Following the philosophy behind the theory of maximal representations, we introduce the volume of a Zimmer’s cocycle Γ × X → PO° (n, 1), where Γ is a torsion-free (non-)uniform lattice in PO° (n, 1), with n > 3, and X is a suitable standard Borel probability Γ-space. Our numerical invariant extends the volume of representations for (non-)uniform lattices to measurable cocycles and in the uniform setting it agrees with the generalized version of the Euler number of self-couplings. We prove that our volume of cocycles satisfies a Milnor–Wood type inequality in terms of the volume of the manifold Γ\ℍn. Additionally this invariant can be interpreted as a suitable multiplicative constant between bounded cohomology classes. This allows us to define a family of measurable cocycles with vanishing volume. The same interpretation enables us to characterize maximal cocycles for being cohomologous to the cocycle induced by the standard lattice embedding via a measurable map X → PO° (n, 1) with essentially constant sign. As a by-product of our rigidity result for the volume of cocycles, we give a different proof of the mapping degree theorem. This allows us to provide a complete characterization of maps homotopic to local isometries between closed hyperbolic manifolds in terms of maximal cocycles. In dimension n = 2, we introduce the notion of Euler number of measurable cocycles associated to a closed surface group and we show that it extends the classic Euler number of representations. Our Euler number agrees with the generalized version of the Euler number of self-couplings up to a multiplicative constant. Imitating the techniques developed in the case of the volume, we show a Milnor–Wood type inequality whose upper bound is given by the modulus of the Euler characteristic of the associated closed surface. This gives an alternative proof of the same result for the generalized version of the Euler number of self-couplings. Finally, using the interpretation of the Euler number as a multiplicative constant between bounded cohomology classes, we characterize maximal cocycles as those which are cohomologous to the one induced by a hyperbolization.

Moraschini, M., Savini, A. (2022). A MATSUMOTO–MOSTOW RESULT FOR ZIMMER’S COCYCLES OF HYPERBOLIC LATTICES. TRANSFORMATION GROUPS, 27(4), 1337-1392 [10.1007/s00031-020-09630-z].

A MATSUMOTO–MOSTOW RESULT FOR ZIMMER’S COCYCLES OF HYPERBOLIC LATTICES

Savini A.
2022

Abstract

Following the philosophy behind the theory of maximal representations, we introduce the volume of a Zimmer’s cocycle Γ × X → PO° (n, 1), where Γ is a torsion-free (non-)uniform lattice in PO° (n, 1), with n > 3, and X is a suitable standard Borel probability Γ-space. Our numerical invariant extends the volume of representations for (non-)uniform lattices to measurable cocycles and in the uniform setting it agrees with the generalized version of the Euler number of self-couplings. We prove that our volume of cocycles satisfies a Milnor–Wood type inequality in terms of the volume of the manifold Γ\ℍn. Additionally this invariant can be interpreted as a suitable multiplicative constant between bounded cohomology classes. This allows us to define a family of measurable cocycles with vanishing volume. The same interpretation enables us to characterize maximal cocycles for being cohomologous to the cocycle induced by the standard lattice embedding via a measurable map X → PO° (n, 1) with essentially constant sign. As a by-product of our rigidity result for the volume of cocycles, we give a different proof of the mapping degree theorem. This allows us to provide a complete characterization of maps homotopic to local isometries between closed hyperbolic manifolds in terms of maximal cocycles. In dimension n = 2, we introduce the notion of Euler number of measurable cocycles associated to a closed surface group and we show that it extends the classic Euler number of representations. Our Euler number agrees with the generalized version of the Euler number of self-couplings up to a multiplicative constant. Imitating the techniques developed in the case of the volume, we show a Milnor–Wood type inequality whose upper bound is given by the modulus of the Euler characteristic of the associated closed surface. This gives an alternative proof of the same result for the generalized version of the Euler number of self-couplings. Finally, using the interpretation of the Euler number as a multiplicative constant between bounded cohomology classes, we characterize maximal cocycles as those which are cohomologous to the one induced by a hyperbolization.
Articolo in rivista - Articolo scientifico
Euler class, Volume class, bounded cohomology, hyperbolic lattice
English
17-nov-2020
2022
27
4
1337
1392
open
Moraschini, M., Savini, A. (2022). A MATSUMOTO–MOSTOW RESULT FOR ZIMMER’S COCYCLES OF HYPERBOLIC LATTICES. TRANSFORMATION GROUPS, 27(4), 1337-1392 [10.1007/s00031-020-09630-z].
File in questo prodotto:
File Dimensione Formato  
Moraschini-Savini-2022-Transformation Groups-VoR.pdf

accesso aperto

Descrizione: This article is licensed under a Creative Commons Attribution 4.0 International License, To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 531.06 kB
Formato Adobe PDF
531.06 kB Adobe PDF Visualizza/Apri
Moraschini-Savini-2022-Transformation Groups-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 641.11 kB
Formato Adobe PDF
641.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/516684
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
Social impact