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CENTRAL INVARIANTS REVISITED

by Guido Carlet, Reinier Kramer & Sergey Shadrin

Abstract. — We use refined spectral sequence arguments to calculate known and previously
unknown bi-Hamiltonian cohomology groups, which govern the deformation theory of semi-
simple bi-Hamiltonian pencils of hydrodynamic type with one independent and N dependent
variables. In particular, we rederive the result of Dubrovin-Liu-Zhang that these deformations
are parametrized by the so-called central invariants, which are N smooth functions of one
variable.

Résumé (Les invariants centraux revisités). — Nous utilisons des arguments raffinés de suite
spectrale pour calculer des groupes de cohomologie bihamiltonienne, certains déjà connus et
d’autres non, qui gouvernent la théorie des déformations de pinceaux bihamiltoniens semi-
simples de type hydrodynamique avec une variable indépendante et N variables dépendantes.
En particulier, nous retrouvons le résultat de Dubrovin-Liu-Zhang disant que ces déformations
sont paramétrées par les invariants centraux, qui sont N fonctions lisses d’une variable.
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5. The cohomology of (Ĉ [λ],∆0,1) at p = d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6. A vanishing result for E1 2 at (p, d) = (3, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7. Proofs of the main theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Appendix. Formula for and calculations with ∆0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Mathematical subject classification (2010). — 37K10, 53D17, 58A20.
Keywords. — Poisson structures of hydrodynamic type, deformations of bi-Hamiltonian structures,
bi-Hamiltonian cohomology, central invariants.

The authors were supported by the Netherlands Organization of Scientific Research.

e-ISSN: 2270-518X http://jep.cedram.org/

http://jep.cedram.org/


150 G. Carlet, R. Kramer & S. Shadrin

1. Introduction

In this paper, we consider the classification of a certain kind of dispersive evolution-
ary partial differential equations. More precisely, consider a convex domain U ⊂ RN ,
and formal functions u : S1 → U . Denoting the coordinate on S1 by x, the partial
differential equations look like

∂ui

∂t
= Aij(u)ujx +

(
Bij(u)uxx + Cijk(u)ujxu

k
x

)
ε+ O(ε2),

as a homogeneous equation for the degree defined by deg ∂t = deg ∂x = −deg ε = 1.
We require moreover that this equation is bi-Hamiltonian and its dispersionless

limit can be written as a hamiltonian equation of hydrodynamic type in two compat-
ible ways:

∂u

∂t
= {u(x), H1}1 = {u(x), H0}2,

subject to a number of conditions that will be specified in Section 2.
The archetypical example of such a structure is the Korteweg-de Vries equation,

given by ∂u/∂t = uux + (ε2/12)uxxx, for which we have [Mag78]

{u(x), u(y)}1 = δ′(x− y) H1 =

∫
dx
(u2

2
+
ε2

12
uxx

)

{u(x), u(y)}2 =


u(x)δ′(x− y)

+
1

2
u′(x)δ(x− y)

+
ε2

8
δ′′′(x− y)

H0 =
2

3

∫
dxu.

An important reason for studying such structures is the possibility to extend it to
an infinite-dimensional hierarchy of partial differential equations via the recursion
operator {·, ·}−11 {·, ·}2:

∂u

∂tj
= {u(x), Hj}1 = {u(x), Hj−1}2.

On the space of these structures, there is an action of the Miura group, given by
diffeomorphisms of U in the dispersionless limit, with as dispersive terms differential
polynomials in u. Hence, it is natural to try to classify equivalence classes of Poisson
pencils with respect to this group action. In 2004, in a series of papers, Dubrovin, Liu,
and Zhang first considered this classification problem [LZ05, DLZ06]; see also [Lor02,
Zha02]. In particular, they proved that the Miura equivalence class of deformations
of a given semi-simple(1) pencil of local Poisson brackets of hydrodynamic type is
specified by a choice of N functions of one variable. They called these functions central
invariants, and conjectured that for any choice of central invariants the corresponding
Miura equivalence class is non-empty. This conjecture was proved in [CPS15].

As any deformation theory of this type, its space of infinitesimal deformations
as well as the space of obstructions for the extensions of infinitesimal deformations

(1)Recently, the non-semisimple case has been considered in [DVLS16].
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Central invariants revisited 151

are controlled by some cohomology groups. In this case these are the so-called bi-
Hamiltonian cohomology in cohomological degrees 2 and 3, and one should also con-
sider there the degree with respect to the total ∂x-derivative, where x is the spatial
variable. In these terms, central invariants span the second bi-Hamiltonian coho-
mology group in ∂x-degree 3, and the second bi-Hamiltonian cohomology groups in
∂x-degrees 2 and > 4 are equal to zero.

The computation of bi-Hamiltonian cohomology is a delicate issue. It is defined on
the space of local stationary polyvector fields on the loop space of an N -dimensional
domain U . A useful tool for this undertaking is the so-called θ-formalism [Get02].
The main technical difficulty is that we cannot immediately work with the space of
densities, since there is a necessary factorization by the kernel of the integral along
the loop. For the central invariants it is done in [LZ05] essentially by hand for quasi-
trivial pencils, i.e., pencils that are equivalent to their leading order by more general
transformations, called quasi-Miura transformations. In [DLZ06], it was proved that
any semi-simple pencil of hydrodynamic type is quasi-trivial, completing the proof.

In [LZ13], Liu and Zhang came up with an important new idea: they invented a
way to lift the computation of the bi-Hamiltonian cohomology from the space of local
polyvector fields to the space of their densities. The latter can also be considered as
the functions on the infinite jet space of the loop space of the shifted tangent bundle
TU [−1], independent of the loop variable x. Their approach was used intensively in a
number of papers: it has been applied to show that the deformation of the dispersion-
less KdV brackets is unobstructed [LZ13] and to compute the higher cohomology in
this case as well [CPS16a]. More generally, this approach allowed a complete compu-
tation of the bi-Hamiltonian cohomology in the scalar (N = 1) case [CPS16b]. Finally,
it was used to show that the deformation theory for any semi-simple Poisson pencil
is unobstructed [CPS15].

At the moment, it is not completely clear yet how widely this approach can be
applied to the computation of the bi-Hamiltonian cohomology. In the case of N > 1

the full bi-Hamiltonian cohomology is not known, and moreover, as the computation
in the case N = 1 shows, the full answer should depend on the formulas for the
original hydrodynamic Poisson brackets. So far the computational techniques worked
well only for the groups of relatively high cohomological grading and/or grading with
respect to the total ∂x-derivative degree. In particular, the most fundamental result
of this whole theory, the fact that the infinitesimal deformations are controlled by the
central invariants, was out of reach of this technique until now.

In this paper, we extend the computational techniques of [CPS15] further and give
a new proof of the theorem of Dubrovin-Liu-Zhang that the space of the Miura classes
of the infinitesimal deformations of a semi-simple Poisson pencil is isomorphic to the
space of N functions of one variable. An advantage of our approach is that we use
only the general shape of the differential induced on the jet space of TU [−1], and,
for instance, the Ferapontov equations for compatible Poisson brackets of hydrody-
namic type [Fer01] enter the computation only through the fact that the differential
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152 G. Carlet, R. Kramer & S. Shadrin

squares to zero. Furthermore, our proof does not rely on the quasi-triviality theorem.
A disadvantage is that in the cohomological approach of Liu-Zhang it is not possible
to reproduce the explicit formula for the central invariants of a given deformation as
in [DLZ06, Eq. 1.49].

Organization of the paper. — The outline of the article is as follows. In Section 2
we recall some standard notations and formulate our main results, based on the com-
putation of some of the cohomology of a certain complex (Â [λ], Dλ) in the rest of the
paper. In Section 3 we give a streamlined version of the proof [CPS15] of the vanishing
theorem for the cohomology of (Â [λ], Dλ). In the next sections we proceed to compute
other parts of this cohomology that will lead us in particular to the identification of
the parameters of the infinitesimal deformations. In Section 4 we compute the full co-
homology of the complex (d̂i(Ĉi),Di), a subcomplex in one of the spectral sequences.
In Section 5 we compute the cohomology of another subcomplex, (Ĉ [λ],∆0,1), for de-
grees p = d. In Section 6 we prove a vanishing result in degrees (p, d) = (3, 2), which
is essential to complete the reconstruction of the second bi-Hamiltonian cohomology
group. In Section 7 we collect the results of the previous sections and, using standard
spectral sequences arguments, we prove our main theorems.

Acknowledgments. — We thank Hessel Posthuma for useful discussions and the
anonymous reviewers for their comments and helpful suggestions.

