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Abstract. Following the philosophy behind the theory of maximal representa-
tions, we introduce the volume of a Zimmer’s cocycle Γ×X → PO◦(n, 1), where
Γ is a torsion-free (non-)uniform lattice in PO◦(n, 1), with n ≥ 3, and X is a
suitable standard Borel probability Γ-space. Our numerical invariant extends the
volume of representations for (non-)uniform lattices to measurable cocycles and
in the uniform setting it agrees with the generalized version of the Euler number
of self-couplings. We prove that our volume of cocycles satisfies a Milnor-Wood
type inequality in terms of the volume of the manifold Γ\Hn. Additionally this in-
variant can be interpreted as a suitable multiplicative constant between bounded
cohomology classes. This allows us to define a family of measurable cocycles with
vanishing volume. The same interpretation enables us to characterize maximal
cocycles for being cohomologous to the cocycle induced by the standard lattice
embedding via a measurable map X → PO(n, 1) with essentially constant sign.

As a by-product of our rigidity result for the volume of cocycles, we give
a different proof of the mapping degree theorem. This allows us to provide a
complete characterization of maps homotopic to local isometries between closed
hyperbolic manifolds in terms of maximal cocycles.

In dimension n = 2, we introduce the notion of Euler number of measurable co-
cycles associated to a closed surface group and we show that it extends the classic
Euler number of representations. Our Euler number agrees with the generalized
version of the Euler number of self-couplings up to a multiplicative constant.
Imitating the techniques developed in the case of the volume, we show a Milnor-
Wood type inequality whose upper bound is given by the modulus of the Euler
characteristic of the associated closed surface. This gives an alternative proof of
the same result for the generalized version of the Euler number of self-couplings.
Finally, using the interpretation of the Euler number as a multiplicative constant
between bounded cohomology classes, we characterize maximal cocycles as those
which are cohomologous to the one induced by a hyperbolization.

1. Introduction

1.1. Historical background. The study of lattices in semisimple Lie groups of
non-compact type has many applications both to algebra and geometry. One of the
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most remarkable properties is given by their rigidity. The investigation of rigidity of
lattices was initiated by Mostow [Mos68], who proved that in dimension n ≥ 3 any
two isomorphic torsion-free uniform lattices Γ1,Γ2 < PO◦(n, 1) must be conjugated
by an element g in PO(n, 1). This phenomenon is known as Mostow rigidity. Equiv-
alently, from a geometric point of view, Mostow rigidity implies that any two closed
hyperbolic n-manifolds M1,M2 with isomorphic fundamental groups are isometric.
Later this statement has been extended by Prasad [Pra73] to complete finite-volume
hyperbolic manifolds via the study of non-uniform lattices in PO◦(n, 1), whence the
name of Mostow-Prasad rigidity.

The study of rigidity properties of lattices has then developed in several different
directions [Mar75a, Mar75b, Zim80, FMW04, MS06, Kid08, Kid10, BFS13b, BBI13].
For instance, Prasad’s work [Pra73] covers also non-uniform lattices in rank one Lie
groups of non-compact type. Successively Margulis extended Mostow-Prasad rigid-
ity to the higher rank case [Mar75b]. In fact in the latter setting Margulis proved
actually a stronger result, known as Margulis superrigidity [Mar75a]. Margulis’ ap-
proach was then generalized to the theory of measurable cocycles by Zimmer [Zim80].
In this wider setting Mostow rigidity can be translated in terms of tautness of groups.
Recall that a unimodular locally compact second countable group is taut if every
(G,G)-coupling can be trivialized to the tautological coupling. The notion of taut-
ness may be interpreted as generalization of Mostow rigidity in the following sense:
any lattice of a taut group satisfies Mostow rigidity [BFS13b]. Note that since any
(G,H)-coupling (Ω,mΩ) has an associated right measure equivalence cocycle, we
may interpret the theory of couplings as an instance of Zimmer’s one. Indeed, a
(G,G)-coupling (Ω,mΩ) is taut if and only if its right measure equivalence cocycle
αΩ is cohomologous to the cocycle associated to the standard lattice embedding
via a suitable measurable map. This correspondence shows once more the relation
between tautness and Mostow rigidity. In that direction, it is worth mentioning the
results of Monod and Shalom [MS06] about cocycle superrigidity and the tautness
of certain groups which arise as products, and Kida who proved in [Kid08, Kid10]
the tautness of certain mapping class groups. Bader, Furman and Sauer [BFS13b]
studied the 1-tautness of PO(n, 1) when n ≥ 3. Here 1-tautness refers to some
additional integrability assumptions on the couplings involved in the definition. If
n ≥ 3, the group PO(n, 1) is indeed 1-taut and hence any of its lattices is 1-taut
relative to its inclusion in PO(n, 1) (see [BFS13b, Proposition 2.9]) . Recently, some
other examples of taut groups have arised in the literature [CK15, Bow17], and some
other rigidity results have been obtained [Aus16, Can17, GL18, Savb].

A source of inspiration for this work was the proof of the 1-tautness of PO(n, 1) ex-
posed by Bader, Furman and Sauer [BFS13b]. For this reason, we briefly recall their
strategy. Working with a torsion-free uniform lattice Γ ≤ PO◦(n, 1), Bader, Fur-
man and Sauer define a numerical invariant associated to a (Γ,Γ)-coupling (Ω,mΩ),
called Euler number eu(Ω). They show that the Euler number of self-couplings sat-
isfies the following Milnor-Wood type inequality |eu(Ω)| ≤ Vol(Γ\Hn). Under an
additional integrability hypothesis, the study of maximal (Γ,Γ)-couplings leads to
the desired conjugation, whence the 1-tautness of PO(n, 1).
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A crucial step in their proof is the description of the Euler number via a sort of
proportionality principle [BFS13b, Lemma 4.10]. A careful reading of that proof
and the involved diagrams shows that one can extend the notion of Euler number to
arbitrary measurable cocycles Γ×X → PO◦(n, 1), where Γ is a uniform lattice and
(X,µX) is a standard Borel probability Γ-space. More precisely, one may drop both
the restrictions on the probability space and on the target group to obtain results
similar to the ones proved by Bader, Furman and Sauer [BFS13b] (see Section 5.2).
We will refer to those results with our new hypothesis as generalized Bader-Furman-
Sauer’s results (see again Section 5.2).

In the case of torsion-free non-uniform lattices of PO(n, 1), one could study rigid-
ity via maximal representations. This successful approach was initiated by Bucher,
Burger and Iozzi [BBI13]. Their techniques are based on an accurate study of
the bounded cohomology groups of PO(n, 1), still for n ≥ 3. The authors first
show that the volume cocycle Voln defined on Sn−1 is bounded, alternating and
PO(n, 1)-invariant. Then, following the functorial approach to bounded cohomology
developed by Burger and Monod [Mon01, BM02], they show that Voln canonically
determines a cohomology class [Voln] which generates Hn

cb(PO(n, 1);Rε) ∼= R. Here
Rε denotes the PO(n, 1)-module endowed with the sign action (see Section 3.3 for a
precise definition). The crucial idea is that one may consider the pullback of the vol-
ume class along any representation ρ : Γ→ PO◦(n, 1) of a torsion-free non-uniform
lattice Γ < PO◦(n, 1). The pairing between the pullback class with the relative
fundamental class of Γ\Hn gives rise to a numerical invariant called volume of the
representation ρ. The volume is invariant with respect to the conjugacy by elements
of PO◦(n, 1) and hence it provides a well-defined continuous function on the charac-
ter variety X(Γ,PO◦(n, 1)) with respect to the topology of pointwise convergence.
Note that when n = 3 this numerical invariant agrees with the one introduced by
both Dunfield [Dun99] and Francaviglia [Fra04] as the pullback of the volume form
along any pseudo-developing map (a proof of the equivalence of these definitions
was given by Kim [Kim16]).

Bucher, Burger and Iozzi [BBI13] also investigate maximal representations. They
introduce a Milnor-Wood inequality showing that any representation ρ : Γ→ PO◦(n, 1)
satisfies |Vol(ρ)| ≤ Vol(Γ\Hn). Hence the study of maximal representations can be
translated in terms of rigidity properties of representations. Keeping the dimensional
hypothesis n ≥ 3, they obtain that maximal representations must be conjugated to
the standard lattice embedding Γ → PO◦(n, 1) via an element in PO(n, 1). This
is a suitable adaptation of Mostow-Prasad rigidity to the context of representa-
tions. In a more general setting, Francaviglia and Klaff [FK06] proved some similar
rigidity results for their definition of volume of a representation Γ → PO(m, 1),
this time assuming m ≥ n ≥ 3 (the rigidity of volume actually holds also at in-
finity, as proved by Francaviglia and the second author [FS18] for the real hyper-
bolic lattices. Moreover, the second author also showed that the rigidity holds for
complex and quaternionic lattices [Sav20]). The interest in the study of volume
of representations has recently grown, leading to the development of a rich litera-
ture [Poz15, KK16, Tho18, Fara, Farb].
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On the other hand, one could naturally ask what happens for lattices in PSL(2,R) ∼=
Isom+(H2). It is well-known that Mostow rigidity does not hold in the two-dimensional
case (and, whence PSL(2,R) is not taut by itself). For instance, if Γg is the funda-
mental group of a closed surface Σg of genus g ≥ 2, we know via Teichmüller theory
that there exists a space of real dimension 6g−6 of inequivalent discrete and faithful
representations of Γg into PSL(2,R).

However, in dimension n = 2, working with uniform lattices, Bader, Furman
and Sauer [BFS13b] show that PSL(2,R) is in fact taut relatively to the natural
embedding of PSL(2,R) into Homeo+(S1). Their strategy is similar to the proof of
the 1-tautness of PO◦(n, 1), whence via the study of the Euler number of maximal
self-couplings.

By changing perspective and following the ideas of the study of representa-
tions, Ghys [Ghy87] noticed that the Euler class e ∈ H2(Homeo+(S1);Z) is ac-
tually a bounded class and hence it determines a class eb ∈ H2

b(Homeo+(S1);Z)
in the bounded cohomology group. Therefore, given a representation ρ : Γg →
Homeo+(S1), one can still pullback the Euler class and define a numerical invariant
via the Kronecker product. More precisely, Ghys defined the Euler number of ρ as
the number eu(ρ) = 〈ρ∗b(eb), [Σg]〉, where 〈·, ·〉 denotes the Kronecker product and
[Σg] is the fundamental class of Σg. Since Ghys showed that the pullback class
is a total invariant for the semiconjugacy class of ρ, the Euler number is constant
along the semiconjugacy class of ρ. Recall that ρ1, ρ2 : Γg → Homeo+(S1) are semi-
conjugated if there exists a degree one monotone map f ∈ Homeo+(S1) such that
f(ρ1(γ)ξ) = ρ2(γ)f(ξ), for every γ ∈ Γg and ξ ∈ S1.

One can follow Ghys’ approach to study maximal representations. Indeed, after
the works of Milnor [Mil58] and Wood [Woo71], we know that any representation
ρ satisfies the key estimate |eu(ρ)| ≤ |χ(Σg)|. The challenging problem about the
characterization of maximal representations was solved by Matsumoto in [Mat87].
Indeed, he proved that the maximal value of eu detects the semiconjugacy class of a
hyperbolization π0 : Γg → PSL(2,R). We stress the analogy between this statement
and the rigidity results [BBI13, BFS13b] when the dimension satisfies n ≥ 3. Note
that this correspondence is not only formal, since one may in fact investigate these
problems with similar techniques. Indeed, for instance, Iozzi [Ioz02] provided a new
proof of Matsumoto’s theorem using bounded cohomology.

1.2. Volume of measurable cocycles. In this paper, we propose to introduce a
numerical invariant of measurable cocycles associated to torsion-free (non-)uniform
lattices in PO◦(n, 1). On the one hand, it can be considered as an extension of
the generalized Bader-Furman-Sauer’s Euler number to the non-uniform case (see
Section 5.2). On the other hand, our invariant also extends the classical volume
of representations to the more general setting of measurable cocycles (both in the
uniform and non-uniform cases). Indeed given a representation ρ : Γ → PO◦(n, 1)
there exists a canonical way to define an associated measurable cocycle σρ : Γ ×
X → PO◦(n, 1), for any standard Borel probability Γ-space (X,µX). We prove
in Proposition 5.5, that the volume of ρ agrees with our invariant of σρ. For this
reason, despite our invariant is inspired by Bader-Furman-Sauer’s Euler number, we



A MATSUMOTO/MOSTOW RESULT FOR HYPERBOLIC COCYCLES 5

prefer to call it volume of measurable cocycles associated to a (non-)uniform lattice
Γ < PO◦(n, 1).

Let n ≥ 3 and let Γ be a torsion free (non-)uniform lattice in PO◦(n, 1) and let
σ : Γ×X → PO◦(n, 1) be a measurable cocycle, where (X,µX) is a standard Borel
probability Γ-space. We study measurable cocycles that admit an essentially unique
equivariant boundary map φ : Sn−1×X → Sn−1 (this is the case of non-elementary
measurable cocycles as proved by Monod and Shalom [MS04, Proposition 3.3]). We
define the volume of the cocycle σ via the pullback of the volume cocycle Voln along
φ (see Definition 5.1). Much more generally we show in Section 4 that an equivariant
boundary map allows to pullback an essentially bounded PO(n, 1)-invariant Borel
cocycle to obtain suitable classes in the bounded cohomology groups H•b(Γ;R).

The first insight into the rigidity of measurable cocycles via our volume is de-
scribed by Proposition 5.8, where we show that the volume is in fact invariant
along the PO◦(n, 1)-cohomology class. Moreover, following the general philosophy
of maximal representations, we prove a Milnor-Wood type inequality in order to
get a stronger rigidity result for measurable cocycles. Indeed, we extend not only
both the Milnor-Wood type inequalities by Bucher, Burger and Iozzi [BBI13] and
by Bader, Furman and Sauer [BFS13b], but we completely characterize maximal
cocycles as follows:

Theorem 1.1. Let Γ < PO◦(n, 1) be a torsion-free non-uniform lattice. Let (X,µX)
be a standard Borel probability Γ-space. Let σ : Γ×X → PO◦(n, 1) be a cocycle with
an essentially unique boundary map φ : Sn−1 ×X → Sn−1. Then, we have

|Vol(σ)| ≤ Vol(Γ\Hn) ,

and equality holds if and only if σ is cohomologous to the cocycle associated to the
standard lattice embedding i : Γ → PO◦(n, 1) via a measurable function f : X →
PO(n, 1) with essentially constant sign.

It would be nice to describe the family of cocycles having extremal values explic-
itly. To that end, we introduce the family of reducible cocycles and we prove that
they have vanishing volume (see Example 5.13). Despite the theorem above is stated
for non-uniform lattices, our construction still holds in the uniform case as explained
in Remark 5.6 (compare with Section 5.2). Working with uniform lattices and using
some results available in the literature [BBI13, BFS13b], we can describe two fami-
lies of maximal cocycles: the one arising from maximal representations (and this in
fact also holds in the non-uniform case) and the one arising from ergodic integrable
self-couplings (see Corollary 5.14).

We briefly explain here the idea of the proof of Theorem 1.1, which follows the
scheme of a theorem by Bader, Furman and Sauer [BFS13b, Theorem B] (compare
also with a result by the second author [Sava, Theorem 1]). A crucial step in the
proof is given by the following proposition which expresses the volume of a mea-
surable cocycle as a suitable multiplicative constant between bounded cohomology
classes.

Proposition 1.2. Let n ≥ 3 and let G = Isom(Hn). Let Γ < G+ be a torsion-
free non-uniform lattice and let (X,µX) be a standard Borel probability Γ-space.
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Let σ : Γ×X → G+ be a measurable cocycle with essentially unique boundary map
φ : Sn−1 ×X → Sn−1. If M = Γ\Hn, then we have∫

Γ\G

∫
X
ε(g−1)·Voln(φ(g·ξ0, x), · · · , φ(g·ξn, x))dµX(x)dµ(g) =

Vol(σ)

Vol(M)
Voln(ξ0, · · · , ξn) ,

for almost every (ξ0, · · · , ξn) ∈ (Sn−1)n+1, where µ denotes the normalized proba-
bility measure induced on the quotient Γ\G. Here ε(g−1) denotes the sign of the
element g−1 ∈ Γ\G.

Using the formula reported above we show that when the cocycle σ is positively
maximal, that is Vol(σ) = Vol(Γ\Hn), the associated measurable map φx : Sn−1 →
Sn−1, φx(ξ) := φ(ξ, x) sends almost every regular ideal tetrahedron to another reg-
ular ideal tetrahedron with the same orientation, for almost every x ∈ X. This
is enough to prove that φx coincides essentially with an isometry in PO◦(n, 1)
for almost every x ∈ X. Then, we use the previous result to construct a map
f : X → PO◦(n, 1) which is measurable by Fisher, Morris and Whyte [FMW04]
and thus it realizes the desired conjugation of our cocycle. This strategy works fine
in the case of positive maximal volume and can be suitably adapted to the case of
negative maximal volume.

