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The tautological ring ofMg,n via

Pandharipande–Pixton–Zvonkine r-spin relations

Reinier Kramer, Farrokh Labib, Danilo Lewanski and Sergey Shadrin

Abstract

We use relations in the tautological ring of the moduli spaces Mg,n derived by Pand-
haripande, Pixton, and Zvonkine from the Givental formula for the r-spin Witten class
in order to obtain some restrictions on the dimensions of the tautological rings of the
open moduli spacesMg,n. In particular, we give a new proof for the result of Looijenga
(for n = 1) and Buryak et al. (for n > 2) that dimRg−1(Mg,n) 6 n. We also give
a new proof of the result of Looijenga (for n = 1) and Ionel (for arbitrary n > 1) that
Ri(Mg,n) = 0 for i > g and give some estimates for the dimension of Ri(Mg,n) for
i 6 g − 2.

1. Introduction

The study of the tautological ring R∗ of the moduli spaces of curves goes back to the classical
papers of Mumford and Faber [Mum83, Fab99]; see also [Vak03, Pan02, Zvo12, Tav16]. The
tautological ring of the moduli space of curves Mg,n is additively generated by the so-called
dual graphs decorated by ψ- and κ-classes. A dual graph determines a natural stratum inMg,n,
whose vertices correspond to irreducible components of a generic point in the stratum, whose
leaves correspond to the marked points, and whose edges correspond to the nodes. We decorate
each vertex with a non-negative integer equal to the geometric genus of the corresponding irre-
ducible component. Each vertex is also equipped with a multi-index κ-class, and each half-edge,
including the leaves, is equipped with a power of the ψ-class of the cotangent line bundle at the
corresponding marked point or the corresponding branch of the node. There are many linear
relations between these generators, called tautological relations.

We can restrict all these classes to the open moduli spaceMg,n. Then only the graphs with no

edges can contribute non-trivially. These graphs just correspond to the classes
∏n
i=1 ψ

di
i κe1,...,ek

for di > 0 and ei > 1. There are still many relations among these classes that can be proved, in
particular the relation Ri(Mg,n) = 0 for i > g; see [Loo95, Ion02] and also a recent new proof
in [CGJZ16]. In the case i = g− 1, one can prove that dimRg−1(Mg,n) 6 n; see [Loo95, BSZ16]
for the cases n = 1 and n > 2, respectively. In this paper, we give new proofs of all these
results, as well as some restrictions on the dimensions of the tautological rings for i 6 g−2. Note
that, by the non-degeneracy of some matrix of intersection numbers, one can in fact show that
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dimRg−1(Mg,n) = n; we refer to [BSZ16] for that.

We use the tautological relations of Pandharipande–Pixton–Zvonkine [PPZ16]. Givental–
Teleman theory [Giv01a, Tel12] provides a formula for a homogeneous semi-simple cohomological
field theory as a sum over decorated dual graphs as above; see [Giv01b, DSS13, DOSS14, PPZ15].
These formulae can be explained as a result of a certain group action on non-homogeneous
cohomological field theories applied to the rescaled Gromov–Witten theory of a finite number of
points (also known as topological field theory or degree 0 cohomological field theory); see [FSZ10,
Tel12, Sha09, PPZ15].

In some cases, we can obtain this way a graphical formula for a cohomological field theory
whose properties we know independently. In particular, the graphical formula might contain
classes (linear combinations of decorated dual graphs) that are of dimension higher than the
homogeneity property allows for a cohomological field theory. Then these classes must be equal
to zero and give us tautological relations. Alternatively, we might consider the graphical formula
as a function of some parameter φ parametrizing a path on the underlying Frobenius manifold
with φ = 0 lying on the discriminant. If we know independently that the cohomological field
theory is defined for any value of φ including φ = 0, then all negative terms of the Laurent series
expansion in φ near φ = 0 also give tautological relations (see [Jan15a, Pan16] for more details).
Once we have a relation for the decorated dual graphs in Mg,n+m, for m > 0, we can multiply
it by an arbitrary tautological class, push it forward toMg,n, and then restrict it toMg,n. This

gives a relation among the classes
∏n
i=1 ψ

di
i κe1,...,ek , for di > 0 and ei > 1, in R∗(Mg,n).