2. Recollections and main results

2.1. Poisson pencils. — Let N be the number of dependent variables. We consider
a domain U in RN outside the diagonals. Let u1, . . . , uN be the coordinate functions
of RN restricted to U . We denote the corresponding basis of sections of TU [−1] by
θ01, . . . , θ

0
N . We denote by A the space of functions on the jet space of the loop space

of U that do not depend on the loop variables x, that is,

A := C∞(U)
r{

ui,d
}
i=1,...,N
d=1,2,...

z
,

and we call its elements differential polynomials.
Similarly, we denote by Â the space of functions on the jet space of the loop space

of TU [−1] that do not depend on the loop variables x,

Â := C∞(U)
r{

ui,d
}
i=1,...,N
d=1,2,...

,
{
θdi
}
i=1,...,N
d=0,1,2,...

z
.

Sometimes it is convenient to denote the coordinate functions ui by ui,0, for i =

1, . . . , N .
The standard derivation, i.e., the total derivative with respect to the variable x, is

given by

∂x :=

∞∑
d=0

(
ui,d+1 ∂

∂ui,d
+ θd+1

i

∂

∂θdi

)
,

where we assume summation over the repeated basis-related indices (here i).

J.É.P. — M., 2018, tome 5
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Definition 2.1. — The space of local functionals on U is defined to be F̂ := Â /∂xÂ .
The natural quotient map is denoted

∫
dx : Â → F̂ .

Note that both spaces Â and F̂ have two gradations: the standard gradation
that we also call the ∂x-degree in the introduction, given by deg ui,d = deg θdi = d,
i = 1, . . . , N , d > 0, and the super gradation that we also call the cohomological
or the θ-degree, given by degθ u

i,d = 0, degθ θ
d
i = 1, i = 1, . . . , N , d > 0. The first

degree is also defined on A . We denote by Â p
d (respectively, F̂ p

d ) the subspace of Â

(respectively, F̂ ) of standard degree d and cohomological degree p.

Definition 2.2. — A (dispersive) Poisson pencil is a pair of Poisson brackets{
{·, ·}a

}
a=1,2

on F JεK, homogeneous of standard degree one, where deg ε = −1, such
that {·, ·}2 + λ{·, ·}1 is a Poisson bracket for any λ ∈ R.

A dispersionless Poisson pencil is a dispersive Poisson pencil which does not depend
on ε. Any dispersive Poisson pencil has a dispersionless limit: this is the constant term
in ε.

We will furthermore implicitly require all our Poisson pencils to have a hydrody-
namic dispersionless limit on F ,

{ui(x), uj(y)}a =
(
gija (u)∂x + Γijk,a(u)ukx

)
δ(x− y) + O(ε).

Remark 2.3. — For any Poisson bracket of hydrodynamic type, gija is a flat pseudo-
Riemannian metric on U with Christoffel symbols Γijk,a, as proved by Dubrovin and
Novikov in [DN83].

Definition 2.4. — A Poisson pencil of hydrodynamic type is semi-simple if the eigen-
values of gij2 − λg

ij
1 are all distinct and non-constant on U .

From now on, we will assume the dispersionless limit of our Poisson pencils are
semi-simple, and use the roots of det(gij2 − λg

ij
1 ) as canonical coordinates ui on U .

This reduces the metrics to

gij1 (u) = f i(u)δij , gij2 (u) = uif i(u)δij ,

for N non-vanishing functions f1, . . . , fN , subject to the following equations derived
by Ferapontov [Fer01]. Let Hi := (f i)−1/2, i = 1, . . . , N , be Lamé coefficients and
γij := (Hi)

−1∂iHj , i 6= j, be rotation coefficients for the metric determined by
f1, . . . , fN . Here we denote by ∂i the derivative ∂/∂ui. Then we have:

∂kγij = γikγkj , i 6= j 6= k 6= i;(1)

∂iγij + ∂jγji +
∑

k 6=i,j
γkiγkj = 0, i 6= j;(2)

ui∂iγij + uj∂jγji +
∑

k 6=i,j
ukγkiγkj +

1

2
(γij + γji) = 0, i 6= j.(3)

Note that there is no implicit summation in these equations, as these only occur in
the case of contractions of generators of Â and derivatives with respect to them,
and are a shorthand for matrix-like multiplications. In the rest of the paper, we will
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154 G. Carlet, R. Kramer & S. Shadrin

often include an explicit summation sign if there is a chance of confusion. If in doubt
about an implicit summation, it will suffice to check the other side of the equation
for occurrence of the same summation index.

The space of Poisson pencils has a naturally-defined automorphism group:

Definition 2.5. — The Miura group is the group of transformations of the form

ui 7−→ vi(u) +
∑
k>1

Φikε
k,

where v is a diffeomorphism of U and the Φik are differential polynomials of degree k.
Hence the total degree of any Miura transformation is zero.

Given this action, it is a natural question to try to classify Poisson pencils up to
equivalence. Choosing canonical coordinates as above fixes the leading term of the
Miura transformation (the transformation of first type), so the remaining freedom is
given by transformations with v = IdU (transformations of the second type). The first
main result to answer this question is the following theorem by Dubrovin, Liu, and
Zhang:

Theorem 2.6 ([LZ05, DLZ06]). — Given a dispersionless Poisson pencil {·, ·}0a, defor-
mations of the form

{ui(x), uj(y)}a = {ui(x), uj(y)}0a +
∑
k>1

εk
k+1∑
l=0

Aijk,l;aδ
(l)(x− y),

where Aijk,l;a are differential polynomials of degree k+ 1− l, are equivalent if and only
if the following associated functions, called central invariants, are equal:

ci(u) :=
1

3(f i(u))2

(
Aii2,3;2 − uiAii2,3;1 +

∑
k 6=i

(
Aki1,2;2 − uiAki1,2;1

)2
fk(u)(uk − ui)

)
.

Furthermore, ci only depends on ui.

They also conjectured that any set of such functions has an associated deformation
class. This conjecture was settled recently:

Theorem 2.7 ([CPS15]). — Given a dispersionless Poisson pencil {·, ·}0a and a set{
ci(u) ∈ C∞(U)

}N
i=1

, such that each ci depends only on ui, there exists a deformation
of the pencil as in the previous theorem which has the ci as central invariants.

The first theorem was proved using quasi-triviality of Poisson pencils, involving
Miura transformations with rational differential functions, i.e., the dependence on
the ui,d is allowed to be rational. The second theorem used more general methods
from homological algebra, using formalism and techniques developed by Liu and
Zhang [LZ13]. The main result of the current paper is an extension of the results
of [CPS15], which in particular also implies the abstract form of Theorem 2.6, show-
ing that deformations of a dispersionless Poisson pencil are classified by N smooth
functions, each dependent on one ui. Hence, this paper gives a unified proof of both

J.É.P. — M., 2018, tome 5



Central invariants revisited 155

theorems, yielding a complete classification of deformations of Poisson pencils of hy-
drodynamic type in several dependent and one independent variable, with the caveat
that the explicit form of the central invariants cannot be recovered by this method.

2.2. Cohomological formulation. — In essence, the theorems in the previous sub-
section are cohomological statements: Theorem 2.6 states that infinitesimal defor-
mations, i.e., deformations up to O(ε3), are equivalent if and only if their central
invariants are, and can be extended to at most one deformation to all orders, while
Theorem 2.7 states that this deformation to all orders exists. To develop the right
cohomological notions, we have to introduce some more notation.

Definition 2.8. — On Â , the variational derivatives with respect to the coordinates
on TU [−1] are defined via the Euler-Lagrange formula as

δ

δui
=
∑
s>0

(−∂)s
∂

∂ui,s
,

δ

δθi
=
∑
s>0

(−∂)s
∂

∂θsi
.

These are zero on total ∂x-derivatives, so they factor through maps F̂ → Â , which
we denote by the same symbols.

The Schouten-Nijenhuis bracket is defined by

[·, ·] : F̂ p × F̂ q −→ F̂ p+q−1 :

(∫
Adx,

∫
B dx

)
7−→

∫ ( δA
δθi

δB

δui
+ (−1)p

δA

δui
δB

δθi

)
dx.

In a completely analogous way to the finite-dimensional case, a Poisson bracket
{·, ·} corresponds to a bivector P ∈ F̂ 2 such that [P, P ] = 0, and therefore induces a
differential dP = [P, ·] on F̂ . This can be lifted straightforwardly to a differential DP

on Â .
For a pencil {·, ·}a, we get Pa ∈ F̂ such that dP1

dP2
+dP2

dP1
= 0, so dλ = dP2

−λdP1

is a differential on F̂ [λ], and similarly, Dλ is one on Â [λ]. Explicitly, for a pencil given
by the functions f1, . . . , fN , Dλ is defined as

Dλ := D(u1f1, . . . , uNfN )− λD(f1, . . . , fN ),

where

D(g1, . . . , gN ) =
∑
s>0

∂s
(
giθ1i

) ∂

∂ui,s

+
1

2

∑
s>0

∂s
(
∂jg

iuj,1θ0i + gi
∂ig

j

gj
uj,1θ0j − gj

∂jg
i

gi
ui,1θ0j

) ∂

∂ui,s

+
1

2

∑
s>0

∂s
(
∂ig

jθ0j θ
1
j + gj

∂jg
i

gi
θ0i θ

1
j − gj

∂jg
i

gi
θ0j θ

1
i

) ∂

∂θsi

+
1

2

∑
s>0

∂s
(
∂i

(
gk
∂kg

j

gj

)
uj,1θ0kθ

0
j − ∂j

(
gk
∂kg

i

gi

)
uj,1θ0kθ

0
i

)
∂

∂θsi
.