1.3. Maximal cocycles and local isometries. Thanks to Theorems 1.1 we have
a complete description of maximal Zimmer’s cocycles. In this paper we are going to
show how the study of maximal cocycles can be suitably used to characterize maps
between closed hyperbolic manifolds of dimension n ≥ 3 which are homotopic to
local isometries. This characterization will be related to the well-known mapping
degree theorem. A first proof of the mapping degree theorem was given by Kneser
in the case of surfaces [Kne30]. He showed that given a map f : Σg → Σg′ between
two closed surfaces of genus g and g′, the following bound on the mapping degree
of f holds

|deg(f)| ≤ χ(Σg)

χ(Σg′)
.

Note that when Σg and Σg′ are both endowed with a hyperbolic structure, by Gauss-
Bonnet theorem we can substitute the Euler characteristics appearing in the estimate
above with the areas of Σg and Σg′ . More generally the mapping degree theorem
states that the latter estimate holds in any dimension. Formally, given a map
f : M1 → M2 between closed hyperbolic manifolds of the same dimension, we have
the following bound

| deg(f)| ≤ Vol(M1)

Vol(M2)
.

Moreover, Thurston showed that in dimension n ≥ 3 the equality holds if and only if
f is homotopic to a local isometry [Thu79, Theorem 6.4]. This generalizes Kneser’s
theorem [Kne30] to the higher dimensional case.

There exist several different proofs of the mapping degree theorem. For instance
Besson, Courtois and Gallot [BCG95, BCG96, BCG98] used the notion of natural
map to get a proof in the case of locally symmetric rank one closed manifolds.
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Their techniques were then extended by Connell and Farb to the higher rank case
[CF03b, CF03a].

A different approach via `1-homology and simplicial volume was introduced by
Thurston [Thu79, Theorem 6.2.1 and Theorem 6.4] and Gromov [Gro82, Section 0.2].
The simplicial volume is a homotopy invariant of compact manifolds that measures
the complexity of such a manifold in terms of the `1-norm of (real) singular chains. It
can be interpreted as the geometric dual of the theory of bounded cohomology. Their
approach is based on the crucial proportionality principle [Thu79, Theorem 6.2] (see
also [Mun80]), which says that the simplicial volume of a closed hyperbolic manifold
is proportional to the Riemannian one up to a multiplicative constant only depending
on the dimension (see [Thu79, Gro82, BP92] for a detailed description on this topic).

Recently, many results about mapping degree via simplicial volume and bounded
cohomology have arised in the literature [LK09, LS09, BBI13, Neo17, Neo18, FM19,
DLSW19]. Among these applications, we are primarily interested in the works by
Bucher, Burger and Iozzi [BBI13] and by Derbez, Liu, Sun and Wang [DLSW19].
Indeed, on the one hand Bucher, Burger and Iozzi show that one can easily reprove
Thurston’s theorem using the volume of representations [BBI13, Corollary 1.3].
However, it seems that their proof is still related to simplicial volume, once they
have reproved Gromov and Thurston’s proportionality principle. On the other
hand, Derbez, Liu, Sun and Wang prove a stronger result [DLSW19, Proposi-
tion 3.1]. In a simplified version, given a map f : M1 → M2 between to closed
hyperbolic manifold of the same dimension, they define the pullback of a represen-
tation ρ : π1(M1) → PO◦(n, 1). Then, the volume of the pullback representation
turns out to be proportional to the one of ρ up to a multiplicative constant which
agrees with the mapping degree of f .

In this paper, we prove the following technical result which will allow us to char-
acterize local isometries in terms of maximal cocycles.

Proposition 1.3. Let f : M1 → M2 be a continuous map with deg(f) 6= 0 between
closed hyperbolic n-manifolds, with n ≥ 3. Denote by Γ1 and Γ2 the fundamental
groups of M1 and M2, respectively. Consider a maximal cocycle σ : Γ2 × X →
PO◦(n, 1). Then, we have

Vol(f∗σ) = deg(f) ·Vol(M2) ,

where f∗σ denotes the pullback cocycle of σ along f .

This result can be interpreted as a reformulation of the result [DLSW19, Propo-
sition 3.1] in the case of measurable cocycles. However, it turns out to encode useful
information. First, it allows us to reprove the mapping theorem in dimension n ≥ 3,
as shown in Corollary 6.2.

More surprisingly, Thurston’s strict version of the mapping degree theorem [Thu79,
Theorem 6.4] will allow us to describe maps homotopic to local isometries as the
ones preserving maximal cocycles. More precisely, we are going to show that the
pullback of a maximal cocycle is still maximal if and only if the map along which
we are performing the pullback is homotopic to a local isometry. This is the content
of the following:
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Proposition 1.4. Let f : M1 → M2 be a continuous map with deg(f) 6= 0 between
closed hyperbolic manifolds of the same dimension n ≥ 3. Denote by Γ1 and Γ2 the
fundamental groups of M1 and M2, respectively. Let σ : Γ2 × X → PO◦(n, 1) be a
maximal cocycle. Then, f is homotopic to a local isometry if and only if f∗σ is a
maximal cocycle.

1.4. Euler number for measurable cocycles. In the same spirit of the volume
invariant, in this paper we also provide the definition of Euler number of measurable
cocycles defined in terms of uniform lattices in the spirit of the Euler number of
representations. As mentioned in Remark 7.4 (compare with Section 5.2), this
numerical invariant coincides with the generalized version of Bader, Furman and
Sauer’s Euler number [BFS13b] up to a multiplicative constant when we deal with
(Γ,Γ)-couplings. One could also extend our Euler number to the case of non-compact
surfaces, that is to non-uniform lattices. However, this situation seems to contain
some subtleties and we prefer to postpone it to a forthcoming project.

Let π0 : Γg → PSL(2,R) be a hyperbolization and assume that Γg acts on S1

via π0. Consider a measurable cocycle σ : Γg ×X → Homeo+(S1) with essentially
unique boundary map φ : S1 ×X → S1 (one can assume that σ is non-elementary
by [MS04, Proposition 3.3]). Here (X,µX) is again a standard Borel probability
Γg-space. As in the case of the volume, the existence of the map φ allows us to
pullback the Euler cocycle and evaluate it on the fundamental class. This con-
struction provides our Euler number eu(σ) associated to a measurable cocycle σ. If
we restrict ourselves to cocycles associated to representations, we are able to prove
in Proposition 7.5 that our invariant coincides with the classic Euler number of
representations. Moreover, our Euler number is a well-defined numerical invariant
since it is constant along the Homeo+(S1)-cohomology class of measurable cocycles
as proved in Proposition 7.6. Our investigation on the relation between our Euler
number of measurable cocycles and the Euler number of representations leads to
a Milnor-Wood type inequality. Our approach to the study of our Euler number
of measurable cocycles is substantially different from the one carried on by Bader,
Furman and Sauer [BFS13b], but we are still able to provide a new proof of such
an inequality (compare our Proposition 7.8 with the generalized version of Bader,
Furman and Sauer’s inequality [BFS13b, Corollary 4.9]). Finally, we are able to
characterize maximal cocycles by proving an extension of Matsumoto’s theorem in
this setting:

Theorem 1.5. Let Σg be a closed surface of genus g ≥ 2 and let Γg := π1(Σg).
Let π0 : Γg → PSL(2,R) be a hyperbolization and assume that Γg acts on S1 via
π0. Let (X,µX) be a standard Borel probability Γg-space. Then for every cocycle
σ : Γg ×X → Homeo+(S1) with essentially unique boundary map φ : S1 ×X → S1,
we have

|eu(σ)| ≤ |χ(Σg)|
and equality holds if and only if σ is cohomologous to a cocycle induced by a hyper-
bolization.
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We briefly mention that our proof follows the lines of a result by Bader, Fur-
man and Sauer [BFS13b, Theorem C] (compare also with a result by the second
author [Sava, Theorem 1]). In a similar way of what happens for the volume invari-
ant, we are able to express the Euler number of a measurable cocycle as a suitable
multiplicative constant between bounded cohomology classes.

Proposition 1.6. Let Σg be a closed surface of genus g ≥ 2 and let Γg = π1(Σg).
Let (X,µX) be a standard Borel probability Γg-space. Fix any hyperbolization π0 :
Γg → PSL(2,R) and assume that Γg acts on S1 via π0. Consider a cocycle σ :
Γg × X → Homeo+(S1) with essentially unique boundary map φ : S1 × X → S1.
Then,∫
π0(Γg)\G

∫
X
o(φ(g · ξ0, x), φ(g · ξ1, x), φ(g · ξ2, x))dµX(x)dµ0(ḡ) =

eu(σ)

χ(Σg)
o(ξ0, ξ1, ξ2) ,

for almost every (ξ0, ξ1, ξ2) ∈ (S1)3. Here, we set G = PSL(2,R) for ease of nota-
tion and µ0 is the normalized probability measure induces by the Haar measure of
PSL(2,R) on the quotient π0(Γ)\PSL(2,R). The symbol o denotes the orientation
cocycle (see Equation (6)).

Using the expression above, we show that when a cocycle σ is positively maximal,
that is eu(σ) = |χ(Σg)|, the associated map defined by φx(ξ) := φ(ξ, x) is order
preserving for almost every x ∈ X, where ξ ∈ S1. Hence, it essentially coincides
with an element f ∈ Homeo+(S1), for almost every x ∈ X. This construction
provides the desired measurable function, which conjugates the cocycle σ with the
one induced by the hyperbolization π0. The same technique works also for negatively
maximal cocycles.

The main techniques that we develop in this paper could be extended to some
other numerical invariants of representations. More precisely, in [MS] we study in a
systematic way the theoretical setting in which one can extend numerical invariants
of representations to measurable cocycles and we apply our results to the study of
measurable cocycles associated to complex hyperbolic lattices.
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Plan of the paper. In Section 2 we recall the general theory of Zimmer’s cocycles.
We describe the notion of couplings and the concept of boundary maps associated
to measurable cocycles. In Section 3 we collect all the properties about bounded
cohomology that we need in the sequel. In Section 3.1 we define the continuous
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(bounded) cohomology of a group. Then, in Section 3.2 we remind Burger-Monod’s
functorial approach to bounded cohomology. Section 3.3 is devoted to the descrip-
tion of the continuous bounded cohomology of Isom(Hn). Here it appears the crucial
definition of volume cocycle. In Section 3.4 it follows a brief exposition of the no-
tion of Euler class and of the definition of the orientation cocycle. Since we will
need later to work with relative bounded cohomology, Section 3.5 is dedicated to
the study of its properties. Here it is described the fundamental pairing involving
Kronecker product. Finally, in Section 3.6 the transfer maps are defined together
with their properties.

Section 4 is mainly devoted to the proof of a fundamental technical lemma. Here,
we describe how to perform the pullback of a cocycle in presence of measurable
boundary map associated to a Zimmer’s cocycle (see Definition 4.6).

In Section 5 we study the volume of measurable cocycles. Its definition appears
in Section 5.1 (see Definition 5.1). Section 5.2 is mainly devoted to the compar-
ison between our invariant in the uniform case and the generalized version of the
Euler number defined by Bader, Furman and Sauer [BFS13b]. We investigate the
properties of our volume in Section 5.3 and we prove that it extends the volume of
representations (see Proposition 5.5). The volume is invariant on the Isom+(Hn)-
cohomology classes of measurable cocycle, as shown in Proposition 5.8. Section 5.4
is dedicated to the proof of our rigidity result, Theorem 1.1. Here we also de-
fine reducible cocycles and we show that they have vanishing volume (see Exam-
ple 5.13). Two crucial results are the Milnor-Wood type inequality contained in
Proposition 5.11 and the interpretation of the volume as a multiplicative constant
given in Proposition 1.2. Finally, we conclude with Corollary 5.14 where we show
that ergodic integrable self-couplings of uniform lattices are maximal, whence they
are conjugated to the cocycle associated to the standard lattice embedding.

In Section 6, we relate the volume of measurable cocycles with the degree of con-
tinuous maps between closed hyperbolic manifolds. After having introduced the no-
tion of pullback cocycle with respect to a continuous map, we prove Proposition 1.3
which relates the volume of the pullback of maximal cocycle with the degree of the
continuous map. This approach furnishes a different proof of the classic mapping
degree theorem in Corollary 6.2. Finally, in Proposition 1.4 we characterize maps
homotopic to local isometries via maximal cocycles.

Then we move to Section 7 where we study the Euler number of measurable
cocycles, defined in Section 7.1 (see Definition 7.1). In Remark 7.4 we discuss the
link between our Euler number and the generalized version of the one introduced
by Bader, Furman and Sauer [BFS13b]. Section 7.2 is devoted to the study of
the relation between our Euler number and the one associated to representations.
More precisely in Proposition 7.5 we show that our invariant extends naturally the
Euler number of representations. Following the line of the volume invariant, in
Proposition 7.6 it is proved that the Euler number is constant along Homeo+(S1)-
cohomology classes of measurable cocycles. Finally, we conclude with Section 7.3
where we prove our main Theorem 1.5 using both the Milnor-Wood type inequality
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stated in Proposition 7.8 and the intepretation of the Euler number as multiplicative
constant given in Proposition 1.6.

2. Zimmer’s cocycles theory

In this section we are going to introduce some basic definitions and results about
Zimmer’s cocycle theory. For a detailed discussion of this subject we refer the reader
to both Furstenberg [Fur81] and to Zimmer [Zim84].

Definition 2.1. Let G and H be two locally compact groups. Let (X,µ) be a
standard Borel probability space on which G acts in an essentially free way by
preserving the measure µ. In the sequel we will refer to it simply as standard Borel
probability G-space. Denote by Meas(X,H) the space of measurable functions from
X to H endowed with the topology of convergence in measure.

A measurable function σ : G×X → H is a measurable cocycle (or, simply, cocycle)
if the map

σ : G→ Meas(X,H) , g 7→ σ(g, ·)
is continuous and σ satisfies the following formula

(1) σ(g1g2, x) = σ(g1, g2x)σ(g2, x)

for every g1, g2 and almost every x ∈ X.

Remark 2.2. We warn the reader that in general definition of measurable cocycle
does not require the additional hypothesis of essentially freeness of the action of G
on (X,µ). However, this assumption is not very restrictive. Indeed, we can turn
every probability measure-preserving action into an essentially-free action just by
taking the product with an essentially-free action and the diagonal action.

On the other hand, it seems that working with essentially-free actions is rather
common in the literature about simplicial volume and its ergodic version, called
integral foliated simplicial volume, see e.g. [Sau02, Sch05, FFM12, LP16, FLPS16,
FFL19, CC, FLMQ]. For this reason, we think that it is better to keep the same
setting here, when we deal with ergodic theory applied to bounded cohomology,
which is the dual theory of simplicial volume (notice that we are not claiming, that
our theory is the dual theory of integral foliated simplicial volume).

Moreover, it is worth noticing that having an essentially-free action has a nice
implication on the standard Borel probability space (X,µ). Indeed, if we have an
infinite torsion-free group G acting on (X,µ) in a measure preserving way, then
the measure µ cannot have atoms. This implies that the standard Borel prob-
ability space (X,µ) is measurably isomorphic to the interval [0, 1] endowed with
the Lebesgue measure [KL16, Theorem A.20] (but, then the action is highly non-
standard).

At a first sight Equation (1) may appear quite mysterious, but it is just a suitable
extension of the ordinary chain rule for derivates to this more general context. We
mention here another equivalent approach for defining measurable cocycles. Since
σ ∈ Meas(G,Meas(X,H)), Equation (1) is the characterization of Borel 1-cocycles
with values in the G-module Meas(X,H) in the sense of Eilenberg-MacLane (see
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[FM77, Zim] for a similar description). Following this latter approach to measurable
cocycles, we introduce the notion of cohomologous cocycles.

Definition 2.3. Let σ1, σ2 : G × X → H be two measurable cocycles and let
f : X → H be a measurable map. We denote by

σf1 : G×X → H

the cocycle satisfying

σf1 (g, x) = f(gx)−1σ1(g, x)f(x) ,

for all g ∈ G and almost every x ∈ X. We say that σ1 and σ2 are cohomologous (or,

equivalent) if σ2 = σf1 , for some measurable map f : X → H.

In order to make the reader more familiar with the notion of measurable co-
cycles, we are going now to discuss in details a couple of families of them. We
mention that beyond our explicit examples, measurable cocycles are quite ubiqui-
tous in mathematics. For instance, they naturally appear in differential geometry
(as differentiation cocycles) and in measure theory (as Radon-Nykodim cocycles)
We refer the reader to [Zim84, Examples 4.2.3 and 4.2.4] for an overview of such
examples. However, along this paper we will be primarily interested in cocycles
arising from either representation or self-couplings.

We begin by introducing cocycles associated to representations.

Definition 2.4. Let ρ : G → H be a continuous representation. Fix any standard
Borel probability G-space (X,µ). The cocycle associated to the representation ρ

σρ : G×X → H

is given by
σρ : G×X → H, σρ(g, x) := ρ(g) ,

for every g ∈ G and almost every x ∈ X.

We warn the reader that the cocycle σρ just introduced depends actually both on ρ
and on X. However, since the condition on X is not significant, we drop the X from
the notation. Notice that when G is discrete any representation is automatically
continuous and hence it admits an associated cocycle.

The previous definition provides a large family of measurable cocycles and it
shows that the theory of representations sits inside the much wider framework of
Zimmer’s cocycles theory.