In the case of the Witten r-spin class [Wit93, PV01], the graphical formula and its ingredients
are discussed in detail in [Giv03, FSZ10, DNOPS15, PPZ16].

Both approaches mentioned above produce the same systems of tautological relations on
Mg,n. Two particular paths on the underlying Frobenius manifold are worked out in detail
in [PPZ16]; we are using one of them in this paper. Note that the results of Janda [Jan15a, Jan14,
Jan15b] guarantee that these relations work in the Chow ring; see a discussion in [PPZ16].

1.1 Organization of the paper

In Section 2, we recall the relations of Pandharipande–Pixton–Zvonkine. In Section 3, we use
them to give a new proof of the dimension of Rg−1(Mg,n), up to one lemma whose proof takes
up Section 4. In Section 5, we extend this proof scheme to show the vanishing of the tautological
ring in all higher degrees. Finally, in Section 6, we give some bounds for the dimensions of the
tautological rings in lower degrees.

2. Pandharipande–Pixton–Zvonkine relations

In this section, we recall the relations in the tautological ring of Mg,n from [PPZ16] and put
them in a convenient form for our further analysis.

2.1 Definition

Fix r > 3. Fix n primary fields 0 6 a1, . . . , an 6 r − 2. All constructions below depend on an
auxiliary variable φ; we fix its exponent d < 0. A tautological relation T (g, n, r, a1, . . . , an, d) = 0

depends on these choices and is obtained as T = rg−1
∑∞

k=0 π
(k)
∗ Tk/k!, where Tk is the coef-

ficient of φd in the expression in the decorated dual graphs of Mg,n+k described below and
π(k) : Mg,n+k →Mg,n is the natural projection.
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Tautological ring via PPZ relations

Consider the vector space of primary fields with basis {e0, . . . , er−2}. In the basis ẽi :=
φ−i/(r−1)ei, we define the scalar product ηij = 〈ẽi, ẽj〉 := φ−(r−2)/(r−1)δi+j,r−2. Equip each vertex
of genus h of valency v in a decorated dual graph with a tensor

ẽa1 ⊗ · · · ⊗ ẽav 7→ φ(h−1)(r−2)/(r−1)(r − 1)hδ(r−1)|h−1−
∑v

i=1 ai
.

Define matrices (R−1m )ba for m > 0 and a, b = 0, . . . , r−2 in the basis ẽ0, . . . , ẽr−2. We set (R−1m )ba =
0 if b 6≡ a−m mod r− 1. If b ≡ a−m mod r− 1, then (R−1m )ba = (r(r− 1)φr/(r−1))−mPm(r, a),
where Pm(r, a), for m > 0, are the polynomials of degree 2m in r and a uniquely determined by
the following conditions:

P0(r, a) = 1 ,

Pm(r, a)− Pm(r, a− 1) =
((
m− 1

2

)
r − a

)
Pm−1(r, a− 1) ,

Pm(r, 0) = Pm(r, r − 1) .

Equip the first n leaves with
∑∞

m=0(R
−1
m )baiψ

m
i ẽb for i = 1, . . . , n. Equip the k extra leaves (the

dilaton leaves) with −
∑∞

m=1(R
−1
m )b0ψ

m+1
n+i ẽb for i = 1, . . . , k. Equip each edge, where we denote

by ψ′ and ψ′′ the ψ-classes on the two branches of the corresponding node, with

ηi
′i′′ −

∑∞
m′,m′′=0(R

−1
m′ )

i′
j′η

j′j′′(R−1m′′)
i′′
j′′(ψ

′)m
′
(ψ′′)m

′′

ψ′ + ψ′′
ẽi′ ⊗ ẽi′′ .

Then Tk is defined as the sum over all decorated dual graphs obtained by the contraction of
all tensors assigned to their vertices, leaves, and edges, further divided by the order of the
automorphism group of the graph.

