We use relations in the tautological ring of the moduli spaces Mg,n derived by Pandharipande, Pixton, and Zvonkine from the Givental formula for the r-spin Witten class in order to obtain some restrictions on the dimensions of the tautological rings of the open moduli spacesMg,n. In particular, we give a new proof for the result of Looijenga (for n = 1) and Buryak et al. (for n > 2) that dimRg-1(Mg,n) ≤ n. We also give a new proof of the result of Looijenga (for n = 1) and Ionel (for arbitrary n > 1) that Ri(Mg,n) = 0 for i > g and give some estimates for the dimension of Ri(Mg,n) for i ≤ g - 2.

Kramer, R., Labib, F., Lewanski, D., Shadrin, S. (2018). The tautological ring of Mg,n via Pandharipande-Pixton-Zvonkine r-spin relations. ALGEBRAIC GEOMETRY, 5(6), 703-727 [10.14231/AG-2018-019].

The tautological ring of Mg,n via Pandharipande-Pixton-Zvonkine r-spin relations

Kramer R.;
2018

Abstract

We use relations in the tautological ring of the moduli spaces Mg,n derived by Pandharipande, Pixton, and Zvonkine from the Givental formula for the r-spin Witten class in order to obtain some restrictions on the dimensions of the tautological rings of the open moduli spacesMg,n. In particular, we give a new proof for the result of Looijenga (for n = 1) and Buryak et al. (for n > 2) that dimRg-1(Mg,n) ≤ n. We also give a new proof of the result of Looijenga (for n = 1) and Ionel (for arbitrary n > 1) that Ri(Mg,n) = 0 for i > g and give some estimates for the dimension of Ri(Mg,n) for i ≤ g - 2.
Articolo in rivista - Articolo scientifico
Moduli of curves; Tautological ring;
English
2018
5
6
703
727
open
Kramer, R., Labib, F., Lewanski, D., Shadrin, S. (2018). The tautological ring of Mg,n via Pandharipande-Pixton-Zvonkine r-spin relations. ALGEBRAIC GEOMETRY, 5(6), 703-727 [10.14231/AG-2018-019].
File in questo prodotto:
File Dimensione Formato  
Kramer-2018-Algebr Geom-VoR.pdf

accesso aperto

Descrizione: This article is distributed with Open Access under the terms of the Creative Commons Attribution Non-Commercial Licens
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 481.91 kB
Formato Adobe PDF
481.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/511221
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
Social impact