By a result of [DZ01, Get02, DMS05], H2(F̂ , dP ) = 0 for any hydrodynamic Poisson
bivector P . This makes it possible to construct, order by order, a Miura transformation
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that turns the first Poisson bracket in a deformed Poisson pencil into its dispersionless
part. Hence, to deform the second bracket, we should consider the following:

Definition 2.9 ([DZ01]). — The bi-Hamiltonian cohomology of a Poisson pencil
P1, P2 is

BH(U,P1, P2) =
Ker dP1 ∩Ker dP2

Im dP1
dP2

.

As in similar cases, we denote by BHp
d the subspace of BH of ∂x-degree d and

cohomological degree p.

An interpretation of the first few of these groups has also been given in [DZ01]:
– The common Casimirs of the Poisson pencil are given by BH0;
– The bi-Hamiltonian vector fields are given by BH1;
– The equivalence classes of infinitesimal deformations of the pencil are given by

BH2
>2;
– The obstruction to extending infinitesimal deformations to deformations of a

higher order are given by BH3
>5.

We can restate Theorems 2.6 and 2.7 together using bi-Hamiltonian cohomology.
We denote by C∞(ui) the space of smooth functions on U that only depend on the
single variable ui.

Theorem 2.10. — We have BH2
d is equal to zero for d = 2 and d > 4. In the case

d = 3, BH2
3 is isomorphic to

⊕N
i=1 C

∞(ui). Moreover, BH3
d is zero for d > 5.

This is the form of the theorem of which we will give a uniformized proof in this
paper. We will actually prove the more general Theorem 2.14, from which this theorem
follows.

In order to calculate the bi-Hamiltonian cohomology, we use the key lemma
of [LZ13], see also [Bar08], which implies that for d > 2 we have that BHp

d
∼=

Hp
d (F̂ [λ], dλ). Another idea of Liu and Zhang [LZ13] is that in order to compute the

cohomology of (F̂ [λ], dλ) one might use the long exact sequence in the cohomology
induced by the short exact sequence

0 −→ (Â [λ]/R[λ], Dλ)
∂x−−−→ (Â [λ], Dλ) −→ (F̂ [λ], dλ) −→ 0.

In particular, we will consider the parts of the form

(4) Hp
d−1(Â [λ]) −→ Hp

d (Â [λ]) −→ Hp
d (F̂ [λ]) −→ Hp+1

d (Â [λ]) −→ Hp+1
d+1 (Â [λ])

for d > 2. We omit the differentials in the notation for the cohomology since they are
always Dλ for the space Â [λ] and dλ for the space F̂ [λ].

We want to derive Theorem 2.10 from the exact sequence given by Equation (4).
In order to do this, let us recall that in [CPS15] the following vanishing theorem for
the cohomology of the complex (Â [λ], Dλ) was proved.
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Theorem 2.11. — The cohomology Hp
d (Â [λ]) vanishes for all bi-degrees (p, d), unless

(p, d) = (d+ k, d) with
k = 0, . . . , N − 1, d = 0, . . . , N + 2 or k = N, d = 0, . . . , N.

We give a streamlined proof of this theorem in the next section. The main contri-
butions of this paper are the following results about the cohomology of Â [λ].

Theorem 2.12. — For p = d, the cohomology of Â [λ] is given by:

Hp
p (Â [λ], Dλ) ∼=


R[λ] p = 0,⊕N

i=1 C
∞(ui)θ0i θ

1
i θ

2
i p = 3,

0 else.

Theorem 2.13. — The cohomology Hp
d (Â [λ], Dλ) vanishes for

p < d, d > 0 ;

p > d+N, d > 0 ;

d < p 6 d+N, d > max(3, N) ;

p = 3, d = 2.

Assuming these theorems, we can formulate our main result on the bi-Hamiltonian
cohomology, from which Theorem 2.10 follows:

Theorem 2.14. — The bi-Hamiltonian cohomology BHp
d vanishes for

p < d d > 2 ;

p > d+N d > 2 ;

d 6 p 6 d+N d > max(3, N) ;

p = 2 d = 2,

unless (p, d) = (2, 3), in which case it is isomorphic to
⊕N

i=1 C
∞(ui), the space of

central invariants.

The regions of this theorem are visualized in Figure 1.

Proof. — Using the isomorphism between BHp
d and HP

d (F̂ [λ]) in the required range,
all the vanishing statement follow from the exact sequence (4) as both the second and
the fourth terms are zero. For (p, d) = (2, 3), the second term is zero, which implies
that H2

3 (F̂ [λ]) ∼= H3
3 (Â [λ]), and H3

3 (Â ) ∼=
⊕N

i=1 C
∞(ui) by Theorem 2.12. �

Remark 2.15. — Observe that the cohomology of Â [λ] is still unknown on the sub-
complexes p = d + 1, . . . , d + N for d < N , unless (p, d) = (3, 2) or unless N = 1.
The last case has been determined completely in [CPS16b, Prop. 4]. The key to de-
termining the cohomology completely would likely lie in an extension of the proof of
Proposition 6.1, where one would have to study more carefully the transformation
θ0i 7→ θ

0

i . This transformation is trivial in the case N = 1, so the subtlety does not
occur there.
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(a) The case N > 3. (b) The case N = 2.

Figure 1. All bi-Hamiltonian cohomology groups are zero in region A,
except for the black dot, which is given by the central invariants. All groups
are unknown in region B, except for the white dot, which vanishes.

We conclude this section with one more piece of notation that we use throughout
the rest of the paper: for a multi-index I = {i1, . . . , is}, we write f I =

∏
i∈I f

i,
θtI = θti1 · · · θ

t
is
, etc.

3. The first vanishing theorem

In this section we give a proof of Theorem 2.11, based on the proof of [CPS15].
This section does not contain any new results, but has the main purpose of recalling
some objects that will be used later.

The presentation of the proof given here is improved over [CPS15], mainly by
focusing less on the intricacies of spectral sequences and more on the structure and
decomposition of the spaces and differentials involved. This exposition is somewhat
less detailed as a result and the reader is expected to be familiar with spectral sequence
techniques for graded complexes; more details can be found in [CPS15].

3.1. — Let degu be the degree on Â defined by assigning
degu u

i,s = 1, s > 0

and zero on the other generators. The operatorDλ splits in the sum of its homogeneous
components

Dλ = ∆−1 + ∆0 + . . . ,

where degu ∆k = k.
To the degree degu + degθ we associate a decreasing filtration of Â [λ]. Let us

denote by E1 the associated spectral sequence. The zero page E1 0 is simply given by
Â [λ] with differential ∆−1:

( E1 0, d
1

0) = (Â [λ],∆−1).

To find the first page E1 1, we have to compute the cohomology of this complex.
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3.2. — Let us compute the cohomology of the complex (Â [λ],∆−1). The differential
can be written as

∆−1 =
∑
i

(−λ+ ui)f id̂i,

where d̂i is the deRham-like differential

d̂i =
∑
s>1

θs+1
i

∂

∂ui,s
.

It is convenient to split Â in a direct sum

Â = Ĉ ⊕
( N⊕
i=1

Ĉ nt
i

)
⊕ M̂ .

Here
Ĉ = C∞(U)[θ01, . . . , θ

0
N , θ

1
1, . . . , θ

1
N ],

and
Ĉi = Ĉ J{ui,s, θs+1

i | s > 1}K,
while Ĉ nt

i denotes the subspace of Ĉi spanned by nontrivial monomials, i.e., all mono-
mials that contain at least one of the variables ui,s, θs+1

i for s > 1. By M̂ we denote
the subspace of Â spanned by monomials which contain at least one of the mixed
quadratic expressions

ui,suj,t, ui,sθt+1
j , θs+1

i θt+1
j

for some s, t > 1 and i 6= j.

Lemma 3.1. — The differential ∆−1 leaves invariant each direct summand in

(5) Â [λ] = Ĉ [λ]⊕
( N⊕
i=1

Ĉ nt
i [λ]

)
⊕ M̂ [λ],

and in particular maps Ĉ [λ] to zero.

Proof. — It is easy to check that

d̂i(Ĉ ) = 0, d̂i(M̂ ) ⊆ M̂ ,

d̂i(Ĉ
nt
i ) ⊆ Ĉ nt

i , d̂i(Ĉ
nt
j ) = 0 i 6= j,

from which the lemma follows immediately. �

The cohomology of Â [λ] is therefore the direct sum of the cohomologies of the
summands in the direct sum (5), and in particular

H(Ĉ [λ],∆−1) = Ĉ [λ].

