ẽ5Ẽi.
As we need the covariant derivative we write the connection form









0 −e3 e2 0
e3 0 −2e1 − 2e4 e3

−e2 2e1 + 2e4 0 −e2

0 e3 −e2 0









.

Consider the spinors ψ = (i, 1, i, 1) and φ = i
2−3q−p

2 ωψ = (−i, 1,−i, 1), and the
endomorphism A = e1⊗(2e1−e4)+e

2⊗e2+e
3⊗e3+e

4⊗e1. We will prove that
(φ, ψ) is a harmful structure, that is, they satisfy the system (13) with λ = i/2
and d trA+ δA = 0, and show that the connected, simply-connected Lie group
with Lie algebra g extends to a 5-dimensional Einstein manifold endowed with
a Killing spinor.

The correspondence ei ←→ Ei gives

∇Mψ =
1

2

[

2e1⊗E2E3−e
2⊗(E1E3+E3E4)+e

3⊗(E1E2+E2E4)+2e4⊗E2E3

]

ψ,

whilst

Aψ =
(

e1 ⊗
(

2E1 − E4

)

+ e2 ⊗ E2 + e3 ⊗ E3 + e4 ⊗ E1

)

ψ.

We need to verify that ∇Mψ = 1
2 (Aψ + iφ), which, noticing that

(E1 − E2E3)ψ = (E2 − E3E1)ψ = (E3 − E1E2)ψ = 0,

is equivalent to the system

E4ψ − iE1φ = iE2φ− E3E4ψ = E2E4ψ − iE3φ = iE4φ− E2E3ψ = 0.

It is easy to see that these are satisfied, hence ∇Xψ = 1
2

(

A(X)ψ+ iXφ
)

for any
X ∈ g. Since p+ q is even, the second equation in (13) is automatic, i.e. both
equations reduce to (12).
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Now consider the derivation

D = 2e1 ⊗ (e1 − e4) + e2 ⊗ e2 + e3 ⊗ e3.

Its symmetric part coincides with A; it follows that the semidirect product
g̃ = g ⋊D Span{e5} satisfies the equations of Theorem 2.1. Explicitly, one can
write

g̃ = (2e15 − 2e23, e25 + 3e13 − 3e34, e35 − 3e12 + 3e24,−2e15 + 2e23, 0),

and verify that the metric

g̃ = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 − e4 ⊗ e4 + e5 ⊗ e5

is Einstein with Ric = −4 id and the spinor Ψ = (i, 1, i, 1) is Killing with Killing
number i/2. In fact, this is a Lorentz-Einstein-Sasaki metric; if one reverses
the sign of the metric along the Reeb vector field e4, one obtains the known
η-Einstein-Sasaki metric on the Lie algebra D22 in the classification of [16] (see
also [12, 2]).
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versity of Surrey; the authors acknowledge a partial support from the PRIN
2022MWPMAB project “Interactions between Geometric Structures and Func-
tion Theories” and GNSAGA of INdAM. The first author also acknowledges the
MIUR Excellence Department Project awarded to the Department of Mathe-
matics, University of Pisa, CUP I57G22000700001.

The authors are grateful to Federico A. Rossi and the anonymous referee for
many useful comments and corrections that improved the presentation of the
paper.

References

[1] Ammann, B., Moroianu, A., and Moroianu, S. The Cauchy Problems
for Einstein Metrics and Parallel Spinors. Communications in Mathematical
Physics 320 (2013), 173–198.

[2] Andrada, A., Fino, A., and Vezzoni, L. A class of Sasakian 5-
manifolds. Transformation Groups 14, 3 (9 2009), 493–512.

[3] Bär, C. Real Killing spinors and holonomy. Communications in Mathe-
matical Physics 154, 3 (6 1993), 509–521.

[4] Bär, C., Gauduchon, P., and Moroianu, A. Generalized cylinders
in semi-Riemannian and spin geometry. Mathematische Zeitschrift 249, 3
(2005), 545–580.

20



[5] Baum, H. Complete Riemannian manifolds with imaginary Killing spinors.
Annals of Global Analysis and Geometry 7, 3 (1 1989), 205–226.

[6] Baum, H., Friedrich, T., Grunewald, R., and Kath, I. Twistor
and Killing spinors on Riemannian manifolds. Seminarbericht, Humboldt-
Universität zu Berlin, Sektion Mathematik 108 (1991).

[7] Baum, H., Lärz, K., and Leistner, T. On the full holonomy group of
Lorentzian manifolds. Mathematische Zeitschrift 277, 3-4 (8 2014), 797–
828.

[8] Baum, H., Leistner, T., and Lischewski, A. Cauchy problems for
Lorentzian manifolds with special holonomy. Differential Geometry and its
Applications 45 (4 2016), 43–66.

[9] Bohle, C. Killing spinors on Lorentzian manifolds. Journal of Geometry
and Physics 45 (2003), 285–308.

[10] Bryant, R. L. Non-Embedding and Non-Extension Results in Special
Holonomy. In The Many Facets of Geometry. Oxford University Press, 7
2010, pp. 346–367.

[11] Conti, D. Embedding into manifolds with torsion. Mathematische
Zeitschrift 268, 3-4 (8 2011), 725–751.

[12] Conti, D., Fernández, M., and Santisteban, J. Solvable Lie algebras
are not that hypo. Transformation Groups 16, 1 (2011), 51–69.

[13] Conti, D., and Fino, A. Calabi-Yau cones from contact reduction. An-
nals of Global Analysis and Geometry 38, 1 (6 2010), 93–118.

[14] Conti, D., and Salamon, S. Generalized Killing spinors in dimension 5.
Transactions of the American Mathematical Society 11 (2007), 5319–5343.

[15] DeTurck, D. The Cauchy problem for Lorentz metrics with prescribed
Ricci curvature. Compositio Mathematica 48 (1983), 327–349.

[16] Diatta, A. Left invariant contact structures on Lie groups. Differential
Geometry and its Applications 26, 5 (2008), 544–552.

[17] Duff, M., Nilsson, B., and Pope, C. Kaluza-Klein supergravity.
Physics Reports 130, 1-2 (1 1986), 1–142.

[18] Fernández, M., Ivanov, S., Muñoz, V., and Ugarte, L. Nearly
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