We now introduce another example of cocycles which arises from the study of
self-couplings. We recall here the definition of coupling (compare with [BFS13b,
Definition 1.1]):

Definition 2.5. Let G and H be two locally compact second countable groups with
Haar measures mG and mH , respectively. We will assume additionally that both G
and H are unimodular. A coupling for G and H is the datum of a Lebesgue measure
space (Ω,mΩ) with a G×H-measurable, measure-preserving action such that there
exist two finite measure spaces (X,µ) and (Y, ν) with measurable isomorphisms

ı : (G,mG)× (Y, ν)→ (Ω,mΩ),  : (H,mH)× (X,µ)→ (Ω,mΩ) ,
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where ı is G-equivariant and  is H-equivariant, both with respect to the natural
actions on the first factor. If there exists a coupling Ω for two groups G and H, we
say that G and H are measure equivalent.

Given a coupling (Ω,mΩ) of two groups G and H as above, one can construct
two different cocycles associated to it. By the commutativity of the actions of G
and H on Ω, we have a well-defined action of G on the space X. Indeed, X can be
naturally identified with the space of H-orbits in Ω. Similarly, we obtain an action
of H on the space Y . Both actions are measure preserving. For any g ∈ G and
almost every h ∈ H and x ∈ X, there must exist h1 ∈ H which depends on both g
and x such that

g(h, x) = (hh−1
1 , g.x) ,

where g.x denotes the action of g on X in order to distinguish it from the one on Ω.
Since h1 only depends on both g and x, the previous formula leads to the definition
of cocycles associated to a coupling.

Definition 2.6. Let (G,mG) and (H,mH) be two locally compact, unimodular,
second countable groups with their respective Haar measures. Let (Ω,mΩ) be a
coupling for G and H. The right measure equivalence cocycle associated to the
coupling is defined by

αΩ : G×X → H, αΩ(g, x) := h1 .

Note that αΩ(g, x) satisfies

g(h, x) = (hαΩ(g, x)−1, g.x)

for every g ∈ G and almost every x ∈ X and h ∈ H.

By interchanging the role of G and H, one can define the left measure equivalence
cocycle

βΩ : H × Y → G ,

as

hı(g, y) = ı(βΩ(h, y)g, h.y) ,

for every h ∈ H and almost every g ∈ G and y ∈ Y . The left (respectively, right)
measurable cocycle encodes the information about the action of G×H on (Ω,mΩ)
when we identify it with (G,mG)× (Y, ν) (respectively, (H,mH)× (X,µ)).

After having introduced some examples of cocycles, we now move to the fun-
damental notion of boundary map in the sense of Furstenberg [Fur81]. Assume
that both G and H admit a Furstenberg-Poisson boundary (see [Fur63] for a pre-
cise definition). For the convenience of the reader we mention here an example of
Furstenberg-Poisson boundary that we will need in the sequel. Given a Lie group G
of non-compact type, the Furstenberg-Poisson boundary can be naturally identified
with the quotient G/P , where P is any minimal parabolic subgroup of G. More gen-
erally, any lattice Γ < G admits the previous quotient G/P as a natural Furstenberg-
Poisson boundary. Denote by B(G) (respectively, by B(H)) the Furstenberg-Poisson
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boundary associated to G (respectively, H). Endow both boundaries with their nat-
ural Borel sigma algebras induced by the Haar sigma algebras on their respective
groups.

Definition 2.7. Let σ : G × X → H be a measurable cocycle. We say that a
measurable map φ : B(G)×X → B(H) is σ-equivariant if

φ(gξ, gx) = σ(g, x)φ(ξ, x) ,

for every g ∈ G and almost every ξ ∈ B(G) and x ∈ X.
A boundary map for σ is a σ-equivariant measurable map φ.

Remark 2.8. In the definition above we assumed that both G and H admit a
Furstenberg-Poisson boundary. However in the sequel we will need a slight more
general notion of boundary map. Indeed we will work with the group Homeo+(S1)
which is not a Lie group when endowed with the discrete topology. To overcome
this difficulty it will be sufficient to consider a suitable compact space on which
the group acts measurably. More precisely, consider G and H two locally compact
groups. Assume that G admits a Furstenberg-Poisson boundary B(G) and that
H acts measurably on a compact completely metrizable space Y . A generalized
boundary map is a measurable map

φ : B(G)×X → Y

which is a σ-equivariant, that is

φ(gξ, gx) = σ(g, x)φ(ξ, x) ,

for every g ∈ G and almost every ξ ∈ B(G) and x ∈ X.

The existence and the uniqueness of a boundary map are both strictly related
with the properties of the cocycle σ. For instance, any proximal cocycle admits an
essentially unique boundary map. We refer the reader to [Fur81] for a discussion on
that property.

Since boundary maps are defined in terms of measurable cocycles, it is natural to
describe how they vary along a cohomology class.

Definition 2.9. Let σ : G×X → H be a measurable cocycle and assume it admits
a boundary map φ : B(G) × X → B(H). Let f : X → H be a measurable map.
The boundary map associated to the twisted cocycle σf

φf : B(G)×X → B(H)

is the measurable map defined by

φf (ξ, x) := f(x)−1φ(ξ, x)

for almost every ξ ∈ B(G) and x ∈ X.

An easy computation shows that the map φf is indeed σf -equivariant with respect
to the cocycle σf . The same definition will hold also in the case of generalized
boundary maps.
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3. Bounded cohomology and first results

3.1. Continuous (bounded) cohomology. Let G be a locally compact group.
In this section we recall the definition of the continuous bounded cohomology of G
and in the next section will show how to compute it via Burger-Monod’s functorial
approach [BM02] (see also [Mon01]). It is worth mentioning that some equiva-
lent results in the special case of discrete groups date back to Ivanov [Iva87] (see
also [Fri17]). We should also warn the reader that the next two sections are rather
technical. Moreover, most of the technical definitions are only needed for stating the
main classic results of Section 3.2 and we will not use them anymore in the sequel.
Nevertheless, we decided to write this self-contained sections for sake of complete-
ness in order to offer to the reader a complete toolbox for a better comprehension
the paper.

Definition 3.1. Let G be a locally compact group. Let E be a Banach space and let
π : G → Isom(E) be a representation. The pair (E, π) is called Banach G-module,
and it can be alternatively thought of as an action of G on E via linear isometries

θπ : G×E → E

θπ(g, v) := π(g)v .

We say that the Banach G-module is continuous if for all v ∈ E the orbit map

G→ E

g 7→ π(g)v

is continuous at e ∈ G, where e denotes the neutral element of G.
Given two (continuous) Banach G-modules (E, πE) and (F, πF ), a G-morphism

ϕ : E → F is a linear G-equivariant map between Banach G-spaces, i.e.

ϕ(πE(g)v) = πF (g)ϕ(v)

for all g ∈ G and v ∈ E.
For every (continuous) Banach G-module (E, π), we define the submodule of G-

invariants EG as

EG := {v ∈ E |π(g)v = v, ∀g ∈ G} .

Remark 3.2. Notice that if we endow G with the discrete topology, then there is no
difference between Banach G-modules and continuous Banach G-modules. In this
paper the main example of this situation is given by lattices in Isom(Hn), n ≥ 2.

Since not continuous actions may reveal quite annoying, sometimes it can be
convenient to study the continuous submodule of a given Banach G-module:

Definition 3.3. Let G be a locally compact group and let (E, π) be a Banach
G-module. We define the maximal continuous submodule of E as follows

CE := {v ∈ E |G→ E, , g 7→ π(g)v is continuous at e ∈ G} ,

where e ∈ G is the neutral element.
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Remark 3.4. Note that any G-morphism between Banach G-modules restricts to
the maximal continuous submodules [Mon01, Lemma 1.2.6].

For the convenience of the reader we list now some standard examples that will
be needed in the sequel:

Example 3.5. Let G be a locally compact group:

(1) We say that (R, π) has the trivial Banach G-module structure if π is trivial,
i.e. if π(g) = idR for all g ∈ G.

(2) Let (E, π) be a Banach G-module. Let us consider the Banach space of
continuous E-valued functions on G•+1, that is

C•c(G;E) := {f : G•+1 → E | f is continuous}
endowed with the supremum norm

‖f‖∞ := sup
g0,··· ,g•

‖f(g0, · · · , g•)‖E ,

where ‖ · ‖E denotes the norm on E. The pair (C•c(G;E), τ) is a Banach
G-module with the action defined by

(τ(g) · f)(g0, · · · , g•) := π(g)f(g−1g0, · · · , g−1g•) ,

for all g, g0, · · · , g• ∈ G and f ∈ C•c(G;E).
(3) The previous BanachG-module contains an important BanachG-submodule,

the space of continuous bounded E-valued functions on G•+1, namely

C•cb(G;E) := {f ∈ C•c(G;E) | ‖f‖∞ < +∞} ,
endowed with the restriction of the previous G-action τ .

(4) Given a Banach G-module (E, π), suppose that E is the dual of some Banach
space. In this case E admits a natural weak-∗ topology and an associated
Borel weak-∗ structure. Consider a standard Borel probability space (X,µ)
on which G acts measurably by preserving the measure class of µ. Let us
consider the Banach space of bounded weak-∗ measurable E-valued functions
on X•+1:

B∞(X•+1;E) := {f : X•+1 → E|f is weak-∗ measurable,

sup
x0,··· ,x•∈X

‖f(x0, · · · , x•)‖E <∞} ,

where ‖ · ‖E denotes the norm on E.
We endow it with the structure of Banach G-module (B∞(X•+1;E), τ)

given by

(τ(g) · f)(x0, · · · , x•) := π(g)f(g−1x0, · · · , g−1x•) ,

for every g ∈ G, for every x0, · · · , x• ∈ X and for every f ∈ B∞(X•+1;E).
(5) In the same setting of the previous case, let us consider the Banach space

of equivalence classes of bounded weak-∗ measurable E-valued functions on
X•+1:

L∞w∗(X
•+1;E) := {[f ]∼ | f ∈ B∞(X•+1;E)} ,
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where f ∼ g if and only if they agree µ-almost everywhere and [f ]∼ denotes
the equivalence class of f with respecto to ∼.

We endow it with the structure of Banach G-module (L∞w∗(X
•+1;E), τ)

given by

(τ(g) · f)(ξ0, · · · , ξ•) := π(g)f(g−1ξ0, · · · , g−1ξ•) ,

for every g ∈ G, for every x0, · · · , x• ∈ X and for every f ∈ L∞w∗(X
•+1;E).

Notice that we defined the action τ working directly with representatives of
the equivalence classes, dropping the parenthesis to avoid a heavy notation.
We will do the same thing every time that we will need to work with such
spaces.

Remark 3.6. As in Remark 3.2, we stress again the fact that if G is a discrete group,
then every function f : G•+1 → E is automatically continuous and hence we can
drop the subscript c in C•c(G;E). Indeed when G is discrete we are going to write
C•(G;E). We will do the same thing writing C•b(G;E) instead of C•cb(G;E).

We are now ready to introduce the definition of continuous (bounded) cohomology.
Let G be a locally compact group and let (E, π) be a Banach G-module. Then, the
Banach G-modules of continuous (bounded) functions on G fit inside the following
cochain complex

(C•c(b)(G;E), δ•) ,

where δ• is the standard homogeneous coboundary operator defined by

δ• : C•c(b)(G;E)→ C•+1
c(b) (G;E) ,

(2) δ•f(g0, · · · , g•+1) =
•+1∑
i=0

(−1)if(g0, · · · , gi−1, gi+1, · · · , g•+1) ,

for every g0, · · · , g•+1 ∈ G. By linearity, it is easy to check that δ• sends bounded
cochains to bounded cochains and the same holds for G-invariant cochains. This
allows us to restrict the coboundary operator to the subcomplex of G-invariant
cochains (C•c(b)(G;E)G, δ•).

Definition 3.7. The continuous (bounded) cohomology of G with coefficients in E,
denoted by H•c(b)(G;E), is the cohomology of the complex (C•c(b)(G;E)G; δ•).

Remark 3.8. Notice that if G is discrete, then there is no difference between con-
tinuous and non-continuous (bounded) cohomology. For this reason, we will drop
the c-subscript from the notation in the case of discrete groups (compare with Re-
marks 3.2 and 3.6).

A key feature of continuous bounded cohomology is that it is endowed with a
natural seminorm. Indeed, the supremum norm on continuous bounded cochains
induces a seminorm in continuous bounded cohomology as follows

‖ψ‖∞ := inf{‖f‖∞ | f ∈ C•cb(G;E)G and [f ] = ψ} ,
where ψ ∈ H•cb(G;E).
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The gap between the continuous and the continuous bounded cohomology groups
may be studied via the comparison map. More precisely, the inclusion of cochain
complexes

ι : C•cb(G;E)G → C•c(G;E)G ,

induces a natural map

comp• : H•cb(G;E)→ H•c(G;E) ,

which we call comparison map. For the convenience of the reader, we will sometimes
denote it by comp•G.

3.2. Burger-Monod’s theory of continuous bounded cohomology. Since com-
puting continuous (bounded) cohomology by means of its definition is usually very
hard, we explain now how to compute it in terms of strong resolutions by relatively
injective modules. We begin with the following:

Definition 3.9. Let G be a locally compact group and let E,F be a Banach G-
modules. A G-morphism i : E → F is said to be admissible if there is a morphism
of Banach spaces σ : F → E with bounded operator norm ‖σ‖ ≤ 1 and such that
i ◦ σ ◦ i = i.

We say that a Banach G-module U is relatively injective if for every admissible
G-morphism i : E → F of continuous Banach G-modules and every G-morphism
ψ : E → U , there exists aG-morphism ϕ : F → U satisfying ϕ◦i = ψ and ‖ϕ‖ ≤ ‖ψ‖.

Remark 3.10. Notice that a Banach G-module is relatively injective if and only if
CE is so, by [Mon01, 4.1.5].

Example 3.11. Let G be a locally compact group. The following Banach G-
modules introduced in Example 3.5 are examples of relatively injective Banach G-
modules:

(1) For every Banach G-module E, the spaces of continuous bounded functions
C•cb(G;E) are relatively injective [Mon01, Proposition 4.4.1].

(2) Assume that G is a semisimple Lie group of non-compact type (or one of
its lattices). Let B(G) denote its Furstenberg-Poisson boundary. Then, for
every Banach G-module E which is dual of some Banach space, we have
that L∞w∗(B(G)•+1;E) is relatively injective [Mon01, Theorem 5.7.1]. Indeed
B(G) is an amenable G-space in the sense of Zimmer [Mon01, Definition
5.3.1] since it can be realized as the quotient G/P , where P is a minimal
parabolic subgroup (which is amenable being a compact extension of a solv-
able group). Notice that the amenability is preserved by restricting the
action to any lattice of G.

We now introduce the definition of strong resolution.

Definition 3.12. Let G be a locally compact group. A Banach G-complex (E•, δ•)
is a cochain complex, i.e. δn ◦ δn−1 for all n ∈ N, whose modules are Banach G-
modules and whose differentials are bounded G-morphisms in every degree. More-
over, we assume that En = 0 for every n ≤ −1.
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Given a Banach G-module E, an augmented Banach G-complex (E,E•, δ•) with
augmentation map ε : E → E0 is the following G-complex

0→ E
ε−→ E0 δ0

−→ E1 δ1

−→ E2 → · · · → En
δn−→ · · · ,

where we ask that ε is an isometric embedding.
A resolution of a Banach G-module E is an exact augmented Banach G-complex

(E,E•, δ•).
A contracting homotopy for a resolution (E•, δ•) of E is a collection of maps

hn : En → En−1 for every n ∈ N such that ‖hn‖ ≤ 1 and hn+1◦δn+δn−1◦hn = idEn

for n ≥ 0 and h0 ◦ ε = idE0 .
A resolution (E•, δ•) of E is strong if the subcomplex (CE•, δ•) admits a con-

tracting homotopy.

Example 3.13. Let G be a locally compact group. The followings are examples
of strong resolutions by relatively injective modules, i.e. strong resolutions (E•, δ•)
such that each E• is a relatively injective G-module.

• Let E be a Banach G-module. The resolution (C•cb(G;E), δ•) with augmen-
tion map ε : E → C0(G;E) given by the inclusion of constant functions
is a strong resolution of E via relatively injective modules [Mon01, Theo-
rem 7.2.3] (compare with Example 3.11). Here δ• denotes the coboundary
operator introduced in Equation (2)
• Assume that G is a semisimple Lie group of non-compact type (or one of its

lattices). Let B(G) denote its Furstenberg-Poisson boundary and let E be
a Banach G-module dual to some Banach space. Then,

0→ E
ε−→ L∞w∗(B(G);E)

δ0

−→ L∞w∗(B(G)2;E)
δ1

−→ · · ·

is a strong resolution of E by relatively injective G-modules [Mon01, The-
orem 7.5.3]. Here ε : E → L∞w∗(B(G);E) denotes the inclusion of constant
functions and

δ• : L∞w∗(B(G)•+1;E)→ L∞w∗(B(G)•+2;E) ,

(3) δ•(f)(ξ0, · · · , ξ•+1) =
•+1∑
i=0

(−1)if(ξ0, · · · , ξi−1, ξi+1, · · · , ξ•+1) ,

for every f ∈ L∞w∗(B(G)•+1;E) and ξ0, · · · , ξ•+1 ∈ B(G).