Let us first observe that the cohomology of the deRham complex (Ĉi, d̂i) is trivial
in positive degree.

Lemma 3.2. — H(Ĉi, d̂i) = Ĉ .

Proof. — The proof is completely analogous to the standard proof of the Poincaré
lemma. �
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In particular we have that

H(Ĉ nt
i , d̂i) = 0,

therefore the kernel of d̂i in Ĉ nt
i coincides with d̂i(Ĉi).

Lemma 3.3. — H(Ĉ nt
i [λ],∆−1) =

d̂i(Ĉi)[λ]

(−λ+ ui)d̂i(Ĉi)[λ]
.

Proof. — On Ĉ nt
i [λ] the differential ∆−1 is equal to (−λ+ui)f id̂i. Its kernel coincides

with the kernel of d̂i on Ĉ nt
i [λ], which is di(Ĉi)[λ]. Its image is (−λ+ui)d̂i(Ĉi)[λ]. �

Finally we prove that the complex (M̂ [λ],∆−1) is acyclic.

Lemma 3.4. — H(M̂ [λ],∆−1) = 0.

Proof. — This lemma can be proved by induction on N . Denote, for convenience, the
corresponding space and the differential by M̂ [λ](N) and ∆−1,(N). We also use in the
proof the notation Â(N) and Ĉ(N).

The differential ∆−1 is naturally the sum of two commuting differentials,

∆−1,(N) = ∆−1,(N−1) + (−λ+ uN )fN d̂N .

The cohomology of (−λ + uN )fN d̂N on M̂ [λ](N) is equal to the direct sum of two
subcomplexes, Ĉ(N) ⊗Ĉ(N−1)

M̂ [λ](N−1) and

d̂N (Ĉ nt
N )⊗Ĉ(N)

((⊕N−1
i=1 Ĉ nt

i [λ]
)
⊕ Ĉ(N) ⊗Ĉ(N−1)

M̂ [λ](N−1)

)
(−λ+ uN )

.

On the first component the induced differential is equal to ∆−1,(N−1), so we can use the
induction assumption. On the second component the induced differential is equal to(

∆−1,(N−1)
)∣∣
λ=uN ,

so, up to rescaling by non-vanishing functions, it is a deRham-like differential acting
only on the second factor of the tensor product. This second factor can be iden-
tified with Ĉ(N) ⊗Ĉ(N−1)

Â(N−1)/Ĉ(N−1), so the possible non-trivial cohomology is
quotiented out (cf. the standard proof of the Poincaré lemma). �

This completes the computation of the cohomology of the complex (Â [λ],∆−1):

Proposition 3.5

(6) H(Â [λ],∆−1) = Ĉ [λ]⊕
(
N⊕
i=1

d̂i(Ĉi)[λ]

(−λ+ ui)d̂i(Ĉi)[λ]

)
.
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3.3. — The first page E1 1 of the first spectral sequence is given by the cohomology
of the complex H(Â [λ],∆−1) with the differential induced by the operator ∆0:

( E1 1, d
1

1) = (H(Â [λ],∆−1),∆0).

We recall the formula for the operator ∆0 in the appendix. To get the second page
E1 2 of the first spectral sequence we have to compute the cohomology of this complex.
Let degθ1 be the degree on Â defined by setting

degθ1 θ
1
i = 1 i = 1, . . . , N

and zero on the other generators. The operator ∆0 splits in its homogeneous compo-
nents

∆0 = ∆0,1 + ∆0,0 + ∆0,−1,

where degθ1 ∆0,k = k.
To the degree degθ1 −degθ we associate a decreasing filtration of H(Â [λ],∆−1),

and denote by E2 the associated spectral sequence. The zero page E2 0 is given by
H(Â [λ],∆−1) with the differential induced by ∆0,1:

( E2 0, d
2

0) = (H(Â [λ],∆−1),∆0,1).

The first page E2 1 is given by the cohomology of this complex.

3.4. — To obtain a simple expression for the action of ∆0,1 on the cohomology (6),
it is convenient to perform a change of basis in Â . Let Ψ be the invertible operator
that rescales the generators of Â as follows

ui,s 7−→ (f i)s/2ui,s, θsi 7−→ (f i)(s+1)/2θsi .

The operator ∆0,1 has a simpler form when conjugated with Ψ, and since Ψ leaves
invariant all the subspaces that we consider, such conjugation does not affect the
computation of the cohomology.

Lemma 3.6. — The operator ∆0,1 acts on the cohomology (6) as Ψ∆̃0,1Ψ−1, where

∆̃0,1 =
∑
i

(−λ+ ui)θ1i
∂

∂ui
+
∑
i,j

(−λ+ uj)(γijθ
1
j − γjiθ1i )θ0j

∂

∂θ0i
+
∑
i

θ1i Ei

and leaves invariant each of the summands in Equation (6). Here Ei is the Euler
operator that multiplies any monomial m by its weight wi(m) defined by

wi(u
i,s) =

s

2
+ 1, wi(θ

s−1
i ) =

s

2
− 1 s > 1

and zero on the other generators.
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Proof. — Recall that ∆0,1 is the degu = 0 and degθ1 = 1 homogeneous component
of the differential Dλ. An explicit expression can be found in [CPS15]. By a straight-
forward computation, we have that Ψ−1∆0,1Ψ is equal to ∆̃0,1 plus two extra terms

−
∑
i,j

∑
s>1

(−λ+ ui)
(
f i/f j

)(s+1)/2 (
(s+ 2)γjiθ

1
i + sγijθ

1
j

)
uj,s

∂

∂ui,s

+
∑
i,j

∑
s>2

(−λ+ uj)
(
f i/f j

)s/2 (
(1− s)γijθ1j − (1 + s)γjiθ

1
i

)
θsj

∂

∂θsi
.

The following formulas are useful in the computation of the conjugated operator:

Ψ−1
∂

∂ui,s
Ψ = (f i)s/2

∂

∂ui,s
, Ψ−1ui,sΨ = (f i)−s/2ui,s,

Ψ−1
∂

∂θsi
Ψ = (f i)(s+1)/2 ∂

∂θsi
, Ψ−1θsiΨ = (f i)−(s+1)/2θsi ,

Ψ−1
∂

∂ui
Ψ =

∂

∂ui
+
∑
j

∂ log f j

∂ui

∑
s>0

(s
2
uj,s

∂

∂uj,s
+
s+ 1

2
θsj

∂

∂θsj

)
.

By construction the operator ∆0,1 induces a map on the cohomology (6), and so
does the conjugated operator Ψ−1∆0,1Ψ.

Let us make a few easy to check observations in order to simplify this operator:

(1) ∆̃0,1 maps Ĉ [λ] to itself, while the two extra terms send it to zero;
(2) the two extra terms, when j 6= i, send d̂i(Ĉi)[λ] to M̂ [λ] which is trivial in

cohomology;
(3) both ∆̃0,1 and the extra terms for j = i map d̂i(Ĉi)[λ] to Ĉ nt

i [λ], and, because
they need to act on cohomology, they actually send it to d̂i(Ĉi)[λ];

(4) terms in d̂i(Ĉi)[λ] which are proportional to λ−ui actually vanish in cohomol-
ogy, so we can set λ equal to ui; this in particular kills the i = j part of the extra
terms.

The lemma is proved. �

Let us identify

(7) d̂i(Ĉi)[λ]

(−λ+ ui)d̂i(Ĉi)[λ]
' d̂i(Ĉi)

by setting λ equal to ui. Let Di be the operator induced by ∆0,1 on d̂i(Ĉi) by this
identification. Its explicit form is given in the next corollary.

Corollary 3.7. — The operator Di on d̂i(Ĉi) is given by Di = ΨD̃iΨ
−1 with

D̃i =
∑
k

θ1k

[
(uk − ui)

(
∂

∂uk
+
∑
j

γjkθ
0
k

∂

∂θ0j

)
+
∑
j

(ui − uj)γjkθ0j
∂

∂θ0k
+ Ek

]
.
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The first page of the second spectral sequence is therefore given by the following
direct sum

(8) E2 1 ' H(Ĉ [λ],∆0,1)⊕
(
N⊕
i=1

H
(
d̂i(Ĉi),Di

))
.

3.5. — A vanishing result for the cohomology of Ĉ [λ] is obtained by a simple degree
counting argument.

Proposition 3.8. — The cohomology Hp
d (Ĉ [λ],∆0,1) vanishes for all (p, d), unless

d = 0, . . . , N, p = d, . . . , d+N.

Proof. — The possible bi-degrees of the elements of Ĉ are precisely those excluded
in the proposition. �

3.6. — We have the following vanishing result for the cohomology of (d̂i(Ĉi),Di).

