We use refined spectral sequence arguments to calculate known and previously unknown bi-Hamiltonian cohomology groups, which govern the deformation theory of semisimple bi-Hamiltonian pencils of hydrodynamic type with one independent and N dependent variables. In particular, we rederive the result of Dubrovin-Liu-Zhang that these deformations are parametrized by the so-called central invariants, which are N smooth functions of one variable.

Carlet, G., Kramer, R., Shadrin, S. (2018). Central invariants revisited. JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES, 5, 149-175 [10.5802/jep.66].

Central invariants revisited

Carlet G.;Kramer R.;
2018

Abstract

We use refined spectral sequence arguments to calculate known and previously unknown bi-Hamiltonian cohomology groups, which govern the deformation theory of semisimple bi-Hamiltonian pencils of hydrodynamic type with one independent and N dependent variables. In particular, we rederive the result of Dubrovin-Liu-Zhang that these deformations are parametrized by the so-called central invariants, which are N smooth functions of one variable.
Articolo in rivista - Articolo scientifico
Bi-Hamiltonian cohomology; Central invariants; Deformations of bi-Hamiltonian structures; Poisson structures of hydrodynamic type;
English
2018
5
149
175
open
Carlet, G., Kramer, R., Shadrin, S. (2018). Central invariants revisited. JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES, 5, 149-175 [10.5802/jep.66].
File in questo prodotto:
File Dimensione Formato  
Carlet-2018-J Éc polytech Math-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 758.96 kB
Formato Adobe PDF
758.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/511259
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
Social impact