We employ the 1/2-spin tautological relations to provide a particular combinatorial identity. We show that this identity is a statement equivalent to Faber's formula for proportionalities of kappa-classes on Mg, g ≥ 2. We then prove several cases of the combinatorial identity, providing a new proof of Faber's formula for those cases.
Garcia-Failde, E., Kramer, R., Lewanski, D., Shadrin, S. (2019). Half-spin tautological relations and Faber's proportionalities of kappa classes. SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS, 15 [10.3842/SIGMA.2019.080].
Half-spin tautological relations and Faber's proportionalities of kappa classes
Kramer R.;
2019
Abstract
We employ the 1/2-spin tautological relations to provide a particular combinatorial identity. We show that this identity is a statement equivalent to Faber's formula for proportionalities of kappa-classes on Mg, g ≥ 2. We then prove several cases of the combinatorial identity, providing a new proof of Faber's formula for those cases.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Garcia-Failde-2019-SIGMA Symmetry Integrability Geom Methods Appl-VoR.pdf
accesso aperto
Descrizione: CC BY-SA 4.0 The authors retain the copyright for their papers published in SIGMA under the terms of the Creative Commons Attribution-ShareAlike License .
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
529.37 kB
Formato
Adobe PDF
|
529.37 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.