Proposition 3.9. — The cohomology Hp
d (d̂i(Ĉi),Di) vanishes for all (p, d), unless

d = 2, . . . , N + 2, p = d, . . . , d+N − 1.

Proof. — To prove this result let us introduce a third spectral sequence. For fixed i,
let degθ1i be the degree that assigns degree one to θ1i and degree zero to the remaining
generators. Consider the decreasing filtration associated to the degree degθ1i − degθ.
Let E3 be the associated spectral sequence. Let Di,1 be the homogeneous component
of Di with degθ1i = 1, i.e., Di,1 = ΨD̃i,1Ψ−1 with

D̃i,1 = θ1i

[∑
j

(ui − uj)γjiθ0j
∂

∂θ0i
+ Ei

]
.

The zero page E3 0 is given by d̂i(Ĉi) with differential Di,1:

( E3 0, d
3

0) = (d̂i(Ĉi),Di,1).

To prove the proposition it is sufficient to prove the vanishing of the cohomology of
this complex in the same degrees, which we will do in the next lemma. �

Lemma 3.10. — The cohomology Hp
d (d̂i(Ĉi),Di,1) vanishes for all (p, d), unless

d = 2, . . . , N + 2, p = d, . . . , d+N − 1.

Proof. — As before let us work with the operator D̃i,1. Let m be a monomial in the
variables ui,s, θs+1

i for s > 1. For g ∈ Ĉ , we have

D̃i,1

(
gd̂i(m)

)
= θ1i

(∑
j

(ui − uj)γjiθ0j
∂

∂θ0i
g + (wi(g) + wi(m)− 1)g

)
d̂i(m),

where wi is the weight defined in Lemma 3.6. Therefore D̃i,1 leaves Ĉ d̂i(m) invariant
for each monomial m. We will now prove that the cohomology of the subcomplex
Ĉ d̂i(m) vanishes for all monomials m, except for the case m = ui,1, therefore the
cohomology of d̂i(Ĉi) is just given by the cohomology of Ĉ d̂i(ui,1). Notice that d̂i(m)
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is nonzero only for wi(m) > 3/2, and the case wi(m) = 3/2 corresponds to m = ui,1

and d̂i(m) = θ2i .
Let us split Ĉ = Ĉ i

0 ⊕ θ0i Ĉ i
0 , where Ĉ i

0 is the subspace spanned by monomials that
do not contain θ0i . Given g ∈ Ĉ i

0 we have

D̃i,1

(
gd̂i(m)

)
= θ1i (wi(m)− 1)gd̂i(m).

Notice that the coefficient wi(m) − 1 is non-vanishing, therefore D̃i,1 is acyclic
on the subcomplex Ĉ i

0 d̂i(m). For g ∈ θ0i Ĉ
i
0 , the differential D̃i,1 maps gd̂i(m) to

θ1i (wi(m)− 3/2)gd̂i(m) ∈ θ0i Ĉ i
0 d̂i(m) plus an element in Ĉ i

0 d̂i(m).
It is well-known that when a complex (C, d) contains an acyclic subcomplex C ′, its

cohomology is given by the cohomology of a subspace C ′′ complementary to C ′ with
differential given by the restriction and projection of d to C ′′.

In the present case this implies that the cohomology of Ĉ d̂i(m) is equivalent to the
cohomology of θ1i Ĉ i

0 with differential given by the operator of multiplication by the
element θ1i (wi(m) − 3/2). Such complex is acyclic as long as wi(m) 6= 3/2. The only
nontrivial case is when m = ui,1, and in such case the cohomology is given by

θ0i Ĉ
i
0 d̂i(u

i,1) = Ĉ i
0θ

0
i θ

2
i .

Counting the degrees of the possible elements in this space we obtain the vanishing
result above. �

3.7. — From the previous two propositions it follows that E2 1 is zero if the bi-degree
(p, d) is not in one of the two specified ranges, i.e., in their union given in Theorem
2.11. Clearly the vanishing of E2 1 in certain degrees implies the vanishing of E1 2

and consequently of H(Â [λ], Dλ) in the same degrees. This concludes the proof of
Theorem 2.11.

4. The cohomology of (d̂i(Ĉi),Di)

In this section we extend the vanishing result of Section 3.6 to a computation of
the full cohomology of the complex (d̂i(Ĉi),Di).

First, we can represent the space d̂i(Ĉi) as a direct sum

d̂i(Ĉi) = Ĉ i
0θ

2
i ⊕ Ĉ i

0θ
0
i θ

2
i ⊕ Ĉ ⊗ d̂i(Vi),

where, as before in Section 3.6, we denote by Ĉ i
0 the subspace of Ĉ spanned by

monomials that do not contain θ0i . We denote by Vi the space of polynomials in
ui,>1, θ>2

i of standard degree > 2.

Lemma 4.1. — The differential Di leaves invariant the spaces Ĉ i
0θ

2
i and Ĉ ⊗ d̂i(Vi),

while
Di(Ĉ

i
0θ

0
i θ

2
i ) ⊂ Ĉ θ2i = Ĉ i

0θ
2
i ⊕ Ĉ i

0θ
0
i θ

2
i .

Proof. — As before we can equivalently work with D̃i. The statement is a simple
check, noticing that [D̃i, d̂i]+ = −θ1i d̂i. �
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As we know from Section 3.6 the cohomology is a subquotient of Ĉ i
0θ

0
i θ

2
i . Therefore

the subcomplexes Ĉ i
0θ

2
i and d̂i(Vi) are acyclic and the cohomology is given by

H(d̂i(Ĉi),Di) = H(Ĉ i
0θ

0
i θ

2
i ,D

′
i),

where D ′i is the restriction and projection of Di to Ĉ i
0θ

0
i θ

2
i . Explicitly D ′i = ΨD̃ ′iΨ

−1

is given by removing the terms in D̃i that decrease the degree in θ0i , which gives

D̃ ′i =
∑
k 6=i

θ1k

[
(uk − ui)

(
∂

∂uk
+
∑
j 6=i

γjkθ
0
k

∂

∂θ0j

)
+
∑
j

(ui − uj)γjkθ0j
∂

∂θ0k
+ Ek

]
.

Notice that Ei maps Ĉ i
0θ

0
i θ

2
i to zero, since both θ1i and θ0i θ2i have degree wi equal to

zero. We can now split Ĉ i
0θ

0
i θ

2
i in the direct sum Ĉ i

0,1θ
0
i θ

2
i ⊕ Ĉ i

0,1θ
0
i θ

1
i θ

2
i , where Ĉ i

0,1 is
the subspace of Ĉ i

0 spanned by monomials that do not depend on θ1i . Since D̃ ′i does
not act on θ1i θ2i or θ0i θ1i θ2i , we can reduce our problem to computing the cohomology
of the complex (Ĉ i

0,1, D̃
′
i). Let us denote by δ̂ik the coefficient of θ1k in D̃ ′i , i.e.,

D̃ ′i =
∑
k 6=i

θ1k δ̂
i
k.

Lemma 4.2. — The cohomology Hp
d (Ĉ i

0,1, D̃
′
i) is nontrivial only in degrees d = 0 and

p = 0, . . . , N − 1. In degree (d = 0, p) it is isomorphic to C∞(ui) ⊗
∧p RN−1 and is

represented by an element

F =
∑

J⊆[n]r{i}
|J|=p

F J(u1, . . . , uN )θ0J ∈
⋂
k 6=i

Ker δ̂ik,

which depends on a single function of the variable ui.

Proof. — We represent the space of coefficients Ĉ i
0,1 as a direct sum

⊕n−1
`,t=0K

`,t,
where an element of K`,t can be written down as∑

I⊂[n]r{i}
|I|=`

f Iθ1I ·
∑

J⊂[n]r{i}
|J|=t

θ0JFI,J(u1, . . . , un).

The action of D ′i can be described, in both cases, as a map K`,t → K`+1,t given by
the following formula on the components of the corresponding vectors: FI,J 7→ GS,T ,
where

GS,T =
∑
s∈S

∂

∂us
FIr{s},T + (As;t)

J
TFIr{s},J ,

where the coefficients of the matrices (As;t)
J
T can easily be reconstructed from the

formula for the operator D̃ ′i . So, this way we can describe each of the subcomplexes
K•,tθ0i θ

2
i , K•,tθ0i θ

1
i θ

2
i , t = 0, . . . , n − 1, as a tensor product of the deRham complex

of smooth functions in n − 1 variable uk, k 6= i, with a vector space whose basis is
indexed by monomials of degree t in θ0q , q 6= i. The differential (the restriction of D̃ ′i
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to this subcomplex) is equal to the deRham differential
∑
p 6=i θ

1
p∂/∂u

p twisted by a
linear map:

(9)
∑
p 6=i

θ1p ·
( ∂

∂up
+Ap;t

)
.