The importance of strong resolutions by relatively injective modules is described
by the following results:

Theorem 3.14 ([Mon01, Theorem 7.2.1]). Let G be a locally compact group and let
E be a Banach G-module. Then, for every strong resolution (E•, δ•) of E by rela-
tively injective modules, the cohomology of the complex of G-invariants ((E•)G, δ•)
is isomorphic as topological vector space to the continuous bounded cohomology
Hn
cb(G;E) for every n ≥ 0.
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Theorem 3.15 ([Mon01, Theorem 7.5.3]). Let G be a semisimple Lie group of
non-compact type and let E be a Banach G-module dual to some Banach space. Let
B(G) denote the Furstenberg-Poisson boundary of G. Then, the cohomology of the
complex of G-invariants

(L∞w∗(B(G)•+1;E)G, δ•)

is isometrically isomorphic to the continuous bounded cohomology Hn
cb(G;E) for

every n ≥ 0. The same holds also for any lattice Γ ≤ G.

Remark 3.16. Note that Theorem 3.15 is still true when we restrict to the subcom-
plex and to the subresolution of alternating functions [Mon01, Theorem 7.5.3]. We
recall that f : B(G)• → E is said to be alternating if for every permutation σ of n
elements, we have

sign(σ)f(ξσ(1), · · · , ξσ(•)) = f(ξ1, · · · , ξ•) ,
where sign denotes the parity of the permutation and ξ1, · · · , ξ• ∈ B(G). We will
need this stronger version of Theorem 3.15 at the end of the proof of Proposition 7.8

We conclude this section by recalling that even strong resolutions may encode
useful information. For instance, let (X,µ) be a standard Borel probability space
on which G acts by preserving the measure class of µ. Given a Banach G-module
E that is dual of some Banach space, we can consider the resolution of E given
by (B∞(X•+1;E), δ•), where the augmentation map ε : E → B∞(X;E) is given by
the inclusion of constant functions and the coboundary operator is given by Equa-
tion (3). It is proved by Burger and Iozzi [BI02, Proposition 2.1] that the complex
of bounded measurable functions (B∞(X•+1;E), δ•) is in fact a strong resolution
for E. Since by Burger and Monod [BM02, Proposition 1.5.2] the cohomology of
any strong resolution of the Banach G-module E maps naturally to the continuous
bounded cohomology of G, we get a canonical map

(4) c• : H•(B∞(X•+1;E)G)→ H•cb(G;E) .

This means that any bounded measurable cocycle f ∈ B∞(X•+1;E)G naturally
determines a cohomology class in H•cb(G;E).

3.3. Continuous bounded cohomology of G = Isom(Hn). Let n ≥ 3 and let
G = Isom(Hn) be the group of isometries of the hyperbolic n-space. We are going
to denote the same group also by PO(n, 1) (and PO◦(n, 1) will be the connected
component of the identity, that is the subgroup of orientation preserving isometries).
Our main reference about the continuous and the continuous bounded cohomologies
of G is Bucher, Burger and Iozzi’s paper [BBI13]. Let G+ ≤ G denote the subgroup
of orientation-preserving isometries. Since G+ has index 2 as a subgroup of G, there
exists a well-defined homomorphism

(5) ε : G→ G/G+ ∼= {−1, 1}.
Using the homomorphism ε, we can endow R with the following structure of Banach
G-module

G× R→ R , (g, a) 7→ ε(g) · a .
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We will denote the Banach G-module R either by Rε if it has the previous G-
structure or by R if it is endowed with the trivial one (see Example 3.5.1).

More generally, given a lattice Γ < G and a representation ρ : Γ → G, we may
consider R as a Banach Γ-module endowed either with the trivial action or the one
given by

Γ× R→ R, (γ, a) 7→ ε(ρ(γ)) · a ,
where ε is the homomorphism defined in Equation (5). Then, since C•c(b)(ρ) is norm

non-increasing, any representation induces pullback maps in continuous (bounded)
cohomology:

H•c(b)(ρ) : H•c(b)(G;R)→ H•(b)(Γ;R)

and
H•c(b)(ρ) : H•c(b)(G;Rε)→ H•(b)(Γ;Rρ) ,

where we dropped the subscript c in the right hand side being Γ discrete.
We now recall how to compute the continuous bounded cohomologies H•cb(G;R(ε))

and H•b(Γ;R(ε)). Since the boundary at infinity ∂Hn of the hyperbolic n-space Hn

can be realized as quotient of either G or G+ by a minimal parabolic subgroup,
it may be identified with their Furstenberg-Poisson boundary. Therefore, applying
Theorem 3.15, we know that H•cb(G;R(ε)) is isometrically isomorphic to the coho-

mology of complex of G-invariants (L∞((∂Hn)•+1;R(ε))
G, δ•). For ease of notation

along the paper we will identify ∂Hn ∼= Sn−1. The same strategy also works for any
lattice Γ < G, i.e. H•b(Γ;R(ρ)) is isometrically isomorphic to the cohomology of the

complex of G-invariants (L∞((∂Hn)•+1;R(ρ))
Γ, δ•).

We introduce now a cocycle which will be a key tool in our paper.

Definition 3.17. We define the volume cocycle

Voln : (Sn−1)n+1 → Rε
as

(ξ0, · · · , ξn) 7→ signed volume of the convex hull of {ξ0, · · · , ξn} .
In the sequel we will see Voln as an element of both the spaces L∞((Sn−1)n+1;Rε)G
and B∞((Sn−1)n+1;Rε)G.

One of the peculiar features of the volume cocycle is that it is in fact the unique
representative of its cohomology class. Indeed, following [BBI13, Lemma 1], the ab-
sence of (n− 1)-cocycles implies that cohomology groups Hn

cb(G;Rε) and Hn
c (G;Rε)

coincide with the subspaces of the n-cocycles sitting inside L∞((Sn−1)n+1;Rε)G and
Cc((Hn)n+1;R(ε))

G, respectively (in the latter case we are using [Gui80, Chapter

III, Proposition 2.3] and the fact that Hn is the quotient of G or G+ by a max-
imal compact subgroup). Note that Cc((Hn)n+1;Rε)G denotes the space of con-
tinuous real-valued G-invariant functions on (n + 1)-tuples of points of Hn. Since
Hn
c (G;Rε) ∼= R and it is generated by the volume form, which admits Voln as a

bounded representative, we have that the comparison map

compn : Hn
cb(G;Rε)→ Hn

c (G;Rε)
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is an isometric isomorphism in top dimensional degree (see [BBI13, Proposition 2]).

3.4. The orientation cocycle and the Euler class. In this section we are going
to introduce the notion of Euler class. We will use the orientation cocycle to get
a preferred representative for this class. We refer the reader to [Ioz02] for a more
detailed description about these notions.

Fix an orientation on S1 and denote by Homeo+(S1) the group of orientation-
preserving homeomorphisms endowed with the discrete topology. Consider the
group HomeoZ(R) of the homeomorphisms of the real line commuting with the
integer translation T : R → R given by T (x) = x + 1, for every n ∈ Z. This
group can be thought of as the universal covering of Homeo+(S1) and the projection
p : HomeoZ(R)→ Homeo+(S1) fits in the following central extension:

0→ Z ι−→ HomeoZ(R)
p−→ Homeo+(S1)→ 0 ,

where ι(n) := Tn for every n ∈ Z. We want now to construct a cocycle associated
to the previous central extension. Notice that given an element f ∈ Homeo+(S1)

there exists a unique lift f̃ ∈ HomeoZ(R) which satisfies f̃(0) ∈ [0, 1). Hence, the
previous construction allows us to define a section as follows

s : Homeo+(S1)→ HomeoZ(R), s(f) := f̃ .

Then, one can define an integer valued 2-cocycle E : (Homeo+(S1))2 → Z asso-
ciated to the previous central extension via the section s (see for instance [Fri17,
Section 2.2, Section 10.2]):

f̃ ◦ g ◦ T E(f,g) = f̃ ◦ g̃ ,
for every f, g ∈ Homeo+(S1). The cocycle E determines an integral bounded coho-
mology class which is mapped to a real bounded cohomology class eb ∈ H2

b(Homeo+(S1),R)
under the change of coefficients homomorphism. Notice that the construction of eb is
independent of the chosen section s in the definition (see again [Fri17, Section 2.2]).

Definition 3.18. The previous cohomology class eb is called bounded Euler class.

Since we will need to represent explicitly eb via a measurable cocycle defined on
the space (S1)3, we introduce the orientation cocycle

(6) o : (S1)3 → R, o(ξ0, ξ1, ξ2) :=


+1 if (ξ0, ξ1, ξ2) are positively oriented ,

−1 if (ξ0, ξ1, ξ2) are negatively oriented ,

0 otherwise .

Notice that the function o is a bounded Homeo+(S1)-invariant Borel cocycle on S1

and so it canonically determines a bounded cohomology class in H2
b(Homeo+(S1);R),

as explained at the end of Section 3.2 (see Equation (4)). Since the orientation
cocycle can be thought of as the area of an ideal triangle divided by π, one can
deduce that it is a cocycle as a consequence of Stokes Theorem. Moreover, using
the previous definition of E , Iozzi [Ioz02, Lemma 2.1] shows that

(7) − 2eb = [o] .
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Hence, we get the following:

Definition 3.19. We define the Euler cocycle as the representative of the Euler
class given by

ε = −o

2
∈ B∞((S1)3;R)Homeo+(S1) .

3.5. Relative cohomology. As we mentioned in the introduction our definition of
volume of measurable cocycles will apply for both uniform and non-uniform torsion-
free lattices Γ < G+. However, following [BBI13], when we deal with the non-
uniform case, it is necessary to work with the relative bounded cohomology of spaces.
For the convenience of the reader we recall here its definition.

Let X be a topological space and let A ⊂ X be a subspace. Given a singular sim-
plex σ : ∆• → X, we denote by Im(σ) its image. Recall that the relative cohomology
H•(X,A;R) is computed via the following cochain complex

(C•(X,A;R), δ•) := ({f ∈ C•(X;R) | f(σ) = 0 if Im(σ) ⊂ A}, δ•) ,

where C•(X;R) denotes the space of singular cochains in X and δ• is the usual
coboundary operator. We define the bounded cochain complex as

(C•b(X,A;R), δ•) := ({f ∈ C•(X,A;R) | ‖f‖∞ < +∞}, δ•) ,

where ‖f‖∞ := sup{|f(σ)| |σ : ∆• → X continuous }.

Definition 3.20. The relative bounded cohomology of the topological pair (X,A),
denoted by H•b(X,A;R), is the cohomology of the bounded complex (C•b(X,A;R), δ•).

Remark 3.21. The previous notion restricts to the bounded cohomology of a space
X when we consider the pair (X, ∅).

The deep connection between bounded cohomology of spaces and bounded co-
homology of groups is nicely expressed via Gromov’s mapping theorem [Gro82]
(see [FM, Corollary 4.4.5] for a topological proof by Frigerio and the first author
following Gromov’s approach and Ivanov’s proof [Iva87, Theorem 4.1] using homo-
logical algebra). More precisely, let X be a topological space and let π1(X) denote
its fundamental group. Then, there exists an isometric isomorphism in bounded
cohomology

(8) gX : H•b(π1(X);R)
∼= // H•b(X;R) .

Let n ≥ 3. The argument that follows actually holds also for n = 2, but we
will not need this fact. Let now Γ < G+ be a torsion-free non-uniform lattice and
let M = Γ\Hn. It is well known that M is a complete finite-volume hyperbolic
manifold. Let N be a compact core of M , that is a compact subset of M such that
M \N consists of the disjoint union of finitely many horocyclic neighbourhoods of
cusps. Let us call them Ej with j = 1, · · · , k. Note that all compact cores of M are
homotopy equivalent.

We are going to explain now how to evaluate an element α ∈ Hn
b (Γ;R) on the

fundamental class [N, ∂N ] ∈ Hn(N, ∂N ;R) of N via the Kronecker product. Recall
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that the Kronecker product is the following bilinear form

〈·, ·〉 : Hn(N, ∂N ;R)×Hn(N, ∂N ;R)→ R .

To that end, we need to describe a map from Hn
b (Γ;R) to Hn(N, ∂N ;R). First, let

us consider the isometric isomorphism gM described in Gromov’s mapping theorem
(see Equation (8)). This allows us to map α to gM (α) ∈ Hn

b (M ;R). Hence, we are
reduced to describe a map from Hn

b (M ;R) to Hn(N, ∂N ;R). Recall that the short
exact sequence

0→ C•b(M,M \N ;R)→ C•b(M ;R)→ C•b(M \N ;R)→ 0

induces a long exact sequence

· · · → H•−1
b (M \N ;R)→ H•b(M,M \N ;R)→ H•b(M ;R)→ H•b(M \N ;R)→ · · · .

Since M \ N = tkj=1Ej is the disjoint union of spaces with virtually Abelian
fundamental groups, whence with amenable fundamental groups, Gromov’s map-
ping theorem implies that H•≥1

b (M \ N ;R) = 0. This shows that the inclusion
j : (M, ∅)→ (M,M \N) induces an isomorphism in bounded cohomology in degree
greater than or equal to 2. We mention here (but, we will not use it later) that
H•b(j) : H•b(M,M \N ;R)→ H•b(M ;R) is in fact an isometric isomorphism in degree
greater than or equal to 2, as proved by Bucher, Burger, Frigerio, Iozzi, Pagliantini
and Pozzetti [BBF+14].

Therefore, since n ≥ 3 and (M,M \N) ' (N, ∂N) via a homotopy of pairs h, the
composition

Hn
b (Γ;R)

gnM // Hn
b (M ;R)

Hn
b (j)−1

// Hn
b (M,M \N ;R)

Hn
b (h)
// Hn

b (N, ∂N ;R),

is an isometric isomorphism. We denote the previous composition by Jn.
We are now able to show how to evaluate an element α ∈ Hn

b (Γ;R) on the
fundamental class [N, ∂N ] ∈ Hn(N, ∂N ;R) of N . Indeed, it is now sufficient to take
the following Kronecker product

〈compn ◦ Jn(α), [N, ∂N ]〉 ∈ R ,

where compn : Hn
b (N, ∂N ;R)→ Hn(N, ∂N ;R) denotes the comparison map.

3.6. Transfer maps. Let n ≥ 2 and let G be as usual Isom(Hn). Let G+ < G
be the subgroup of orientation-preserving isometries. Consider Γ < G+ a torsion-
free non-uniform lattice. Let M = Γ\Hn and let N be its compact core. In this
section we are going to introduce two standard maps which allow to transfer the
information contained in the bounded cohomology of Γ and in the cohomology of
(N, ∂N) to the continuous bounded and the continuous cohomologies of G, respec-
tively. More precisely, following [BBI13] (see also [BIW10, BKK14]), we define two
natural transfer maps

trans•Γ : H•b(Γ;R)→ H•cb(G;Rε)
and

τ•dR : H•(N, ∂N ;R)→ H•c(G;Rε) .
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Remark 3.22. Note that we are going to define the transfer maps in the case of
non-uniform lattices. However, the same techniques apply verbatim to the uniform
case.

Let us begin by recalling the definition of transΓ.

Definition 3.23. Let Γ and G as above. Let t̂ransΓ be the following cochain map

t̂rans
•
Γ : L∞((Sn−1)•+1;R)Γ → L∞((Sn−1)•+1;Rε)G ,

t̂rans
•
Γ(ψ)(ξ0, · · · , ξ•) :=

∫
Γ\G

ε(g−1) · ψ(g · ξ0, · · · , g · ξ•)dµ(g)

where ψ ∈ L∞((Sn−1)•+1;R)Γ, ξ0, · · · , ξ• ∈ Sn−1 and µ is the normalized invariant
probability measure on Γ\G induced by the Haar measure.

Notice that by linearity it is immediate to check that t̂rans
•
Γ commutes with

the coboundary operator. Moreover, the following computation shows that if ψ is

Γ-invariant, then t̂rans
•
Γ(ψ) is G-invariant. For every g0 ∈ G, we have

g0 · (t̂rans
•
Γ(ψ)(ξ0, · · · , ξ•)) = ε(g0) · t̂rans

•
Γ(g−1

0 · ξ0, . . . , g
−1
0 · ξn) =

=

∫
Γ\G

ε(g0g−1)ψ(gg−1
0 · ξ0, . . . gg

−1
0 · ξn)dµ(g) =

=

∫
Γ\G

ε(g−1)ψ(g · ξ0, . . . g · ξn)dµ(g) =

= (t̂rans
•
Γ(ψ)(ξ0, . . . , ξn)) ,

where to move from the first line to the second one we used the fact that ε is a
homomorphism and to move from the second line to the third one we used the
unimodularity of G and the G-invariance of the measure µ. As a consequence of the
previous computation we can give the following

Definition 3.24. We define the transfer map transΓ as the induced map in coho-

mology by t̂ransΓ:
trans•Γ : H•b(Γ;R)→ H•cb(G;Rε) .