2.2 Analysis of the relations

There are several observations about the formula introduced in the previous subsection.

(1) We obtain a decorated dual graph in RD(Mg,n) if and only if the sum of the indices of the
matrices R−1m used in its construction is equal to D.

(2) According to [PPZ16, Theorem 7], the relation T (g, n, r, a1, . . . , an, d) is a sum of decorated
dual graphs whose coefficients are polynomials in r.

(3) Let A =
∑n

i=1 ai. Then A ≡ g− 1 +D mod r− 1. We can assume A = g− 1 +D+x(r− 1)
with x > 0 since D is bounded by dimMg,n = 3g − 3 + n, whereas the relations hold
for r arbitrarily big. Collecting the powers of φ from the contributions above, we obtain
d(r− 1) = A+ (g− 1)(r− 2)− rD. Substituting the expression for A, we have d < 0 if and
only if D > g + x. The relevant cases in this paper are the cases x = 0 and x = 1.

These relations, valid for particular r > 3 and 0 6 a1, . . . , an 6 r − 2, are difficult to apply
since we have almost no control over the κ-classes coming from the dilaton leaves. We solve this
problem in the following way.

Let x = 0, and consider the degree D = g. We have relations with polynomial coefficients for
all r much greater than g and A = 2g− 1. More precisely, for all integers 0 6 a1, . . . , an 6 2g− 1
with

∑n
i=1 ai = 2g−1, we have a relation whose coefficients are polynomials of degree 2g in r. In

other words, we have a polynomial in r whose coefficients are linear combinations of decorated
dual graphs in degree g, and we can substitute any r sufficiently large. Possible integer values
of r determine this polynomial completely, so its evaluation at any other complex value of r is
again a relation.
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Let x = 1, and consider the degree D = g+ 1. We have relations with polynomial coefficients
for all r much bigger than g and A = 2g− 1 + r. More precisely, for all integers 0 6 a1, . . . , an 6
r − 2 with

∑n
i=1 ai = 2g − 1 + r, we have a relation whose coefficients are polynomials of degree

2g + 2 in r.

Note that in both cases we do not, in general, have polynomiality in a1, . . . , an, but we have
it for some special decorated dual graphs, under some extra conditions.

We argue below that a good choice of r in both cases is r = 1
2 (note that we still have to

explain what we mean in the case x = 1, since the sum A depends on r). In particular, this
choice kills all dilaton leaves, and the only non-trivial term that contributes to the sum over k
in the definition of T (g, n, r, a1, . . . , an, d) in these cases is T0.

2.3 P -polynomials at r = 1
2

Recall the Pm(r, a)-polynomials of [PPZ16] introduced above, and define

Qm(a) :=
(−1)m

2mm!

2m∏
k=1

(
a+ 1− k

2

)
.

Lemma 2.1. We have Pm
(
1
2 , a
)

= Qm(a).

Proof. We will use [PPZ16, Lemma 4.3]. It is clear that we have Q0(a) = 1 and Qm(0) =
Qm
(
−1

2

)
= δm,0. Furthermore, we have

Qm(a)−Qm(a− 1) =
(−1)m

2mm!

( 2m∏
k=1

(
a+ 1− k

2

)
−

2m∏
k=1

(
a− k

2

))

=
(−1)m

2mm!

((
a+

1

2

)
a−

(
a−m+

1

2

)
(a−m)

) 2m−2∏
k=1

(
a− k

2

)
=

1

2m

(
−2am+m2 − 1

2
m
)
Qm−1(a− 1)

=
1

2

(
m− 1

2
− 2a

)
Qm−1(a− 1) ,

so the equations in the lemma are satisfied.

This does not allow us to conclude yet that our Qm(a) are equal to the Pm
(
1
2 , a
)
, as the lemma

only states uniqueness for the Pm(r, a) as polynomials in a and r. However, we can prove equality
by induction on m. The case m = 0 is given to be identically 1 in [PPZ16], agreeing with Q0.

