We employ the 1/2-spin tautological relations to provide a particular combinatorial identity. We show that this identity is a statement equivalent to Faber's formula for proportionalities of kappa-classes on Mg, g ≥ 2. We then prove several cases of the combinatorial identity, providing a new proof of Faber's formula for those cases.

Garcia-Failde, E., Kramer, R., Lewanski, D., Shadrin, S. (2019). Half-spin tautological relations and Faber's proportionalities of kappa classes. SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS, 15 [10.3842/SIGMA.2019.080].

Half-spin tautological relations and Faber's proportionalities of kappa classes

Kramer R.;
2019

Abstract

We employ the 1/2-spin tautological relations to provide a particular combinatorial identity. We show that this identity is a statement equivalent to Faber's formula for proportionalities of kappa-classes on Mg, g ≥ 2. We then prove several cases of the combinatorial identity, providing a new proof of Faber's formula for those cases.
Articolo in rivista - Articolo scientifico
Faber intersection number conjecture; Moduli spaces of curves; Odd-even binomial coeffcients; Tautological relations; Tautological ring;
English
2019
15
080
open
Garcia-Failde, E., Kramer, R., Lewanski, D., Shadrin, S. (2019). Half-spin tautological relations and Faber's proportionalities of kappa classes. SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS, 15 [10.3842/SIGMA.2019.080].
File in questo prodotto:
File Dimensione Formato  
Garcia-Failde-2019-SIGMA Symmetry Integrability Geom Methods Appl-VoR.pdf

accesso aperto

Descrizione: CC BY-SA 4.0 The authors retain the copyright for their papers published in SIGMA under the terms of the Creative Commons Attribution-ShareAlike License .
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 529.37 kB
Formato Adobe PDF
529.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/511240
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
Social impact