(the coefficients of Ap;t depend on whether we consider the case of K•,tθ0i θ
2
i or

K•,tθ0i θ
1
i θ

2
i , but the shape of the differential is the same in both cases).

The cohomology of the differential (9) is isomorphic to the cohomology of the
deRham differential

∑
p 6=i θ

1
p ∂/∂u

p. It is represented by the differential forms of or-
der 0, that is, it is non-trivial only for ` = 0, whose vector of coefficients F∅,J solves
the differential equations

∂F∅,J

∂up
+ (Ap;t)

T
JF∅,T = 0

for p 6= i. The solution of this equation is uniquely determined by the restriction
F∅,J |up=0, p 6=i, that is, by a single function of ui. So, finally, we obtain the statement
of the lemma. �

Taking into account the action of Ψ we obtain the cohomology the complex
(d̂i(Ĉi),Di).

Proposition 4.3. — The cohomology of (d̂i(Ĉi),Di) is nontrivial only in degrees equal
to (p, d) = (2, 2), . . . , (N + 1, 2) and (p, d) = (3, 3), . . . , (N + 2, 3). In the degrees
(2 + t, 2) and (3 + t, 3) it is isomorphic to C∞(ui)⊗

∧tRN−1, t = 0, . . . , N − 1. More
precisely, representatives of cohomology classes in degrees (2 + t, t) and (3 + t, 3) are
given respectively by elements of the form

F · (f i)t/2+2θ0i θ
2
i , G · (f i)t/2+3θ0i θ

1
i θ

2
i

for F , G representatives of Ht
0(Ĉ i

0,1, D̃
′
i) as given in the previous lemma.

5. The cohomology of (Ĉ [λ],∆0,1) at p = d

In this section we extend the result of Section 3.5 by computing the cohomology
of the subcomplex of (Ĉ [λ],∆0,1) defined by setting p = d.

From Proposition 3.8 we already know that the complex (Ĉ [λ],∆0,1) is non-trivial
only for d ∈ {0, . . . , n} and p ∈ {d, . . . , d + n}. As usual, as the differential is of
bidegree (p, d) = (1, 1), it splits in subcomplexes of constant p− d. Here we consider
the case p = d.

Proposition 5.1. — For p = d the cohomology of the complex (Ĉ [λ],∆0,1) is given by

Hp
p (Ĉ [λ],∆0,1) '


R[λ] p = 0,⊕N

i=1 C
∞(ui)θ1i p = 1,

0 else.
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Proof. — For p = d the complex Ĉ [λ] is equal to

C∞(U)[θ11, . . . , θ
1
N ].

Let us compute the cohomology of ∆̃0,1. Because there is no dependence on θ0k and
the degree wk of θ1k is zero, the differential simplifies to

∆̃0,1 =
∑
i

δi, δi = (−λ+ ui)θ1i
∂

∂ui
.

We will let J ⊆ {1, . . . , N} denote a multi-index and write θ1J for the lexicographi-
cally ordered product

∏
j∈J θ

1
j . For each of the θ11, θ12, . . . , θ1N , we can define a degree

degθ1i −degθ, which again induces a decreasing filtration. The filtration associated
to θ1i has δi as differential on the zeroth page of the spectral sequence. Considering
all these filtrations, we get the following picture:

C∞(U)[λ]θ1k

δi

��

δj
// C∞(U)[λ]θ1j θ

1
k

δi

��

C∞(U)[λ]

δi

��

δj
//

δk
::

C∞(U)[λ]θ1j

δi

��

δk

88

C∞(U)[λ]θ1i θ
1
k δj

// C∞(U)[λ]θ1i θ
1
j θ

1
k

C∞(U)[λ]θ1i δj
//

δk

::

C∞(U)[λ]θ1i θ
1
j

δk

88

So the complex can be visualized as an N -dimensional hypercube with a term in every
corner.

On the first page of the θ11-spectral sequence, the differential is
∑
j 6=1 δj , and we can

use the θ12-filtration to get another spectral sequence. This procedure can be repeated
inductively.

Consider an element in C∞(U)[λ]θ1J . Clearly it is in Ker δ1 if J contains 1 or if it
does not depend on u1:

Ker δ1 =
⊕
J31

C∞(U)[λ]θ1J ⊕
⊕
J 631

C∞(u2, . . . , uN )[λ]θ1J ,

where C∞(u2, . . . , uN ) denotes the functions in C∞(U) which are constant in u1. On
the other hand, we clearly have

Im δ1 =
⊕
J31

(u1 − λ)C∞(U)[λ]θ1J ,

therefore the first page of the spectral sequence is

H(Ĉ [λ], δ1) =
⊕
J31

C∞(U)[λ]

(ui − λ)C∞(U)[λ]
θ1J ⊕

⊕
J 631

C∞(u2, . . . , uN )[λ]θ1J .
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As these arguments do not depend on the θ1i for i 6= 1 in any way, on the first page of
the spectral sequence we can use the θ12 filtration and use the same arguments to find
the first page of its spectral sequence. Completing the induction, we get the following
result for the ∆̃0,1-cohomology on Ĉ [λ]:⊕

J⊆{1,...,N}

C∞({uj}j∈J)[λ]∑
j∈J(uj − λ)

θ1J ,

where the sum in the denominator is an ideal sum. If |J | > 2, this ideal sum contains
the invertible element ui − uj = (ui − λ) − (uj − λ) for i, j ∈ J , so the cohomology
is zero. The cohomology of ∆̃0,1 is therefore nontrivial only in degree zero, where it
equals R[λ], and in degree one, where it is given by the sum

⊕N
i=1 C

∞(ui)θ1i . To find
the cohomology of ∆0,1 we need to take into account the action of the operator Ψ.
Hence the cohomology of ∆0,1 in degree one is

⊕N
i=1 C

∞(ui)f i(u)θ1i . The proposition
is proved. �

6. A vanishing result for E1 2 at (p, d) = (3, 2)

We now go back to the first spectral sequence E1 associated with degu in Section
3.1 and prove a vanishing result for its second page.

Proposition 6.1. — The cohomology of the complex (H(Â [λ],∆−1),∆0) vanishes in
degree (p, d) = (3, 2).

Proof. — In Section 3.3 the vanishing result for E1 2 is proved by introducing a filtra-
tion in the degree degθ1 . In order to extend the vanishing to the case (p, d) = (3, 2), we
split the differential ∆0 in a different way. Recall that the operator ∆0 is by definition
the homogeneous component of Dλ of degree degu equal to zero. It induces a differ-
ential on the first page E1 1 of the first spectral sequence, that is on the cohomology
H(Â [λ],∆−1) given by Equation (6).

From Lemma 4.3 we know that the cohomology of this complex is vanishing for
degu positive. We can therefore limit our attention to the subcomplex with degu equal
to zero

E1 0
1 = Ĉ [λ]⊕

N⊕
i=1

Ĉ Jθ>2
i Knt[λ]

(λ− ui)Ĉ Jθ>2
i Knt[λ]

,

where the superscript in Ĉ Jθ>2
i Knt indicates that every monomial should include at

least one θ>2
i .

Let us denote by degθ0 the degree that counts the number of θ0j , j = 1, . . . , N , and
split ∆0 it its homogeneous components

∆0 = ∆1
0 + ∆0

0,

where degθ0 ∆k
0 = k.

The decreasing filtration on E1 0
1 associated to the degree degθ −degθ0 induces a

spectral sequence E4 , whose zero page is clearly E1 0
1 , with differential d4 0 = ∆1

0. The
first page E4 1 is given by the cohomology of ( E1 0

1 ,∆
1
0) which we now consider.
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The form of ∆1
0 can be easily derived from the explicit expression of ∆0, see the

appendix. When acting on E1 0
1 it simplifies to the following operator, which for sim-

plicity we still denote ∆1
0:

∆1
0 =

1

2

∑
i

θ̃0i
∑
s>1

θs+1
i

∂

∂θsi
,

with
θ̃0i := f iθ0i +

∑
j 6=i

(ui − uj)f
j∂jf

i

f i
θ0j .

We consider now the spectral sequence on E1 0
1 induced by the degree degθ>2 , which

assigns degree one to all θsi with s > 2. Let ∆1
0 = ∆1,0

0 + ∆1,1
0 , where

∆1,0
0 =

1

2

∑
i

θ̃0i
∑
s>2

θs+1
i

∂

∂θsi
, ∆1,1

0 =
1

2

∑
i

θ̃0i θ
2
i

∂

∂θ1i
,

are of degree degθ>2 ∆1,k
0 = k.

We can rewrite our complex as

Ĉ [λ]⊕
N⊕
i=1

⊕
k>1

Ĉ Jθ>2
i K(k)[λ]

(λ− ui)Ĉ Jθ>2
i K(k)[λ]

,

where Ĉ Jθ>2
i K(k) denotes the homogeneous polynomials with degθ>2 equal to k.