Unfortunately, the definition of the transfer map τdR needs some more work. We
define

τ•dR : H•(N, ∂N ;R)→ H•c(G;Rε)
as the composition of two maps. Recall that the relative de Rham cohomology
H•dR(M,M \N ;R) is defined as the cohomology of the complex of differential forms
Ω•(M,M \ N ;R) defined on M and whose restriction to M \ N vanishes. Via the
relative de Rham isomorphism ΨdR we have

H•dR(M,M \N ;R)
Ψ•dR

∼=
// H•(M,M \N ;R)

H•(h)

∼=
// H•(N, ∂N ;R) ,

where H•(h) is the isomorphism induced by the homotopy equivalence of pairs
h : (M,M \N)→ (N, ∂N). Let us denote by Ψ• = H•(h) ◦Ψ•dR the composition of
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the previous two isomorphism. Since we want to define τ•dR as the composition of
(Ψ•)−1 with another map, we are reduced to introduce a map

trans•dR : H•dR(M,M \N ;R)→ H•c(G;Rε) .
Following [BBI13], let us denote by U = π−1(M \ N) the preimage under the
universal covering projection π : Hn → M of the finite disjoint union of horo-
cyclic neighbourhoods of cusps. Since we can identify the relative differential forms
Ω•(M,M \ N ;R) with the Γ-invariant relative differential forms Ω(Hn, U ;R)Γ, we
get the following

Definition 3.25. Let Γ and G be as above. We call t̂ransdR the cochain map

t̂rans
•
dR : Ω•(Hn, U ;R)Γ → Ω•(Hn;Rε)G

defined by

t̂rans
•
dR(ψ) :=

∫
Γ\G

ε(g−1)(g∗ψ)dµ(g) ,

where ψ ∈ Ω•(Hn, U ;R)Γ and µ is the normalized invariant probability measure on
Γ\G.

Similar arguments that we used in the case of transΓ show that t̂ransdR is indeed

a cochain map and that if ψ is Γ-invariant, then t̂ransdR(ψ) is G-invariant.

Definition 3.26. We denote by H•(t̂rans
•
dR) the induced map in coohomology:

H•(t̂rans
•
dR) : H•dR(M,M \N ;R)→ H•(Ω•(Hn;Rε)G) .

Since any G-invariant differential form on Hn is closed by Cartan’s Lemma, we
may identify H•(Ω•(Hn;Rε)G) with Ω•(Hn;Rε)G. Therefore, in order to define τdR,
it only remains to consider the Van Est isomorphism (see [Gui80, Corollary 7.2])

VE• : Ω•(Hn;Rε)G → H•c(G;Rε) .

Definition 3.27. We define the transfer map

τ•dR : H•(N, ∂N ;R)→ H•c(G;Rε)
as follows

τ•dR := VE• ◦H•(t̂rans
•
dR) ◦ (Ψ•)−1 ,

where we use again the identification H•(Ω•(Hn;Rε)G) ∼= Ω•(Hn;Rε)G.

Remark 3.28. Note that τdR is an isomorphism in top degree as mentioned by
Bucher, Burger and Iozzi [BBI13].

We conclude this section by a remarkable fact proved by Bucher, Burger and
Iozzi [BBI13, Proposition 3]. The transfer maps

trans•Γ : H•b(Γ;R)→ H•cb(G;Rε)
and

τ•dR : H•(N, ∂N ;R)→ H•c(G;Rε)
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fits in the following commutative diagram

(9) H•b(Γ;R)

J• ∼=
��

trans•Γ

((
H•b(N, ∂N ;R)

comp•

��

H•cb(G;Rε)

comp•

��
H•(N, ∂N ;R)

τ•dR

// H•c(G;Rε) .

Remark 3.29. Note that when G = PSL(2,R), we will simply use R as coefficients
in the cohomology groups appearing in Diagram (9). Indeed, in this special case the
the trivial action on R agrees with the one twisted by the sign.

4. A technical lemma

The aim of this section is to prove a fundamental technical lemma that we need
in the sequel. Let H be a locally compact group and let Γ be a discrete group. We
will suppose that Γ admits a Furstenberg-Poisson boundary B(Γ) and that H acts
measurably on compact completely metrizable space Y .

Suppose that there exists a sign homomorphism ε : H → {−1, 1} and denote by
H+ = ker ε. For instance this is the case when either H = Isom(Hn) or H =
Homeo+(S1). In the latter case the sign homomorphism is trivial and H = H+.

Let (X,µX) be a standard Borel probability Γ-space. Consider the measurable
cocycle σ : Γ×X → H+ and suppose that there exists an essentially unique boundary
map φ : B(Γ)×X → Y . Here we are using the generalized version of boundary map
introduced in Remark 2.8.

We will be interested in the sequel on the following problem: given a cocycle
ψ ∈ B∞(Y •+1;R(ε))

H we want to pullback it along φ, whence σ, in order to obtain a

cocycle in L∞(B(Γ)•+1;R)Γ. Recall that Rε is endowed with the H-module structure
induced by ε and R has trivial Γ-module structure. Our approach will follow some
ideas that date back to Bader, Furman and Sauer’s paper [BFS13b, Proposition 4.2]
(these ideas are also discussed by the second author for the definition of the Borel
invariant of measurable cocycles [Sava, Proposition 3.1]). However, we deal here with
a more general version which will be suitable for our later computations. Recall that
L∞(X) is a Γ-module endowed with the following action

γ ·
(
f(x)

)
= γ · f(γ−1 · x) = f(γ−1 · x) ,

where in the last equality we consider R as a Γ-module endowed with the trivial
action.

Definition 4.1. Under the previous assumptions we define the pullback along φ as
the following cochain map

C•(φ) : B∞(Y •+1;R(ε))
H → L∞w∗(B(Γ)•+1; L∞(X))Γ

C•(φ)(ψ)(ξ0, · · · , ξ•) =
(
x 7→ ψ(φ(ξ0, x), · · · , φ(ξ•, x))

)
,
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where ψ ∈ B∞(Y •+1;R(ε))
H , ξ0, · · · , ξ• ∈ B(Γ) and x ∈ X.

The fact that the previous map is a well-defined cochain map is the content of
the following lemma.

Lemma 4.2. The pullback map C•(φ) along φ is a well-defined norm non-increasing
cochain map.

Proof. It is immediate to check that C•(φ) is a norm non-increasing cochain map.
Let us prove that it is well-defined, that is C•(φ)(ψ) is Γ-invariant. To that end, we
identify

L∞w∗(B(Γ)•+1; L∞(X)) ∼= L∞(B(Γ)•+1 ×X)

and we endow it with the diagonal Γ-action given by

γ · f(ξ0, · · · , ξ•, x) = f(γ−1 · ξ0, · · · , γ−1 · ξ•, γ−1 · x) ,

where γ ∈ Γ, ξ0, · · · , ξ• ∈ B(Γ) and x ∈ X, respectively. Since C•(φ)(ψ) lies in
the Γ-module L∞(B(Γ)•+1 ×X), we only have to prove that it is Γ-invariant with
respect to the previous action. Given γ ∈ Γ, ξ0, · · · , ξ• ∈ B(Γ) and x ∈ X, we have

γ · C•(φ)(ψ)(ξ0, · · · , ξ•)(x) = γ · C•(φ)(ψ)(ξ0, · · · , ξ•, x)

= C•(φ)(ψ)(γ−1 · ξ0, · · · , γ−1 · ξ•, γ−1 · x)

= ψ
(
φ(γ−1 · ξ0, γ

−1 · x), · · · , φ(γ−1 · ξ•, γ−1 · x)
)

= ψ
(
σ(γ−1, x)φ(ξ0, x), · · · , σ(γ−1, x)φ(ξ•, x)

)
= ε(σ(γ−1, x)−1) · C•(φ)(ψ)(ξ0, · · · , ξ•, x)

= C•(φ)(ψ)(ξ0, · · · , ξ•)(x) ,

where in the fourth step we used the σ-equivariance of φ and in the following one
the H-invariance of ψ. Moreover, the fact that σ takes value in H+ allows us to
conclude the chain of equalities. This proves that the pullback along φ is a well-
defined, whence the thesis. �

As explained before we want to pullback cocycles from the space B∞(Y •+1;R(ε))
H

to L∞(B(Γ)•+1;R)Γ via σ or, equivalently, φ. The pullback along φ just introduced
allows us to go from B∞(Y •+1;R(ε))

H to L∞w∗(B(Γ)•+1; L∞(X))Γ. The next ingredi-
ent in our construction consists in the following integration (compare with [BFS13b,
Sava]):

Definition 4.3. We define the integration map I•X as follows

I•X : L∞w∗(B(Γ)•+1; L∞(X))Γ → L∞(B(Γ)•+1;R)Γ

I•X(ψ)(ξ0, · · · , ξ•) =

∫
X
ψ(ξ0, · · · , ξ•)(x)dµX(x) ,

where ψ ∈ L∞w∗(B(Γ)•+1; L∞(X))Γ, ξ0, · · · , ξ• ∈ B(Γ) and µX denotes the proba-
bility measure of the standard Borel probability Γ-space X.

It is immediate to check that I•X is a cochain map. The following lemma shows
that it is well-defined and norm non-increasing:
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Lemma 4.4. The integration cochain map I•X is well-defined and norm non-increasing.

Proof. First we have to prove that for every ψ ∈ L∞w∗(B(Γ)•+1; L∞(X))Γ, the cocycle
I•X(ψ) is Γ-invariant. Given γ ∈ Γ and ξ0, · · · , ξ• ∈ B(Γ), we have

γ · I•X(ψ)(ξ0, · · · , ξ•) = I•X(ψ)(γ−1 · ξ0, · · · , γ−1 · ξ•)

=

∫
X
ψ(γ−1 · ξ0, · · · , γ−1 · ξ•)(x)dµX(x)

=

∫
X
ψ(ξ0, · · · , ·ξ•)(γ · x)dµX(x)

=

∫
X
ψ(ξ0, · · · , ·ξ•)(x)dµX(x)

= I•X(ψ)(ξ0, · · · , ξ•) ,
where in the fourth step we used the fact that Γ acts in a measure-preserving way.
This proves that the integration map is well-defined.

Let ψ ∈ L∞w∗(B(Γ)•+1; L∞(X))Γ and let us check that I•X is norm non-increasing.
The following computation

‖I•X(ψ)‖∞ =
∥∥∫

X
ψ(·)(x)dµX(x)

∥∥
∞

≤
∫
X
‖ψ‖∞(x)dµX(x)

= ‖ψ‖∞ · µX(X)

= ‖ψ‖∞ .

concludes the proof. �

Remark 4.5. Note that the integration map is well-defined only on bounded cochains.
There is no such a map for unbounded ones. This fact will be stressed later in the
definition of volume of cocycles of uniform lattices (see Remark 5.4).

We are now able to construct our desired pullback.

Definition 4.6. Let Γ and H be two groups as at the beginning of this section. Fix
a standard Borel probability Γ-space (X,µX). Consider a cocycle σ : Γ×X → H+

with essentially unique boundary map φ : B(Γ)×X → Y . The pullback map along
φ is the map

C•(ΦX) : B∞(Y •+1;R(ε))
H → L∞(B(Γ)•+1;R)Γ

defined as the composition

C•(ΦX) = I•X ◦ C•(φ) .

We will need in the proof of the Milnor-Wood inequalities (Propositions 5.11
and 7.8) that C•(ΦX) is norm non-increasing. Lemmas 4.2 and 4.4 imply the fol-
lowing:

Lemma 4.7. The cochain map C•(ΦX) is norm non-increasing.
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Remark 4.8. In personal communications of the second author with Maria Beatrice
Pozzetti, she suggested that one could actually get rid of the boundary map to define
the pullback. Indeed given a measurable cocycle σ : Γ ×X → H+ it is possible to
define the map

C•b(σ) : C•cb(H;R(ε))
H → C•b(Γ;R)Γ ,

ψ 7→ C•b(σ)(ψ)(γ0, . . . , γ•) :=

∫
X
ψ(σ(γ−1

0 , x)−1, . . . , σ(γ−1
• , x)−1)dµX(x) .

The previous definition may appear quite strange, but it is actually compatible with
the formula appearing in [BFS13a, Theorem 5.6] and it is inspired by the cohomo-
logical induction defined by Monod and Shalom [MS06] for measurable cocycles
associated to couplings.

The fact that C•(σ) preserves invariant cochains relies on both Equation 1 and
the Γ-invariance of µΩ. One can check that C•b(σ) is also a cochain map and hence
it descends naturally to a map in continuous bounded cohomology

H•b(σ) : H•cb(H;R(ε))→ H•b(Γ,R) , H•b(σ)([ψ]) := [C•b(σ)(ψ)] .

Suppose now that σ admits an essentially unique boundary map φ : B(Γ)×X →
Y . Given an element ψ ∈ B∞(Y •+1;R(ε))

H , by applying [BI02, Corollary 2.7] we
get that H•b(σ)([ψ]) admits as a canonical representative C•(ΦX)(ψ). In this way
we get back our initial approach to pullback via boundary maps.

Since in the sequel we will need the existence of a boundary map to prove our
rigidity results, we prefer to keep using boundary map to define a pullback map in
continuous bounded cohomology.

5. Volume of Zimmer cocycles in G+ = Isom(Hn)

In this section we extend the classic notion of volume of representations to the
much general setting of Zimmer’s cocycles. Let Γ < G+ = Isom+(Hn) be a torsion-
free non-uniform lattice, where n ≥ 3 (this dimensional assumption will be assumed
all along this section). Let M = Γ\Hn be the complete finite-volume hyperbolic
manifold with fundamental group Γ and let N be its compact core. Consider (X,µX)
a standard Borel probability Γ-space. Let σ : Γ×X → G+ be a measurable cocycle
which admits an essentially unique boundary map φ : Sn−1 ×X → Sn−1, that is a
σ-equivariant measurable map (see Definition 2.7).

Note that our setup only involves non-uniform lattices. However, all the defini-
tions and results that we will discuss in this section still hold when we deal with
uniform ones. For the convenience of the reader, we will stress the slight appropriate
modifications needed to adapt our framework to uniform lattices.

5.1. Definition of volume. In this paragraph we define the notion of volume of
cocycles. As proved in Section 4, there exists a natural way to pullback a cocycle c ∈
B∞((Sn−1)•+1;Rε)G to L∞((Sn−1)•+1;R)Γ via the boundary map φ. Recall that the
volume cocycle Voln, given in Definition 3.17, is an element of B∞((Sn−1)n+1;Rε)G.
Therefore, we can pullback it from B∞((Sn−1)•+1;Rε)G to L∞((Sn−1)•+1;R)Γ via
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the cochain map Cn(ΦX) as explained in Section 4. We define the volume class
associated to σ as

[Cn(ΦX)(Voln)] ∈ Hn
b (Γ;R) .

Using the techniques introduced in Section 3.5, we can map the above element
to Hn

b (N, ∂N ;R). Hence, the composition with the comparison map leads to our
definition of volume of cocycles.

Definition 5.1. Let Γ < G+ be a torsion-free non-uniform lattice and let (X,µX) be
a standard Borel probability Γ-space. Let M = Γ\Hn and let N be its compact core.
Consider a cocycle σ : Γ × X → G+ which admits an essentially unique boundary
map φ. The volume of σ is defined as follows

Vol(σ) := 〈compn ◦ Jn [Cn(ΦX)(Voln)] , [N, ∂N ] 〉 ∈ R ,

where 〈·, ·〉 is the Kronecker product, Jn is the map introduced in Section 3.5 and
[N, ∂N ] denotes the relative fundamental class of N .

Remark 5.2. Since we defined the volume of a measurable cocycle σ using a boundary
map, one could naturally ask under which condition such a map actually exists.
Monod and Shalom [MS04, Proposition 3.3] proved that it is sufficient to assume
that σ is non-elementary, that is σ is not cohomologous to a cocycle taking values
into an elementary subgroup of PO◦(n, 1).

5.2. The uniform case. As we mentioned in the introduction, our invariant is
inspired by the Euler number of self-couplings introduced by Bader, Furman and
Sauer [BFS13b]. Indeed, when we adapt the definition of our volume to uniform
lattices and we restrict our attention to self-couplings, we recover Bader, Furman
and Sauer’s Euler number. Moreover, as explained at the end of this section, a
careful reading of [BFS13b, Lemma 4.10] shows that one could define a generalized
Euler number for arbitrary measurable cocycles, dropping both the assumptions on
the target and on the measurable space. Then, this latter invariant agrees with our
volume in the uniform case. We refer the reader to the end of this section for a
discussion about this topic.