Now, assume m > 0 and Pm−1
(
1
2 , a
)

= Qm−1(a). Then,

Qm(a)−Qm(a− 1) =
1

2

(
m− 1

2
− 2a

)
Qm−1(a− 1) ,

with the same relation for Pm
(
1
2 , a
)
. Hence, Pm

(
1
2 , a
)

= Qm(a) + c. Using the same relation for
m+ 1, we get

∆m+1(a) := Pm+1

(1

2
, a
)
−Qm+1(a) = − c

2
a2 +

2m− 1

4
ac+ d .

We then have

0 = ∆m+1

(
−1

2

)
−∆m+1(0) = − c

8
− 2m− 1

8
c = −m

4
c .

Because m > 0 by assumption, this proves c = 0, so Pm
(
1
2 , a) = Qm(a).
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2.4 Simplified relations I

In this subsection, we discuss the relations that we can obtain from the substitution r = 1
2 for

the case of x = 0 in Subsection 2.2.

The polynomials Qm(a), for m = 0, 1, 2, . . . , discussed in the previous subsection, have deg-
ree 2m and roots −1

2 , 0,
1
2 , 1, . . . ,m −

3
2 ,m − 1. Note that on the dilaton leaves in the relation

of [PPZ16], we always have a coefficient (R−1m )i0 for some m > 1. Since for r = 1
2 , we have(

R−1m
)i
0

=
(
−1

4φ
−1)−mQm(0) = 0 for m > 1, the graphs with dilaton leaves do not contribute to

the tautological relations.

In order to obtain a relation on Mg,n we first consider a relation on Mg,n+m that we push
forward to Mg,n and then restrict to the open moduli space Mg,n. Note that only graphs that
correspond to a partial compactification of Mg,n+m can contribute non-trivially. Namely, it is
a special case of the rational tails partial compactification, where we require in addition that
at most one among the first n marked points can lie on each rational tail. We denote this

compactification by Mrt[n]
g,n+m.

For instance, the dual graphs that can contribute non-trivially to a relation on Mrt[n]
g,n+1 are

either the graph with one vertex and no edges or the graphs with two vertices of genus g and 0
and one edge connecting them, with leaves labeled by i and n+ 1 attached to the genus 0 vertex
and all other leaves attached to the genus g vertex, for i = 1, . . . , n. These graphs correspond to

the divisors in Mrt[n]
g,n+1 that we denote by Di,n+1.

More generally, we denote by DI , for I ⊂ {1, . . . , n+m}, the divisor inMg,n+m whose generic
point is represented by a two-component curve with components of genus g and 0 connected
through a node, such that all the points with labels in I lie on the component of genus 0 and all

other points lie on the component of genus g. Then the divisors that belong toMrt[n]
g,n+m are those

in which I contains at most one point with a label 1 6 l 6 n, and all dual graphs that we have
to consider are the dual graphs of the generic points of the strata obtained by the intersection
of these divisors.

We denote the relations onMg,n corresponding to the choice of the primary fields a1, . . . , an
by ΩD

g,n(a1, . . . , an) = 0, where D is the degree of the class. In this definition, we adjust the
coefficient; namely, from now on, we ignore the pre-factor rg−1 in the definition of the relations,

as well as the factor
(
−1

4φ
−1)−D coming from the formula for the R-matrices in terms of the

polynomials Q. Hence, ΩD
g,n(~a) is proportional to T

(
g, n, 12 ,~a, d(D)

)
. We will also often write Ω

for its restriction to various open parts of the moduli space, such as Mrt[n]
g,n+m.

Note that, as we discussed above, there is a condition on the possible degree of the class
and the possible choices of the primary fields implied by the requirement that the degree of the
auxiliary parameter φ must be negative.

We use the following relations in the rest of the paper: ΩD
g,n+m(a1, . . . , an+m), where D > g,

m > 0, and
∑n+m

i=1 ai = g − 1 + D and all primary fields must be non-negative integers. We
sometimes first multiply these relations by extra monomials of ψ-classes before we apply the
pushforward to Mg,n and/or restriction to Mg,n.