Each of the summands is invariant under ∆1,0
0 , so it forms a subcomplex whose

cohomology we can compute independently. Notice that the differential vanishes on
Ĉ [λ], while it acts like multiplication by θ̃0i on the k = 1 subcomplex

Ĉ θ2i −→ Ĉ θ3i −→ Ĉ θ4i −→ · · · ,

which is therefore acyclic except for the first term, where the cohomology is given by
the kernel of the multiplication map, i.e., the ideal of θ̃0i in Ĉ multiplied by θ2i .

The first page of the spectral sequence is therefore given by

(10) Ĉ [λ]⊕
⊕
i

Ĉ θ̃0i θ
2
i [λ]

(λ− ui)Ĉ θ̃0i θ2i [λ]
⊕
⊕
k>2

⊕
i

H(Ĉ Jθ>2
i K(k),∆1,0

0 ).

While it is not difficult to compute the cohomology groups appearing in the third
summand, it can be easily seen that they give no contribution to E1 2. Indeed, we know
from Lemma 4.3 that the cohomology with standard degree d > 4 is a subquotient of
Ĉ [λ], but the minimal degree of elements in the third summand above is d = 5.

On this page the differential is induced by ∆1,1
0 , which has degθ>2 equal to one.

When acting on the second summand Ĉ θ̃0i θ
2
i it vanishes, since it produces a mixed

term θ2i θ
2
j which cannot be in Ĉ Jθ>2

i K(k) for k > 2. Therefore the cohomology of the
first two summands is determined by the kernel and the image of the map

∆1,1
0 : Ĉ [λ] −→

⊕
i

Ĉ θ̃0i θ
2
i [λ]

(λ− ui)Ĉ θ̃0i θ2i [λ]
.

The image can be computed in the following way: first of all, it is clear that an
element in the image is a linear combination of θ2i , i = 1, . . . , N , where the coefficient
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of each θ2i does not depend on θ1i and is in the ideal generated by θ̃0i in Ĉ . Therefore
the image is a subspace of

(11)
N⊕
i=1

Ĉ i
1 θ̃

0
i θ

2
i [λ]

(λ− ui)
,

where Ĉ i
1 is the subspace of Ĉ generated by monomials that do not depend on θ1i . Sec-

ond, it is sufficient to consider the fact that the image of the ideal
∏
j 6=i(−λ+ uj)Ĉ [λ]

under ∆1,1
0 is

Ĉ i
1 θ̃

0
i θ

2
i [λ]

(λ− ui)
to conclude that the image of ∆1,1

0 is the whole space (11).
So, the cohomology of ∆1,1

0 on the second term in (10) is
N⊕
i=1

Ĉ i
1 θ̃

0
i θ

1
i θ

2
i [λ]

(λ− ui)
.

In particular, we see that it cannot give any contribution to the cohomology of degree
(p, d) = (3, 2).

The second page of the spectral sequence associated to degθ>2 is

(12) Ker ∆1,1
0 |Ĉ [λ] ⊕

⊕
i

Ĉ i
1 θ̃

0
i θ

1
i θ

2
i [λ]

(λ− ui)
⊕
⊕
k>2

⊕
i

H
(
H(Ĉ Jθ>2

i K(k),∆1,0
0 ),∆1,1

0

)
,

where, as discussed before, the third summand does not give any contribution to E1 2,
and can therefore be ignored here. Since ∆1

0 vanishes on this page, Equation (12) gives
the cohomology of ( E1 0

1 ,∆
1
0) which coincides with the first page E4 1 of the spectral

sequence E4 .
The differential 4d1 on 4E1 is the one induced by ∆0

0, the degree degθ0 zero part
of ∆0. The three summands in Equation (12) are invariant under the action of the
differential ∆0

0, which in particular vanishes on the second term. To see this, observe
that since the standard degree of the second term is d = 3 and that of the third term
is d > 5, there can be no terms mapped between these two spaces by ∆0

0, nor from the
second space to itself. The third term cannot map to the first one, since ∆0

0 cannot
remove more than one θ>2.

The operator ∆0
0 has to increase the standard degree and the θ-degree by one, while

keeping degθ0 unchanged. This can only be achieved on Ĉ [λ] by increasing degθ1 by
one, implying ∆0

0 = ∆0,1, which is given in Lemma 3.6. Explicitly:

∆0
0 = (ui − λ)f iθ1i

( ∂

∂ui
− (∂i log fk)θ1k

∂

∂θ1k
− 1

2
(∂i log fk)θ0k

∂

∂θ0k

)
− 1

2
(uj − λ)∂if

jθ1j θ
0
j

∂

∂θ0i
+

1

2
f iθ̃0i θ

1
i

∂

∂θ0i
+ (ui − λ)f j

∂jf
i

f i
θ0j θ

1
i

∂

∂θ0i
.

From this formula it is easy to see that ∆0
0 maps Ĉ [λ] to itself. Finally, from the

formula for ∆0, we easily see that there are no terms that remove the dependence
on θ2i in the second summand in Equation (12), therefore such summand cannot map
to the first.
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To get the second page 4E2 we therefore need to compute the cohomology of the
differential ∆0

0 on Ker ∆1,1
0 |Ĉ [λ]. The discussion so far was for general bidegrees (p, d).

However to be able to say something more we need to restrict to the subcomplex
p = d+ 1.

We see that an element proportional to θ1i is in the kernel of ∆1,1
0 if and only if it

is also proportional either to (−λ + ui) or to θ̃0i . Therefore, it can be represented as
a sum over all subsets I ⊂ {1, . . . , n}, |I| = t, of the elements of the form

n∑
j=1

F j(u, λ)θ0j ·
∏
i∈I

(−λ+ ui)θ1i +
∑
i∈I

Gi(u)θ̃0i θ
1
i ·
∏
j∈I
j 6=i

(−λ+ uj)θ1j .

This representation naturally splits the kernel of ∆1,1
0 into two summands, let us call

them F and G.
Observe that the splitting of the p = d+ 1 part of the kernel of ∆1,1

0 on Ĉ [λ] into
the direct sum F ⊕G defines a filtration for the operator ∆0

0 = ∆0,1. We can see this
by using the base change Ψ. First, define

θ
0

i := Ψ−1θ̃0i = θ0i + 2(uj − ui)γjiθ0j .

From the formula above for ∆0
0 we have that we can write ∆0

0 = Ψ∆Ψ−1, for

∆ = (ui − λ)θ1i
∂

∂ui
+ (ui − λ)γjiθ

1
i θ

0
i

∂

∂θ0j
− (ui − λ)γjiθ

1
i θ

0
j

∂

∂θ0i
+

1

2
θ
0

i θ
1
i

∂

∂θ0i
.

The first three terms preserve F = Ψ−1F , while the last sends F to G := Ψ−1G.
Moreover, the entire operator preserves G. Furthermore, the parts F → F and G→ G

form deformed deRham differentials d+A. Therefore, the only possible cohomology
is in the lowest degree in θ1• , which is zero for F and 1 for G. So, only nontrivial
cohomology in the case p = d + 1 is possible in the degree (t + 1, t) = (1, 0) and
(t+1, t) = (2, 1). This implies the the cohomology of degree (3, 2) is equal to zero. �

Remark 6.2. — Note that it is not directly clear from the definitions that ∆G ⊂ G.
However, we know that ∆ must preserve the kernel of ∆1,1

0 twisted by Ψ, which is
F ⊕G. Moreover, looking at the λ-degree, we see that for elements of G it is one less
degθ1 while for elements of F it is at least degθ1 . As degθ1 ∆ = 1, and none of its
terms increase the λ-degree by more than 1, this proves that ∆ cannot map G outside
of G. A more direct proof requires Ferapontov’s flatness equations for f i [Fer01]. We
give this calculation in the appendix.

Remark 6.3. — In the proof, we restricted to p = d + 1. In order to extend the
argument, one would have to show that the transformation θ0i 7→ θ

0

i is invertible. This
would allow for a splitting similar to the splitting in F and G here.

7. Proofs of the main theorems

In this section we collect all results from the rest of the paper to compute the
cohomology of the complex (Â [λ], Dλ), proving Theorems 2.12 and 2.13.
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Proof of Theorem 2.12. — As observed in Section 3.4, the first page E2 1 is given by
the direct sum (8). From Lemma 4.3 and Proposition 5.1 we get

( E2 1)pp
∼=



R[λ] p = 0,⊕N
i=1 C

∞(ui)θ1i p = 1,⊕N
i=1 C

∞(ui)θ0i θ
2
i p = 2,⊕N

i=1 C
∞(ui)θ0i θ

1
i θ

2
i p = 3,

0 else.