Let us explain now how the definition of volume in the non-uniform case can
be suitably modified for dealing with uniform lattices. Since M = Γ\Hn is now
closed and aspherical, Poincaré Duality shows that the top dimensional cohomology
group Hn(M ;R) ∼= Hn(Γ;R) is isomorphic to R via the isomorphism obtained by
the evaluation on the fundamental class [M ] of M . Therefore, we get the following
definition:

Definition 5.3. Let Γ < G+ be a torsion-free uniform lattice and let (X,µX)
be a standard Borel probability Γ-space. Let M = Γ\Hn. Consider a cocycle
σ : Γ × X → G+ which admits an essentially unique boundary map φ. Then, we
define the volume of σ to be

Vol(σ) := 〈compn ◦ gnM [Cn(ΦX)(Voln)] , [M ] 〉 ∈ R ,

where 〈·, ·〉 is the Kronecker product, gnM the isomorphism of Gromov’s mapping
theorem and [M ] denotes the fundamental class of M .
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Remark 5.4. Note that also in the uniform case our definition of volume of cocycles
defined in terms of uniform lattices involves the comparison map. At first glance,
the presence of the comparison map may appear rather misleading with respect to
the classic definition of volume of representations of uniform lattices (see [BBI13]).
However, when we deal with measurable cocycles, we need to work with bounded
cohomology. Indeed, any representation ρ : Γ→ G+ induces pullback maps in both
continuous and continuous bounded cohomologies, which fit in the following com-
mutative diagram:

(10) Hn
cb(G;Rε)

Hn
cb(ρ)

//

compn
G

��

Hn
b (Γ;R)

compn
Γ

��

gnM // Hn
b (M ;R)

compn

��
Hn
c (G;Rε)

Hn
c (ρ)

// Hn(Γ;R) ∼=
// Hn(M ;R) ,

Unfortunately, as discussed in Remark 4.5 given a cocycle σ : Γ ×X → G+ we are
only able to pullback the volume cocycle Voln in bounded cohomology. Indeed, our
construction is defined at the level of cochains via the following map

Cn(ΦX) : B∞((Sn−1)n+1;Rε)G → L∞((Sn−1)n+1;R)Γ

which is the composition
Cn(ΦX) = InX ◦ Cn(φ) .

Since the integration cochain map InX is well-defined only for bounded cocycles, our
pullback provides a class in bounded cohomology.

As explained above (and in the introduction) one of the source of inspiration of
our volume of measurable cocycles is the Euler number of self-couplings introduced
by Bader, Furman and Sauer [BFS13b]. However, a careful reading of [BFS13b,
Lemma 4.10] shows that one can easily extends Bader-Furman-Sauer’s Euler number
and their results to arbitrary measurable cocycles. In the sequel, we will refer to
the extensions of both their invariant and their results, as generalized Euler number
and generalized Bader-Furman-Sauer’s results, respectively.

For the convenience of the reader, we explain here how to show that our vol-
ume of measurable cocycles agrees with the generalized Euler number in the case
of uniform lattices. Before introducing the formal definition of the Euler number
introduced by Bader, Furman and Sauer [BFS13b], it is convenient to recall the
existence of an isometric isomorphism in bounded cohomology due to Monod and
Shalom [MS06, Proposition 4.6]. Let Γ and Λ be two countable discrete groups.
Recall by Definition 2.6 that given a (Γ,Λ)-coupling (Ω,mΩ), there exists an asso-
ciated right measure equivalence cocycle αΩ : Γ×Λ\Ω→ Λ. It is proved by Monod
and Shalom [MS06] that αΩ induces an isometric isomorphism

H•b(Ω): H•b(Λ; L∞(Γ\Ω))→ H•b(Γ; L∞(Λ\Ω))

which depends only on the coupling Ω, as suggested by the notation H•b(Ω).
Bader, Furman and Sauer use the isometric isomorphism H•b(Ω) in order to define

the Euler number associated to self-couplings [BFS13b]. More precisely, given a
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torsion-free uniform lattice Γ < G+ and a (Γ,Γ)-coupling (Ω,mΩ), the Euler number
associated to Ω is defined as follows:

eu(Ω) = 〈compn ◦ gnM ◦ InΓ\Ω ◦Hn
b (Ω) ◦Hn

b (κ) ◦Hn
cb(i)([Voln]), [M ]〉 ∈ R ,

where Hn
b (κ) : Hn

b (Γ;R) → Hn
b (Γ; L∞(Γ\Ω)) is the map induced by the change of

coefficients, Hn
cb(i) : Hn

cb(G
+;Rε) → Hn

b (Γ;R) is the map induced by the lattice em-
bedding i : Γ→ G+ < G and M = Γ\Hn.

Since Γ is a torsion-free uniform lattice in G+ also the right measure equivalence
cocycle αΩ : Γ × Γ\Ω → Γ takes values in G+. Therefore, we can compute its
volume via Definition 5.3. We show now how our invariant in the uniform case
agrees with the generalized version of Bader-Furman-Sauer’s Euler number. For the
convenience of the reader, we will denote by Γ` and Γr the left and the right copy
of Γ, respectively.

Recall that in this setting, the existence of an essentially unique boundary map
φ : Sn−1×Γ`\Ω→ Sn−1 for αΩ comes from the general theory of Furstenberg bound-
aries (see [Fur73, BM96, MS04]). Therefore, there is a well-defined notion of vol-
ume of the cocycle αΩ. Then, we can slightly modify the commutative diagram of
[BFS13b, Lemma 4.10] in order to obtain the following one:
(11)

Hn(B∞((Sn−1)•+1;Rε)G
+

)
Hn(φ) //

��

Hn
b (Γr; L∞(Γ`\Ω))

InΓ\Ω // Hn
b (Γr;R)

compn◦gnM // Hn(M ;R)

Hn
b (Γ`;R)

Hn
b (κ)

// Hn
b (Γ`; L∞(Γr\Ω)) ,

Hn
b (Ω)

OO

where the arrow on the left is the composition of the map cn defined in Equation (4)
with the restriction to Γ`-invariant cochains Hn

cb(i). Using the previous diagram, one
can check that our volume is in fact the generalized Bader-Furman-Sauer’s Euler
number:

eu(Ω) = 〈compn ◦ gnM ◦ InΓ\Ω ◦Hn
b (Ω) ◦Hn

b (κ) ◦Hn
cb(i)([Voln]), [M ]〉

= 〈compn ◦ gnM
[
Cn(ΦΓ\Ω)(Voln)

]
, [M ]〉 = Vol(αΩ) .

5.3. Volume of cocycles vs. volume of representations. As we mentioned in
the introduction, our aim is to define a notion of volume of measurable cocycles
which extends the classic volume of representations introduced by Bucher, Burger
and Iozzi [BBI13]. We formalize here this philosophical approach as follows:

Proposition 5.5. Assume n ≥ 3. Let Γ < G+ = Isom+(Hn) be a torsion-free non-
uniform lattice. Let ρ : Γ→ G+ be a non-elementary representation with measurable
boundary map ϕ : Sn−1 → Sn−1. For any (X,µX) standard Borel probability Γ-space
consider the measurable cocycle σρ : Γ×X → G+ associated to ρ. Then,

Vol(σρ) = Vol(ρ) .
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Proof. Recall that the measurable boundary map ϕ of ρ is essentially unique because
of the doubly ergodic action of Γ on Sn−1. Therefore, we construct an essentially
unique boundary map φ for σρ as follows:

φ : Sn−1 ×X → Sn−1, φ(ξ, x) := ϕ(ξ) ,

where ξ ∈ Sn−1 and x ∈ X. Since the boundary map φ does not depend on the
second variable x ∈ X, one can check that the following diagram commutes

B∞((Sn−1)n+1;Rε)G
Cn(φ) //

Cn(ϕ) **

L∞w∗((Sn−1)n+1; L∞(X))Γ

InXtt
L∞((Sn−1)n+1;R)Γ .

Recall that by Definition 4.6 we have Cn(ΦX) = InX◦Cn(φ) and so the commutativity
of the diagram above implies

Cn(ΦX)(Voln) = Cn(ϕ)(Voln) .

Since Buger and Iozzi [BI02] proved that Cn(ϕ)(Voln) is a natural representative of
the cohomology class Hn

b (ρ)([Vol]), we get the following

Vol(σρ) = 〈compn ◦ Jn [Cn(ΦX)(Voln)] , [N, ∂N ]〉
= 〈compn ◦ Jn [Cn(ϕ)(Voln)] , [N, ∂N ]〉
= 〈compn ◦ Jn ◦Hn

b (ρ)([Voln]), [N, ∂N ]〉 = Vol(ρ) .

This concludes the proof. �

Remark 5.6. All the results regarding non-uniform lattices can be easily translated
to the setting of uniform ones. For convenience of the reader we show here how to
extend the previous result to that setting. Keeping the same notation of Proposi-
tion 5.5, we assume now that Γ < G+ is a torsion-free uniform lattice. Note that
the volume cocycle Voln can be though of as an element of both Cn

cb(G;Rε) and

Cn
c (G;Rε). In order to distinguish these two cases we will denote Volbn and Voln the

continuous bounded and the continuous cocycles, respectively. Then, the proof in
the presence of non-uniform lattices adapts to the uniform ones as follows:

Vol(ρ) = 〈Hn
c (ρ)([Voln]), [M ]〉

= 〈compn ◦ gnM ◦Hn
cb(ρ)([Volbn]), [M ]〉

= 〈compn ◦ gnM [Cn(ϕ)(Volbn)], [M ]〉

= 〈compn ◦ gnM [Cn(ΦX)(Volbn)], [M ]〉 = Vol(σρ) ,

where we used the commutativity of Diagram (10) completed with the dotted arrows.

Remark 5.7. We have just proved that the volume of a non-elementary representa-
tion ρ coincides with the volume of the associated cocycle σρ. On the other hand, it
is well-known that elementary representations have vanishing volume. Therefore, it
could be interesting to investigate which cocycles play the same role. As we will see
later in Definition 5.12, reducible cocycles will provide an example of such a family.
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Recall that the classic volume of representations satisfies the following property:

Vol(gρg−1) = ε(g) ·Vol(ρ)

for every g ∈ G and every representation ρ : Γ → G+. In particular, when g ∈ G+

the volume of ρ is constant along the conjugacy class of the representation ρ.
Following the analogy between volume of cocycles and volume of representations,

we prove now a similar property in our setting. Consider a measurable function
f : X → G, where (X,µX) is a probability space. We define the sign of f as the
function ε(f) : X → {−1, 1} given by ε(f)(x) = ε(f(x)). In the case in which ε(f) is
almost everywhere constant, we will simply denote the real number identified with
the essential image of ε(f) by ε(f) itself.

Then, we have the following:

Proposition 5.8. Assume n ≥ 3. Let Γ < G+ = Isom+(Hn) be a torsion-free non-
uniform lattice and let (X,µX) be a standard Borel probability Γ-space. Consider a
measurable function f : X → G such that its sign ε(f) is almost everywhere constant.
Let σ : Γ × X → G+ be a measurable cocycle with an essentially unique boundary
map φ : Sn−1 ×X → Sn−1. Then, we have

Vol(σf ) = ε(f) ·Vol(σ) .

In particular, if f : X → G+, we have that the volume is constant along the G+-
cohomology class of σ.

Proof. Recall by Definitions 2.3 and 2.9 that σf is defined as

σf (γ, x) = f(γx)−1σ(γ, x)f(x) ,

for all γ ∈ Γ and for almost every x ∈ X, and its essentially unique boundary map
associated is given by

φf : Sn−1 ×X → Sn−1 , φf (ξ, x) = f(x)−1φ(ξ, x) ,

for almost every ξ ∈ Sn−1 and x ∈ X. Let us denote by Φf
X the composition of the

pullback along by φf with the integration. Then, the volume of σf can be computed
as follows

Cn(Φf
X)(Voln)(ξ0, · · · , ξn) =

∫
X

Voln(φf (ξ0, x), · · · , φf (ξn, x))dµX

=

∫
X

Voln(f(x)−1φ(ξ0, x), · · · , f(x)−1φ(ξn, x))dµX

=

∫
X
ε(f(x)) ·Voln(φ(ξ0, x), · · · , φ(ξn, x))dµX

= ε(f)

∫
X

Voln(φ(ξ0, x), · · · , φ(ξn, x))dµX

= ε(f) · Cn(ΦX)(Vol)(ξ0, · · · , ξn) .

Note that in the step from the third and the fourth line, we used the hypothesis on
the sign ε(f) which is almost everywhere constant. Using the previous computation
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and the linearity of the Kronecker product we get the desired equality

Vol(σf ) = 〈compn ◦ Jn
[
Cn(Φf

X)(Voln)
]
, [N, ∂N ]〉

= ε(f) · 〈compn ◦ Jn [Cn(ΦX)(Voln)] , [N, ∂N ]〉
= ε(f) ·Vol(σ) .

�

Using both Proposition 5.5 and Proposition 5.8 we obtain the following:

Corollary 5.9. Assume n ≥ 3. Let Γ < G+ = Isom+(Hn) be a torsion-free non-
uniform lattice. Fix (X,µX) a standard Borel probability Γ-space. If we denote by
i : Γ→ G+ the standard lattice embedding, we have

Vol(σ) = Vol(Γ\Hn)

for every cocycle in the G+-cohomology class of σi.

Proof. By [BBI13, Lemma 2] we know that the standard lattice embedding statisfies
Vol(i) = Vol(Γ\Hn). Since the volume is constant along the G+-cohomology class
by Proposition 5.8, the thesis follows. �

Remark 5.10. At first sight it may seem rather unsatisfactory having the invariance
of the volume only over a G+-cohomology class of the standard embedding lattice.
However, if σi denotes the cocycle associated to the standard lattice embedding,
Proposition 5.8 ensures that

|Vol(σfi )| = Vol(Γ/Hn) ,

for every measurable function f : X → G with almost everywhere constant sign ε(f).
Therefore, it is immediate to check that, when we restrict to cocycles associated to
representations, Proposition 5.8 and Corollary 5.9 show the same behaviour as the
one discussed by Bucher, Burger and Iozzi [BBI13]. This shows that Corollary 5.9
may be interpreted as a natural extension of classic result on representations to the
much wider setting of measurable cocycles.

5.4. Volume rigidity for Zimmer’s cocycles. In this section we establish and
study a Milnor-Wood type inequality for volume of cocycles. Remarkably, we will
show that the maximal value is attained at cocycles which are cohomologous to
the one associated to the standard lattice embedding i : Γ → G+ via a measurable
function with essentially constant sign.

Note that our result in the non-uniform setting extends the Milnor-Wood type
inequality for volume of representations proved by Bucher, Burger and Iozzi [BBI13,
Theorem 1]. Moreover, recall by Section 5.2 that in the uniform case our volume of
measurable cocycles agrees with the generalized version of the Euler number intro-
duced by Bader, Furman and Sauer [BFS13b]. Therefore, here we provide an alter-
native proof of the generalized version of the Milnor-Wood type inequality [BFS13b,
Corollary 4.9] for measurable cocycles.
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Proposition 5.11. Assume n ≥ 3. Let Γ < G+ = Isom+(Hn) be a torsion-free non-
uniform lattice and let (X,µX) be a standard probability Γ-space. Let σ : Γ×X → G+

be a measurable cocycle with essentially unique boundary map φ : Sn−1×X → Sn−1.
If M = Γ\Hn, then we have

|Vol(σ)| ≤ Vol(M) .

Proof. Let us fix an arbitrary compact core N of M . Recall by Diagram (9) that
there exists the following commutative square:

(12) Hn(B∞((Sn−1)•+1;Rε)G)

Hn(ΦX)

��
Hn
b (Γ;R)

Jn

��

transnΓ // Hn
cb(G;Rε)

compn

��

Hn
b (N, ∂N ;R)

compn

��
Hn(N ; ∂N)

τndR

// Hn
c (G;Rε) .

Here the transfer maps are the one introduced in Section 3.6. For ease of notation,
we set ωbn = [Voln] ∈ Hn

cb(G;Rε) and ωn = [Voln] ∈ Hn
c (G;Rε). Since by [BBI13,

Proposition 2] we have Hn
cb(G;Rε) ∼= Rωbn, there must exist a λ ∈ R such that

(13) transnΓ [Cn(ΦX)(Voln)] = λωbn .

If we now apply the comparison map to both sides, we get

compn ◦ transnΓ [Cn(ΦX)(Voln)] = λωn .

We denote by ωN,∂N the relative volume form in the relative de Rham complex,
that is the unique form such that 〈ωN,∂N , [N, ∂N ]〉 = Vol(M) . Then, by construc-
tion, we have τndR([ωN,∂N ]) = ωn. Since Diagram (12) commutes, the following chain
of equalities holds:

τndR

(
compn ◦ Jn [Cn(ΦX)(Voln)]

)
= compn ◦ transnΓ [Cn(ΦX)(Voln)]

= λωn

= τndR(λ[ωN,∂N ]) .

Since τndR is injective as recalled in Remark 3.28, we have

compn ◦ Jn [Cn(ΦX)(Voln)] = λ[ωN,∂N ] .

Using the previous equality, it is immediate to check that the volume of σ may be
expressed as follows

Vol(σ) = 〈compn ◦ Jn [Cn(ΦX)(Voln)] , [N, ∂N ]〉
= λ〈[ωN,∂N ], [N, ∂N ]〉 = λVol(M) .
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As a consequence of Equation (13), taking the absolute value on both sides, we get

|Vol(σ)|
|Vol(M)|

= |λ| =
‖transnΓ [Cn(ΦX)(Voln)] ‖∞

‖ωbn‖∞
.

Therefore, we reduce ourselves to prove that

‖transnΓ [Cn(ΦX)(Voln)]‖∞
‖ωbn‖∞

≤ 1 ,

Recall that ‖ωbn‖∞ = ‖Voln‖∞ because there are no coboundaries in Hn
cb(G;Rε), as

proved by Bucher, Burger and Iozzi [BBI13, Proposition 2]. Moreover, note that
transnΓ is norm non-increasing by definition. Therefore, the claim follows if we show
that

‖[Cn(ΦX)(Voln)]‖∞ ≤ ‖Voln‖∞ .