2.5 Simplified relations II

In this subsection, we discuss the relations that we can obtain from the substitution r = 1
2 for

the case of x = 1 in Subsection 2.2.

Let us first list all the dual graphs representing the strata inMrt[n]
g,n+2; see Figure 1. Note that
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(i) The entire space

g

an+1

an+2

a1 an· · ·

(iv) Dn+1,n+2

g 0

a1 an· · ·

an+1

an+2

(vii) Dj,n+1,n+2Dn+1,n+2

g

0

0

a1 an· · ·
aj

an+1

an+2

(ii) Dj,n+2

g

0

a1 an· · ·
aj

an+2

an+1

(v) Dj,n+1Dk,n+2

g

0

0

a1 an· · ·
aj

an+1

an+2

ak

(viii) Dj,n+1,n+2Dj,n+2

g
0

0

a1 an· · ·

an+1

aj

an+2

(iii) Dj,n+1

g

0

a1 an· · ·
aj

an+1

an+2

(vi) Dj,n+1,n+2

g 0

a1 an· · ·
aj

an+1

an+2

(ix) Dj,n+1,n+2Dj,n+1

g
0

0

a1 an· · ·

an+2

aj

an+1

Figure 1: Strata in Mrt[2]
g,n+2.

under the extra condition 1 6 ai 6 r − 3 − an+1 − an+2 for any 1 6 i 6 n, the coefficients of
all these graphs in T (g, n+ 2, r,~a,−1), equipped in an arbitrary way with ψ- and κ-classes, are
manifestly polynomial in a1, . . . , an+2, r. Indeed, this extra inequality guarantees that we can
uniquely determine the primary fields on the edges in the Givental formula for all these nine
graphs.

Thus, we have a sequence of tautological relations T (g, n+2, r,~a,−1) in dimension g+1 defined
for a big enough r and arbitrary non-negative integers a1, . . . , an+2 satisfying a1 + · · ·+ an+2 =
2g + r − 1 and 1 6 ai 6 r − 3 − an+1 − an+2 for any 1 6 i 6 n. This gives us enough evalua-

tions of the polynomial coefficients of the decorated dual graphs in Mrt[n]
g,n+2 to determine these

polynomials completely. Thus, we can represent the values of these polynomial coefficients at an
arbitrary point (ã1, . . . , ãn+2, r̃) ∈ Cn+3 as a linear combination of the Pandharipande–Pixton–
Zvonkine relations. This representation is non-unique, since we have too many admissible points
(a1, . . . , an+2, r) ∈ Zn+3 satisfying the conditions above. This non-uniqueness is not important

for the coefficients of the decorated dual graphs inMrt[n]
g,n+2, since we always get the values of their

polynomial coefficients at the prescribed points, but the extensions of different linear combina-
tions of the relations to the full compactificationMg,n+2 can be different. Indeed, the coefficients
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of the graphs not listed in Figure 1 can be non-polynomial in a1, . . . , an+2 (but they are still
polynomial in r).

We can choose one possible extension to the full compactification Mg,n+2 for each point
(ã1, . . . , ãn+2, r̃) ∈ Cn+3. In particular, we always specialize to r = 1

2 , an+1 = 3
2 , an+2 = −1

2 .
The choice r = 1

2 guarantees that we have no non-trivial dilaton leaves; that is, we have no
κ-classes in the decorations of our graphs. We also divide the whole relation by the factor(
1
2

)g−1(−1
4φ
−1)−1−g, as in the previous subsection.

Abusing the notation, we denote these relations by Ωg+1
g,n+2

(
a1, . . . , an,

3
2 ,−

1
2

)
. These relations

are defined for arbitrary complex numbers a1, . . . , an satisfying
∑n

i=1 ai = 2g− 3
2 . Of course, it is

reasonable to use half-integer or integer primary fields a1, . . . , an that would be the roots of the
polynomials Q, since this gives us very good control over the possible degrees of the ψ-classes on
the leaves and the edges of the dual graphs.