On this first page, the differential d2 1 must lower the spectral sequence degree
degθ1 −degθ by one, in other words, since the differential must still be of bidegree
(1, 1), it must leave the degree degθ1 unchanged, which is impossible on this subcom-
plex. Hence, the differential d2 1 is equal to zero, and ( E2 2)pp

∼= ( E2 1)pp.
On the second page, the differential d2 2 must lower the spectral sequence degree

by two, i.e., it must be of degree degθ1 equal to −1. Therefore, on this subcomplex
the differential can only be non-trivial between p = 1 and p = 2. Looking back at the
formula for ∆0, one can easily identify the terms of degree degθ1 = −1, which give

∆0,−1 =
∑
i

1

2

[∑
j

(uj − λ)
(
∂if

jθ0j θ
2
j + f j

∂jf
i

f i
(θ0i θ

2
j − θ0j θ2i )

)
+ f iθ0i θ

2
i

] ∂

∂θ1i
.

∆0,−1 induces an operator on H(Â [λ],∆−1). Since we are interested only in the
differential at degree p = 1, we need to consider just the action of such operator on
Ĉ [λ], which is, taking into account the identification (7)

∑
i

1

2

[
(ui − uj)f

j

f i
∂jf

iθ0j θ
2
i + f iθ0i θ

2
i

] ∂

∂θ1i
.

The image of Ĉ [λ] through this operator is thus in
⊕

iH(d̂i(Ĉi),Di), where the first
term, being in Ĉ i

0,1θ
2
i vanishes. Hence, the only surviving term is 1

2f
iθ0i θ

2
i ∂/∂θ

1
i , which

gives an isomorphism d2 2 : ( E2 2)11 → ( E2 2)22.
The differential is therefore zero on ( E2 2)pp for p 6= 1 and an isomorphism for

p = 1, so ( E2 3)pp is zero unless p = 0 or p = 3, when it is equal to ( E2 2)pp. This
spectral sequence has no other non-trivial differentials, so ( E2 ∞)pp has the same form.
As E2 ⇒ E1 2, we get that ( E1 2)pp is of this form as well. Because all differentials must
have (p, d)-bidegree (1, 1), there can be no higher non-trivial differentials on this part
of the first spectral sequence. Now, E1 ⇒ H(Â [λ], Dλ), yielding the result. �

Proof of Theorem 2.13. — We take Theorem 2.11 as a starting point. Then the extra
vanishing at degrees d = N,N+1 follows from Lemma 4.3, and the vanishing at (3, 2)

follows from Proposition 6.1. �
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Appendix. Formula for and calculations with ∆0

We recall from [CPS15] the formula for the degree degu zero part of the operatorDλ.

∆0 = (−λ+ ui)f iθ1i
∂

∂ui

+
∑
s=a+b

s,a>1;b>0

(−λ+ ui)

(
s

b

)
∂jf

iuj,aθ1+bi

∂

∂ui,s
+

∑
s=a+b

s,a>1;b>0

(
s

b

)
f iui,aθ1+bi

∂

∂ui,s

+
1

2

∑
s=a+b

s>1;a,b>0

(−λ+ ui)

(
s

b

)
∂jf

iuj,1+aθbi
∂

∂ui,s
+

1

2

∑
s=a+b

s>1;a,b>0

(
s

b

)
f iui,1+aθbi

∂

∂ui,s

+
1

2

∑
s=a+b

s>1;a,b>0

(−λ+ ui)

(
s

b

)
f i
∂if

j

f j
uj,1+aθbj

∂

∂ui,s
+

1

2

∑
s=a+b

s>1;a,b>0

(
s

b

)
f iui,1+aθbi

∂

∂ui,s

− 1

2

∑
s=a+b

s>1;a,b>0

(−λ+ uj)

(
s

b

)
f j
∂jf

i

f i
ui,1+aθbj

∂

∂ui,s
− 1

2

∑
s=a+b

s>1;a,b>0

(
s

b

)
f iui,1+aθbi

∂

∂ui,s

+
1

2

∑
s=a+b
s,a,b>0

(−λ+ uj)

(
s

b

)
∂if

jθaj θ
1+b
j

∂

∂θsi
+

1

2

∑
s=a+b
s,a,b>0

(
s

b

)
f iθai θ

1+b
i

∂

∂θsi

+
1

2

∑
s=a+b
s,a,b>0

(−λ+ uj)

(
s

b

)
f j
∂jf

i

f i
θai θ

1+b
j

∂

∂θsi
+

1

2

∑
s=a+b
s,a,b>0

(
s

b

)
f iθai θ

1+b
i

∂

∂θsi

− 1

2

∑
s=a+b
s,a,b>0

(−λ+ uj)

(
s

b

)
f j
∂jf

i

f i
θaj θ

1+b
i

∂

∂θsi
− 1

2

∑
s=a+b
s,a,b>0

(
s

b

)
f iθai θ

1+b
i

∂

∂θsi
.

The direct proof that ∆G ⊂ G in Proposition 6.1 is given below. Recall that its
validity is deduced more abstractly in Remark 6.2 as well.

Lemma A.1. — The operator ∆ preserves G, where

∆ = (ui − λ)θ1i
∂

∂ui
+ (ui − λ)γjiθ

1
i θ

0
i

∂

∂θ0j
− (ui − λ)γjiθ

1
i θ

0
j

∂

∂θ0i
+

1

2
θ
0

i θ
1
i

∂

∂θ0i

G =
N⊕
i=1

C∞(U)
[{

(uj − λ)θ1j
}N
j=1

]
θ
0

i θ
1
i .and

Proof. — When calculating the action of ∆ on an element of the form G(u)θ
0

i θ
1
i ∈ G,

we get the following (where i is a fixed index, and k, l, and m are summed over)

∆G(u)θ
0

i θ
1
i =

∂

∂uk
(
G(θ0i + 2(ul − ui)γliθ0l )

)
θ1i (u

k − λ)θ1k

+Gγmkθ
0
k

∂

∂θ0m

(
θ0i + 2(ul − ui)γliθ0l

)
θ1i (u

k − λ)θ1k

−Gγlkθ0l
∂

∂θ0k
(θ0i + 2(um − ui)γmiθ0l )θ1i (uk − λ)θ1k

+
1

2
G

∂

∂θ0k

(
θ0i + 2(ul − ui)γliθ0l

)
θ1i θ

0

kθ
1
k
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=
∂G

∂uk
θ
0

i θ
1
i (u

k − λ)θ1k + 2Gγkiθ
0
kθ

1
i (u

k − λ)θ1k

+ 2G(ul − ui)∂kγliθ0l θ1i (uk − λ)θ1k +Gγikθ
0
kθ

1
i (u

k − λ)θ1k

+ 2G(ul − ui)γlkγliθ0kθ1i (uk − λ)θ1k

− 2G(uk − ui)γlkγkiθ0l θ1i (uk − λ)θ1k +G(uk − ui)γkiθ1i θ
0

kθ
1
k

Using Equation (1) for the third term if i, k, l distinct, that part of the third term
adds up to the sixth term.

∆G(u)θ
0

i θ
1
i =

∂G

∂uk
θ
0

i θ
1
i (u

k − λ)θ1k + 2Gγkiθ
0
kθ

1
i (u

k − λ)θ1k

+ 2G(uk − ui)∂kγkiθ0kθ1i (uk − λ)θ1k +Gγikθ
0
kθ

1
i (u

k − λ)θ1k

+ 2G(ul − ui)γlkγliθ0kθ1i (uk − λ)θ1k +G(ui − λ)γkiθ
0

kθ
1
i θ

1
k

+ 2G(ul − uk)γlkγkiθ
0
l θ

1
i (u

k − λ)θ1k −Gγkiθ
0

kθ
1
i (u

k − λ)θ1k

By the definition of θ0k, the last two terms drop out against half of the second term.
So we get

∆G(u)θ
0

i θ
1
i =

∂G

∂uk
θ
0

i θ
1
i (u

k − λ)θ1k +G(γik + γki)θ
0
kθ

1
i (u

k − λ)θ1k

+ 2G(uk − ui)∂kγkiθ0kθ1i (uk − λ)θ1k

+ 2G(ul − ui)γlkγliθ0kθ1i (uk − λ)θ1k +G(ui − λ)γkiθ
0

kθ
1
i θ

1
k

By Equation (3), we get

∆G(u)θ
0

i θ
1
i =

∂G

∂uk
θ
0

i θ
1
i (u

k − λ)θ1k −Gui∂iγikθ0kθ1i (uk − λ)θ1k

− 2Gui∂kγkiθ
0
kθ

1
i (u

k − λ)θ1k

− 2Guiγlkγliθ
0
kθ

1
i (u

k − λ)θ1k −Gγki(ui − λ)θ1i θ
0

kθ
1
k

Applying Equation (2) gives

∆G(u)θ
0

i θ
1
i =

∂G

∂uk
θ
0

i θ
1
i (u

k − λ)θ1k −Gγki(ui − λ)θ1i θ
0

kθ
1
k

Multiplying with a factor
∏
j∈I(u

j − λ)θ1j does not change the calculation, so we can
extend this calculation to all of G, showing that ∆ does indeed preserve this space. �
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