Note that, by the definition of ‖·‖∞, we have

‖[Cn(ΦX)(Voln)]‖∞ ≤ ‖Cn(ΦX)(Voln)‖∞ .

Since we have already proved in Lemma 4.7 that Cn(ΦX) is norm non-increasing ,
we get

‖Cn(ΦX)(Voln)‖∞ ≤ ‖Voln‖∞ ,

whence the thesis. �

Having introduced a Milnor-Wood type inequality, we are interested now in inves-
tigating maximal cocycles, that are cocycles of maximal volume. By Corollary 5.9
and Remark 5.10, we already know that all the cocycles which are cohomologous
to the one associated to the standard lattice embedding via a measurable function
with essentially constant sign are maximal. We spend the rest of this section in
proving that in fact they are the only ones. This remarkable result provides our
desired rigidity result for measurable cocycles.

To that end, we need to prove the formula reported in Proposition 1.2 which allows
us to express the volume as a multiplicative constant. Our result will be a general-
ization of Bucher, Burger and Iozzi’s formula [BBI13, Theorem 1.2]. Additionally,
in the uniform case, our approach can be interpreted as an alternative proof of the
generalized version Bader, Furman and Sauer’s formula [BFS13b, Theorem 4.8] (see
Section 5.2).

Proof of Proposition 1.2. As already proved in Proposition 5.11, we know that

transnΓ [Cn(ΦX)(Voln)] =
Vol(σ)

Vol(M)
ωbn ,

where ωbn = [Voln] ∈ Hn
cb(G;Rε). A priori this equality holds at the level of coho-

mology classes but, as already explained in Section 3.3, we may identify Hn
cb(G;Rε)

with the space of bounded measurable cocycles on Sn−1. Hence, the above equality
can be restated in terms of cocycles as follows:

transnΓ ◦ Cn(ΦX)(Voln) =
Vol(σ)

Vol(M)
Voln .
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It is immediate to check that this provides precisely the desired formula. �

Before going into the details of our rigidity Theorem 1.1, we define now a family
of cocycles with vanishing volume.

Definition 5.12. Let n ≥ 3. Let Γ < G+ = Isom+(Hn) be a torsion-free non-
uniform lattice and let (X,µX) be a standard Borel probability Γ-space. Let σ : Γ×
X → G+ be a measurable cocycle. Let k < n, we say that the cocycle σ is reducible
if it is cohomologous to a cocycle σred : Γ×X → Isom+(Hk) through a measurable
map f : X → Isom(Hn) with essentially constant sign. Here Isom+(Hk) is thought
of as a subgroup of Isom+(Hn) via the upper left corner injection, that is

Isom+(Hk)→ Isom+(Hn), g 7→
(
g 0
0 Idn−k

)
,

where Idn−k is the identity matrix of order (n− k).

In the following example we show that reducible cocycles have volume equal to
zero.

Example 5.13. Let σ be a reducible cocycle. By Proposition 5.8, without loss of
generality we can work directly with a cocycle

σ : Γ×X → Isom+(Hk) < Isom+(Hn) .

If we now assume that σ admits a measurable map φ : Sn−1 ×X → Sn−1, it should
be clear that this map admits actually as target the (k − 1)-dimensional sphere
Sk−1 stabilized by Isom+(Hk). Hence for almost every x ∈ X we have a map
φx : Sn−1 → Sk−1 , φx(ξ) := φ(ξ, x) whose image lies entirely in Sk−1. Moreover,
sinceX is a standard Borel space, by [FMW04, Lemma 2.6] the map φx is measurable
for almost every x ∈ X.

Since the φx-image of any tetrahedron lies in Sk−1, we have∫
Γ\G

∫
X
ε(g−1) ·Voln(φx(g · ξ0), · · · , φx(g · ξn))dµX(x)dµ(g) = 0 .

By applying Proposition 1.2, this shows that Vol(σ) = 0.

We are now ready to discuss the proof of our main rigidity Theorem 1.1.

Proof of Theorem 1.1. Let σi denote the cocycle associated to the standard lattice
embedding. We have already proved in Corollary 5.9 and Remark 5.10 that cocycles
cohomologous to σi via a measurable function with essentially constant sign have
maximal volume. It remains to prove the converse.

Let σ : Γ×X → G+ be a maximal measurable cocycle with associated essentially
unique boundary map φ : Sn−1×X → Sn−1. Up to conjugacy by a suitable element
g ∈ G, we may assume that the volume of σ is positive (see Proposition 5.8).

Fix a positive regular ideal tetrahedron with vertices ξ0, · · · , ξn ∈ Sn−1 and denote
its volume by νn.
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Define the measurable map φx : Sn−1 → Sn−1 by φx(ξ) := φ(ξ, x). Notice that the
hypothesis on X to be a standard Borel space implies that the map φx is measurable
for almost every x ∈ X, again by [FMW04, Lemma 2.6].

Following [BBI13, Proposition 5], we know that the equality stated in Proposi-
tion 1.2 actually holds for every ξ0, · · · , ξn ∈ Sn−1. Hence, we get∫

Γ\G

∫
X
ε(g−1) ·Voln(φx(g · ξ0), · · · , φx(g · ξn))dµX(x)dµ(g) = νn ,

where µ is the normalized probability measure on the quotient Γ\G. Since the
argument of the integral is bounded from above by νn, the previous formula implies
that

ε(g−1) ·Voln(φx(g · ξ0), · · · , φx(g · ξn)) = νn

for almost every g ∈ Γ\G and almost every x ∈ X. Since φ is σ-equivariant,
the previous formula holds in fact for almost every g ∈ G and for almost every
x ∈ X. Following [BBI13, Proposition 6], this implies that φx is almost everywhere
equal to an orientation-preserving isometry f(x) ∈ G+. We now conclude the
proof as describe by Bader, Furman and Sauer [BFS13b, Proposition 3.2]. For the
convenience of the reader, we recall here the procedure for obtaining the desired
conjugation. The previous construction allows us to define a map f : X → G+.
Note that the map φ̂ : X → Meas(Sn−1,Sn−1), φ̂(x) := φx is measurable and
its image lies entirely in the isometry group PO◦(n, 1) ⊂ Meas(Sn−1,Sn−1) (see
also [BFS13b, Proposition 3.2]). Since by assumption X is a standard Borel space,
the measurability of the map f follows now by [FMW04, Lemma 2.6].

Therefore, given γ ∈ Γ, on the one hand we have

φ(i(γ)ξ, γx) = σ(γ, x)φ(ξ, x) = σ(γ, x)f(x)(ξ),

and on the other hand

φ(i(γ)ξ, γx) = f(γx)(i(γ)ξ).

The previous computations show that

i(γ) = f(γx)−1σ(γ, x)f(x) ,

whence σ is cohomologous to the cocycle associated to the standard lattice embed-
ding i : Γ→ G+.

�

We already know that among maximal cocycles we may find the ones associated to
maximal representations. Since we already mentioned that all our results also hold
in the uniform case, it is remarkable that in this situation we can describe other
families of maximal cocycles. We anticipate here the family arising from ergodic
integrable self-couplings and the ones coming from ergodic couplings of Isom(Hn).
We postpone to Section 6 the discussion of the ones arising as pullback of maximal
cocycles along maps homotopic to local isometries (see Proposition 1.4).

We recall first the definition of integrable self-coupling (see for instance [Sha00,
BFS13a, BFS13b] for a discussion on this property).
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Let Γ be torsion-free uniform lattice in G+ and let ` : Γ→ N be the length func-
tion associated to some word-metric on Γ. Keeping the notation of Section 5.3,
consider a (Γr,Γ`)-coupling (Ω,mΩ) with associated right measure equivalence co-
cycle αΩ : Γr ×Γ`\Ω→ Γ`. We say that (Ω,mΩ) is an integrable (Γr,Γ`)-coupling if
for every γ ∈ Γ ∫

Γ`\Ω
`(αΩ(γ, x))dmΓ`\Ω(x) < +∞ ,

where Γ`\Ω is the normalized probability measure on Γr\Ω. We need this definition
in order to apply a resuly by Bader, Furman and Sauer [BFS13b, Corollary 4.12].

As describe by Shalom [Sha00, Theorem 3.6] (see also [BFS13a, Remark 5.5]),
if n ≥ 3, the group Isom(Hn) endowed with its Haar measure mH is an integrable
(Γr,Γ`)-coupling for any of its uniform lattices.

We are now ready to show that ergodic integrable self-couplings are maximal
(compare with [BFS13b, Corollary 4.12]).

Corollary 5.14. Assume n ≥ 3. Let Γ < Isom+(Hn) be a torsion-free uniform
lattice and set M = Γ\Hn. Let (Ω,mΩ) be an ergodic integrable (Γr,Γ`)-coupling
with associated right measure equivalence cocycle αΩ : Γr × Γ`\Ω → Γ`. Then it
holds

|Vol(αΩ)| = Vol(M) .

Proof. Since we know by [BFS13b, Corollary 4.12] that integrable self couplings
satisfy eu(Ω) = ±Vol(M), by Section 5.2 we get

|Vol(αΩ)| = |eu(Ω)| = Vol(M) ,

and this concludes the proof. �

Remark 5.15. In the uniform case, the previous corollary together with Theorem 1.1
show that measurable cocycles associated to ergodic integrable self-couplings are
conjugated with the ones associated to maximal representations.

6. Maximal cocycles and mapping degree

Let M1 and M2 be two closed hyperbolic manifold of the same dimension n ≥ 3.
We know by [Thu79, Theorem 6.4] (compare also with [BBI13, Corollary 1.3]), that
given a continuous map f : M1 →M2, we have

|deg(f)| ≤ Vol(M1)

Vol(M2)

and the equality holds if and only if f is homotopic to a local isometry.
We show here a result that characterizes maps homotopic to local isometries via

the previous theorem using maximal cocycles (i.e. cocycles of maximal volume).
Let f : M1 → M2 be a continuous map. Denote by Γ1 and Γ2 the fundamental

groups of M1 and M2, respectively. Let π1(f) : Γ1 → Γ2 be the induced map by f at
the level of fundamental groups. Let us consider a measurable cocycle σ : Γ2×X →
G+, where (X,µX) is a standard Borel probability Γ2-space. Note that (X,µX) can



A MATSUMOTO/MOSTOW RESULT FOR HYPERBOLIC COCYCLES 42

be also viewed as a standard Borel probability Γ1-space via the action induced by
π1(f). We define the pullback cocycle along f as

f∗σ : Γ1 ×X → G+, f∗σ(γ, x) = σ(π1(f)(γ), x) ,

for all γ ∈ Γ1 and x ∈ X.

Lemma 6.1. The map f∗σ is a measurable cocycle.

Proof. Let γ1, γ2 ∈ Γ1 and x ∈ X. Then, we have

f∗σ(γ1γ2, x) = σ(π1(f)(γ1γ2), x)

= σ(π1(f)(γ1)π1(f)(γ2), x)

= σ(π1(f)(γ1), π1(f)(γ2) · x)σ(π1(f)(γ2), x)

= f∗σ(γ1, π1(f)(γ2) · x)f∗σ(γ2, x) .

The proof of the measurability and of the continuity of the map

Γ1 → Meas(X,G+), γ 7→ σ(π1(f)(γ), ·)
are straightforward and we leave their proof to the reader. �

Given a continuous map f : M1 → M2 of non-vanishing degree, thanks to the

work of [BM96, Fra09] there exists an essentially unique measurable map f̃ : ∂Hn →
∂Hn which is π1(f)-equivariant. Now if we assume that σ admits a boundary map
φ : Sn−1 ×X → Sn−1, the pullback cocycle along f admits the following boundary
map:

f∗φ : Sn−1 ×X → Sn−1, f∗φ(ξ, x) := φ(f̃(ξ), x) ,

for all ξ ∈ Sn−1 and x ∈ X.
Having introduced all the elements appearing in Proposition 1.3, we are now

ready to prove it.

Proof of Proposition 1.3. Since σ is maximal, by the proof of Theorem 1.1 we know
that the slices of the associated boundary map φ : Sn−1×X → Sn−1 are isometries.
More precisely φx : Sn−1 → Sn−1, φx(ξ) := φ(ξ, x) is an isometry for almost every
x ∈ X. Hence there exists a measurable map F : X → G+ such that

φx(ξ) = F (x)(ξ) ,

for almost every ξ ∈ Sn−1. If we now consider the volume cocycle associated to σ,
for almost every ξ0, . . . , ξn ∈ Sn−1 we have that

Cn(ΦX)(Voln)(ξ0, . . . , ξn) =

∫
X

Voln(φx(ξ0), . . . , φx(ξn))dµX(x) =

=

∫
X

Voln(F (x)(ξ0), . . . , F (x)(ξn))dµX(x) =

=

∫
X

Voln(ξ0, . . . , ξn)dµX(x) = Voln(ξ0, . . . , ξn) ,

or equivalently it holds

(14) Cn(ΦX)(Voln) = Voln .
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We have the following chain of equalities:

Vol(f∗σ) = 〈compn ◦ gnM1
[Cn(f∗ΦX)(Voln)], [M1]〉 =(15)

= 〈compn ◦ gnM1
[Cn(f̃) ◦ Cn(ΦX)(Voln)], [M1]〉 =

= 〈compn ◦ gnM1
[Cn(f̃)(Voln)], [M1]〉 =

= 〈compn ◦ gnM1
◦Hn

b (π1(f))[Voln], [M1]〉 =

= 〈Hn(f) ◦ compn ◦ gnM1
[Voln], [M1]〉 =

= 〈compn ◦ gnM1
[Voln],Hn(f)[M1]〉 =

= 〈compn ◦ gnM1
[Voln],deg(f) · [M2]〉 = deg(f)Vol(M2) ,

where we used [BI02] to implement the class Hn
b (π1(f))[Voln] using the preferred

representative Cn(f̃)(Voln) to pass from the third to the fourth line. Additionally
we exploited the fact that comparison maps commute with the maps induced by
representations to move from the fourth line to the fifth. This concludes the proof.

�

The previous proposition easily implies the mapping degree theorem, as shown in
the following:

Corollary 6.2. Let f : M1 → M2 be a continuous map with deg(f) 6= 0 between
closed hyperbolic manifolds of the same dimension n ≥ 3. Then,

|deg(f)| ≤ Vol(M1)

Vol(M2)

Proof. Let n ≥ 3. By Proposition 1.3, on the one hand we know that given a
maximal cocycle σ : Γ2 ×X → PO◦(n, 1), we get

Vol(f∗σ) = deg(f) ·Vol(M2) .

On the other, by Proposition 5.11 we have that

Vol(M2) · | deg(f)| = |Vol(f∗σ)| ≤ Vol(M1) ,

whence the thesis. �

Another remarkable application of Proposition 1.3 is the possibility to use the
language of maximal cocycles in order to characterize continuous maps between
closed hyperbolic manifolds that are homotopic to local isometries. This is the
content of Proposition 1.4, whose proof is reported below.

Proof of Proposition 1.4. Suppose that f is homotopic to a local isometry. On the
one hand, Thurston’s strict version of the mapping degree theorem [Thu79, Theo-
rem 6.4] implies that

Vol(M1) = |deg(f)| ·Vol(M2) .

On the other hand, Proposition 1.3 implies

|Vol(f∗σ)| = |deg(f)| ·Vol(M2) .
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This shows that f∗σ is maximal.
Suppose now the converse, that is f∗σ is maximal. Then, Proposition 1.3 implies

that

Vol(M1) = |Vol(f∗σ)| = | deg(f)| ·Vol(M2) .

The thesis now follows as a consequence of [Thu79, Theorem 6.4]. �

7. Euler number of Zimmer’s cocycles of surface groups

Let Σg a closed hyperbolic surface of genus g ≥ 2 and denote by Γg := π1(Σg)
its fundamental group. Fix a standard Borel probability Γg-space (X,µX). In this
section we want to define the Euler number associated to a measurable cocycle σ :
Γg ×X → Homeo+(S1) and study its rigidity property. This provides an extension
of the study of maximal representations to the settings of measurable cocycles.

Since Γg is a uniform lattice, we have already discussed in Section 5.2 how our
approach leads to the generalized version of Bader-Furman-Sauer’s Euler number.
Here, we show in Remark 7.4 that our Euler number of measurable cocycles dif-
fers from the latter by a multiplicative constant. However, as mentioned above
this section is mainly devoted to the extension of the Euler number of represen-
tations. Remarkably, the techniques that we develop here allows us to provide
alternative proofs of the generalized version of some results by Bader, Furman and
Sauer [BFS13b] for measurable cocycles.

Assume from now on that σ admits an essentially unique boundary map φ : S1×
X → S1. It is important to underline that a priori there is no well-defined action of
Γg on the circle S1, hence we first need to fix a hyperbolization π0 : Γg → PSL(2,R)
to specify this action. We will assume that Homeo+(S1) has the discrete topology.
Note that S1 is a compact completely metrizable space on which Homeo+(S1) acts in
a measurable way. This means that for all along the section we consider generalized
boundary maps as described in Remark 2.8.

7.1. Definition of Euler number. Recall by Section 3.4 that the Euler cocycle

ε = −o/2 ∈ B∞((S1)3;R)Homeo+(S1)

naturally determine a cohomology class in

[C2(ΦX)(ε)] ∈ H2
b(Γg;R) ,

and we call it the Euler class associated to σ. Let [Σg] ∈ H2(Σg,R) be the fun-
damental class of Σg. Similarly to what we have done in the previous section, we
denote by

comp2 : H2
b(Σg;R)→ H2(Σg;R)

the comparison map (which is non-trivial since Σg is compact). We are now ready
to define the Euler number associated to a cocycle.

Definition 7.1. Let Σg be a closed surface of genus g ≥ 2 and let Γg = π1(Σg). Let
(X,µX) be a standard Borel probability Γg-space. Fix a hyperbolization π0 : Γg →
PSL(2,R) and assume that Γg acts on S1 via π0. Consider a cocycle σ : Γg ×X →
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Homeo+(S1) with essentially unique boundary map φ : S1 × X → S1. The Euler
number eu(σ) associated to the cocycle σ is given by

eu(σ) := 〈comp2 ◦ g2
Σg

[C2(ΦX)(ε)], [Σg]〉 ,

where 〈·, ·〉 is the Kronecker pairing and comp2, g2
Σg

denote the comparison map and

the isomorphism appearing in Gromov’s mapping theorem, respectively.

Remark 7.2. As already noticed in Remark 5.2, also in this case it is sufficient to
suppose that σ is non-elementary to obtain the existence of an essentially unique
boundary map by [MS04, Proposition 3.3].

Remark 7.3. As discussed in Remark 5.4, recall that the comparison map also ap-
pears in our definition of volume of cocycles defined in terms of uniform lattices.
For the same reason, we are forced to introduce the comparison map also when we
define the Euler number of measurable cocycles.

Remark 7.4. We have already discussed in Section 5.2 how the results proved by
Bader, Furman and Sauer [BFS13b] about (Γ,Γ)-couplings can be extended to their
generalized versions (i.e. rephrased for arbitrarily measurable cocycles). Here, we
show how our Euler number of measurable cocycle differs by a multiplicative con-
stant from the generalized version of Bader-Furman-Sauer’s Euler number. Via this
remark, we will see in the sequel how some of our results provide alternative proofs
of the generalized version of some results by Bader, Furman and Sauer [BFS13b].

Let Σg be a closed surface of genus g ≥ 2 and let Γg = π1(Σg). Fix a hy-
perbolization π0 : Γg → PSL(2,R) and suppose that Γg acts on S1 via π0. Let
(Ω,mΩ) be a (Γg,Γg)-coupling with associated right measure equivalence cocycle
αΩ : Γg × Γg\Ω→ Γg. Then it holds

eu(αΩ) = −eu(Ω)

2π
.

Indeed, Bader, Furman and Sauer [BFS13b] consider the pullback of the Volume
cocycle rather that of the Euler one. These cocycles are related by the following
equation

−2πε = Vol2 .

Moreover, by standard result about Furstenberg boundaries theory, there exists a
boundary map φ : S1 × Γg\Ω→ S1 associated to αΩ. As showed in Section 5.2, by
a suitable modification of the commutative Diagram (11) to this context, we get

eu(Ω) = 〈comp2 ◦ g2
Σg
◦ I2

Γg\Ω ◦H2
b(Ω) ◦H2

b(κ) ◦H2
b(i)([Vol2]), [Σg]〉

= 〈comp2 ◦ g2
Σg

[
C2(ΦΓg\Ω)(Vol2)

]
, [Σg]〉

= 〈comp2 ◦ g2
Σg

[
C2(ΦΓg\Ω)(−2πε)

]
, [Σg]〉 = −2πeu(αΩ) .
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7.2. Euler number of cocycles vs. Euler number of representations. Recall
by Definition 2.4 that, given any standard Borel probability Γg-space (X,µX), every
representation ρ : Γg → Homeo+(S1) induces naturally a cocycle σρ : Γg × X →
Homeo+(S1).

We are going to prove, under an additional hypothesis on ρ, that the Euler number
associated to σρ coincides with the classic Euler number associated to ρ. This shows
that Definition 7.1 extends the classic notion of Euler number of representations to
the wider theory of Zimmer’s cocycles.

Proposition 7.5. Let Σg be a closed surface of genus g ≥ 2 and let Γg = π1(Σg). Let
(X,µX) be a standard Borel probability Γg-space. Fix a hyperbolization π0 : Γg →
PSL(2,R) and assume that Γg acts on S1 via π0. Consider a representation ρ :
Γg → Homeo+(S1) with associated cocycle σρ. Assume that ρ admits an essentially
unique measurable map ϕ : S1 → S1 which is equivariant with respect to the actions
determined by π0 and ρ, respectively. Then, we have

eu(σρ) = eu(ρ) .

Proof. Thanks to the assumption about the existence of the essentially unique map
ϕ, we can define a σρ-equivariant boundary map φ : S1 ×X → S1 of σρ as follows:

φ : S1 ×X → S1, φ(ξ, x) := ϕ(ξ)

for almost every ξ ∈ S1 and x ∈ X (see Section 2). Since the boundary map φ
actually does not depend on the second variable x ∈ X, it is immediate to check
that the two following pullback maps agree

C2(ΦX)(ε) = C2(ϕ)(ε) .

Recalling that the pullback H2
b(ρ)(eb) of the Euler class along ρ admits as a

representative C2(ϕ)(ε) as described by Burger and Iozzi [BI02], we get that

eu(σρ) = 〈comp2 ◦ g2
Σg

[
C2(ΦX)(ε)

]
, [Σg]〉 =

= 〈comp2 ◦ g2
Σg

[
C2(ϕ)(ε)

]
, [Σg]〉 =

= 〈comp2 ◦ g2
Σg
◦H2

b(ρ)(eb), [Σg]〉 = eu(ρ) ,

and the statement now follows. �

It is a standard fact that the Euler number is constant along the semiconjugacy
class of a representation ρ : Γg → Homeo+(S1) (see for instance [Ioz02]). We show
now that a similar result still holds in the more general theory of Zimmer’s cocycles.
More precisely, the following proposition proves that the Euler number is constant
on the cohomology class of a cocycle σ : Γg ×X → Homeo+(S1).

Proposition 7.6. Let Σg be a closed surface of genus g ≥ 2 and let Γg = π1(Σg).
Let (X,µX) be a standard Borel probability Γg-space. Fix a hyperbolization π0 :
Γg → PSL(2,R) and assume that Γg acts on S1 via π0. Consider a cocycle σ :
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Γg × X → Homeo+(S1) with essentially unique boundary map φ : S1 × X → S1.
Then we have

eu(σf ) = eu(σ) ,

for every measurable map f : X → Homeo+(S1). In particular eu is constant along
the Homeo+(S1)-cohomology classes.

Proof. We know by Definitions 2.3 and 2.9 that the twisted cocycle

σf (γ, x) := f(γx)−1σ(γ, x)f(x)

admits an essentially unique boundary map given by

φf : S1 ×X → Homeo+(S1), φf (ξ, x) := f(x)−1φ(ξ, x) .

Since the cocycle ε is Homeo+(S1)-invariant, the same strategy followed in the proof

of Proposition 5.8 shows that C2(Φf
X)(ε) = C2(ΦX)(ε). This provides the desired

equality

eu(σf ) = 〈comp2◦g2
Σg

[
C2(Φf

X)(ε)
]
, [Σg]〉 = 〈comp2◦g2

Σg
[C2(ΦX)(ε)], [Σg]〉 = eu(σ) .

�

We conclude this paragraph with a nice application of both Proposition 7.5 and
Proposition 7.6:

Corollary 7.7. Let Σg be a closed surface of genus g ≥ 2 and let Γg = π1(Σg).
Consider a hyperbolization π0 : Γg → PSL(2,R) and with associated cocycle σπ0.
Then, we have

eu(σ) = χ(Σg)

for every cocycle σ lying in the cohomology class of σπ0.

Proof. We first note that we can consider the identity idS1 : S1 → S1 as a measur-
able equivariant map with respect to the action of the hyperbolization π0 on both
the domain and the target space. Then, recall that if π0 : Γg → PSL(2,R) is a
hyperbolization then eu(π0) = χ(Σg), as shown by Iozzi [Ioz02]. The result now
follows from Propositions 7.5 and 7.6. �

7.3. Rigidity and Euler number. Given a closed surface Σg, we proved in Corol-
lary 7.7 that the Euler number of a cocycle associated to a hyperbolization is equal
to χ(Σg). In fact, a stronger result holds: the absolute value of the Euler num-
ber of any cocycle defined in terms of π1(Σg) is always bounded by |χ(Σg)|. We
formalize this result in the following proposition, which can be interpreted as a
generalized Milnor-Wood inequality (compare with [Mil58, Woo71]). As explained
in Remark 7.4, up to a multiplicative constant this result provides an alternative
proof of the generalized version of a result by Bader, Furman and Sauer [BFS13b,
Corollary 4.9].

Proposition 7.8. Let Σg be a closed hyperbolic surface of genus g ≥ 2 and let Γg =
π1(Σg). Let (X,µX) be a standard Borel probability Γg-space. Fix a hyperbolization
π0 : Γg → PSL(2,R) and assume that Γg acts on S1 via π0. For every cocycle
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σ : Γg ×X → Homeo+(S1) with essentially unique boundary map φ : S1 ×X → S1,
we have

|eu(σ)| ≤ |χ(Σg)| .

Proof. Using the same notation of Section 3.6 and suitably adapting Diagram (9),
we can produce the following commutative diagram

(16) H2((B∞(S1)•+1,R)Homeo+(S1))

H2(ΦX)

��
H2
b(Γg;R)

trans2
//

g2
Σg
��

H2
cb(PSL(2,R);R)

comp2

��

H2
b(Σg;R)

comp2

��
H2(Σg;R) ∼= H2

dR(Σg;R)
τ2
dR

// H2
c(PSL(2,R);R) ∼= Ω2(H2)PSL(2,R) .

This diagram together with Gauss-Bonnet theorem will be the main ingredients in
the proof. Recall that ε = −o/2 is the cocycle representing the Euler class on S1.
Since the cohomology group H2

cb(PSL(2,R);R) is one dimensional and generated by
the Euler class eb, as stated by Iozzi [Ioz02], we have

trans2[C2(ΦX)(ε)] = λeb .

We want now to determine this constant explicitly. By applying to both sides of
the equation the comparison map we get

comp2 ◦ trans2[C2(ΦX)(ε)] = comp2(λeb) = λcomp2(eb) = λe ,

where e ∈ H2
c(PSL(2,R);R) is the Euler class seen in the continuous cohomology

group. By the Van Est isomorphism we know that each continuous class corresponds
bijectively to a PSL(2,R)-invariant differential form on the associated symmetric
space, that means in this case the hyperbolic plane H2. By construction the class of
the orientation cocycle o is mapped to the standard volume form on H2 normalized
by π, that is ω/π. This means that the Euler class e = [−o/2] will be represented
by −ω/2π.

Now the volume form ω defines a natural volume form ω0 on the surface Σg

endowed with the hyperbolic structure determined by the hyperbolization π0, that
is π0(Γg)\H2. Moreover the transfer map τdR is injective in degree 2 and maps ω0

in ω (see Remark 3.28).
By the commutativity of Diagram (16), we have

τ2
dR(comp2 ◦ g2

Σg
[C2(ΦX)(ε)] = comp2 ◦ trans2[C2(ΦX)(ε)] = λe = λτ2

dR

([
−ω0

2π

])
,

and by injectivity of the transfer map we get

comp2 ◦ g2
Σg

[
C2(ΦX)(ε)

]
= λ

[
−ω0

2π

]
.
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If we now we evaluate both sides on the fundamental class [Σg] ∈ H2(Σg;R) we
obtain

eu(σ) = 〈comp2 ◦ g2
Σg

[
C2(ΦX)(ε)

]
, [Σg]〉 =

= 〈λ
[
−ω0

2π

]
, [Σg]〉

= − λ

2π

∫
Σg

ω0

= − λ

2π
(4π(g − 1)) = λχ(Σg) ,

where we used the Gauss-Bonnet theorem to pass from the third to the fourth line.
In particular we get that

λ =
eu(σ)

χ(Σg)
.

If we now take the absolute value on both sides, using Lemma 4.7, it follows that

|λ| = ||trans2[C2(ΦX)(ε)]||∞
||eb||∞

≤ 1 ,

by an argument similar to the one exposed in Proposition 5.11. Note that ||eb||∞ =
||ε||∞ because of the double ergodicity of the action of Γg induced by π0 and the
fact that ε is alternating. Indeed, double ergodicity implies that essentially bounded
Γ-invariant functions f : (S1)2 → R are constant and so if we compute bounded coho-
mology via the subresolution of alternating functions, as explained in Remark 3.16,
we have that L∞alt((S1)2;R)Γ = 0.

�

We move forward to reach the proof of the generalized Matsumoto theorem for
cocycles. In order to do this, we need first to prove Proposition 1.6 where we express
the Euler number as a multiplicative constant between cocycles. The result we are
going to prove will generalize [Ioz02, Proposition 1.7] (compare this result with the
generalized version of Bader, Furman and Sauer’s formula [BFS13b, Lemma 4.10]).

Proof of Proposition 1.6. We have already showed in the proof of Proposition 7.8
that

trans2[C2(ΦX)(ε)] =
eu(σ)

χ(Σg)
eb,

and hence by linearity we argue that

trans2[C2(ΦX)(o)] =
eu(σ)

χ(Σg)
[o].

Since there are no essentially bounded PSL(2,R)-invariant cocycles on S1 by the
doubly ergodic action of Γg induced by π0 and the fact that the orientation cocycle
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is alternating, the previous equality holds actually at the level of cocycles, that
means

trans2 ◦ C2(ΦX)(o) =
eu(σ)

χ(Σg)
o,

and the statement follows. �

Thanks to Proposition 1.6, we are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Corollary 7.7 we already know that the cohomology class
of a cocycle associated to a hyperbolization has maximal Euler number. We are
going to prove the converse. Let σ : Γg × X → Homeo+(S1) be a cocycle with
essentially unique boundary map φ : S1 × X → S1. Assume |eu(σ)| = χ(Σg). Up
to composing with a suitable homeomorphism which reverses the orientation of S1

we can assume that the equation holds even dropping the absolute value. Consider
now a triple of points (ξ0, ξ1, ξ2) ∈ (S1)3, on which the orientation cocycle is equal
to +1.

Define the map φx : S1 → S1 by φx(ξ) := φ(ξ, x), which is measurable for almost
every x ∈ X by [FMW04, Lemma 2.6]. As a consequence of Proposition 1.6 we
obtain∫

π0(Γg)\PSL(2,R)

∫
X
o(φx(g · ξ0), φx(g · ξ1), φx(g−1 · ξ2))dµX(x)dµ0(ḡ) = 1,

for almost every (ξ0, ξ1, ξ2) ∈ (S1)3. We remind the reader that µ0 is the induced
normalized probability measure by the Haar measure of PSL(2,R) on the quotient
π0(Γ)\PSL(2,R). The previous equality implies that

o(φx(g · ξ0), φx(g · ξ1), φx(g · ξ2)) = 1,

for almost every g ∈ π0(Γg)\PSL(2,R) and almost every x ∈ X. By the equivariance
of the map φ with respect to the cocycle σ the equality above actually holds for
almost every g ∈ PSL(2,R) and for almost every x ∈ X. This means that the map
φx : S1 → S1 is order-preserving for almost every x ∈ X. As proved by Iozzi [Ioz02],
this implies that the map φx must agree almost everywhere with a orientation-
preserving homeomorphism f(x) ∈ Homeo+(S1). In this way we get a function
f : X → Homeo+(S1). Since X is standard Borel, also in this case the measurability

of f is guaranteed by the fact that φ̂ : X → Meas(S1, S1), φ̂(x) := φx is measurable
by [FMW04, Lemma 2.6] and its image lies in Homeo+(S1) ⊂ Meas(S1,S1) (see
also [BFS13b, Proposition 3.2]). Then, by applying [BFS13b, Proposition 3.2], the
thesis follows as in Theorem 1.1. �

As in the case of the volume, by Proposition 7.5 we already know that among
the maximal cocycles we may find the ones associated to maximal representations.
Moreover, since in the case of (Γg,Γg)-couplings our Euler number only differs by
a multiplicative constant from Bader-Furman-Sauer’s one, we have the following
corollary:

Corollary 7.9. Let Σg be a closed surface of genus g ≥ 2 and let Γg = π1(Σg).
Fix a hyperbolization π0 : Γg → PSL(2,R) and suppose that Γg acts on S1 via π0.
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Let (Ω,mΩ) be an ergodic integrable (Γg,Γg)-coupling with associated right measure
equivalence cocycle αΩ : Γg × Γg\Ω→ Γg. Then it holds

|eu(αΩ)| = |χ(Σg)|

Proof. Since we know by [BFS13b, Corollary 4.12] that integrable self couplings
satisfy eu(Ω) = ±Vol(π0(Γg)\H2), by Remark 7.4, we get

|eu(αΩ)| =
∣∣∣∣eu(Ω)

2π

∣∣∣∣ =
Vol(π0(Γg)\H2)

2π
= |χ(Σg)| ,

where in the last equality we used Gauss-Bonnet theorem. This concludes the
proof. �
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