Let us stress once again that restriction of Ωg+1
g,n+2

(
a1, . . . , an,

3
2 ,−

1
2

)
toMrt[n]

g,n+2 is well defined
and can be obtained by the specialization of the polynomial coefficients of the dual graphs in
Fig. 1 to the point

(
a1, . . . , an, an+1 = 3

2 , an+2 = −1
2 , r = 1

2

)
. We analyze these polynomial

coefficients in the next two sections. In the meantime, the extension of Ωg+1
g,n+2

(
a1, . . . , an,

3
2 ,−

1
2

)
from Mrt[n]

g,n+2 to Mg,n+2 is, in principle, not unique, and we only use that it exists.

3. The dimension of Rg−1(Mg,n)

In this section, we give a new proof of the result in [BSZ16] that dimRg−1(Mg,n) 6 n.

3.1 Reduction to monomials in ψ-classes

In this subsection, we show that any monomial ψd11 · · ·ψdnn κe1,...,em of degree g−1 can be expressed
as a linear combination of monomials of degree g−1 which have only ψ-classes. We prove this fact
by considering the relations Ωg−1+m

g,n+m (a1, . . . , an+m) for some appropriate choices of the primary
fields.

Proposition 3.1. Let g > 2 and n > 1. The ring Rg−1(Mg,n) is spanned by the monomials

ψd11 · · ·ψdnn for d1, . . . , dn > 0 with
∑n

i=1 di = g − 1.

Proof. The tautological ring of the open moduli space is generated by ψ- and κ-classes. Hence,
a spanning set for the ring Rg−1(Mg,n) is{

ψd11 · · ·ψ
dn
n κe1,...,em

∣∣∣∣m > 0, di > 0, ej > 1,

n∑
i=1

di +
m∑
j=1

ej = g − 1

}
.

Let V ⊂ Rg−1(Mg,n) be the subspace spanned by the monomials{
ψd11 · · ·ψ

dn
n

∣∣∣∣ n∑
i=1

di = g − 1

}
.

We want to show that Rg−1(Mg,n)/V = 0. We do this by induction on the number m of indices
of the κ-class.

Let us start with the case m = 1. Consider a relation Ωg
g,n+1(a1, . . . , an+1) for some admissible

choice of the primary fields. In this case, we have contributions by the open stratum of smooth
curves and by the divisors Dn+1,` for ` = 1, . . . , n. The open stratum gives us the following
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classes: ∑
d1+···+dn+1=g

06di6ai

n+1∏
i=1

Qdi(ai)
n+1∏
i=1

ψdii .

The condition di 6 ai follows from the identity Qd(a) = 0 for d > a. The contribution of −Dn+1,`

is given by ∑
d1+···+dn=g−1

06di6ai+δi`(an+1−1)

n∏
i=1

Qdi+δi`(ai + δi`an+1)
∏

i 6=`,n+1

ψdii Di,`π
∗(ψd`` ) .

Here π : Mrt[n]
g,n+1 →Mg,n is the natural projection. The sum of the pushforwards of these classes

to Mg,n is equal to

0 =
∑

d1+···+dn+e=g−1
di>0,e>1

n∏
i=1

Qdi(ai)Qe+1(an+1)
n∏
i=1

ψdii κe (3.1)

in Rg−1(Mg,n)/V . Thus we have equation (3.1) in Rg−1(Mg,n)/V for each choice of a1, . . . , an+1

such that
∑n+1

i=1 ai = 2g − 1.

If we choose the lexicographic order on the monomials ψd11 · · ·ψdnn κe, we can then choose
the values of the ai in such a way that the matrix of relations becomes lower triangular, in the
following manner. For every monomial ψd11 · · ·ψdnn κe, we choose the relation with primary fields
a1 = d1 + g − 1, ai = di for i = 2, . . . , n, and an+1 = e + 1. Equation (3.1) allows us to express
this monomial in terms of similar monomials with the strictly larger exponent of ψ1, so this
set of relations does indeed give a lower-triangular matrix. This matrix is invertible; hence all
monomials of the form ψd11 · · ·ψdnn κe are equal to zero in Rg−1(Mg,n)/V .

Now, assume that all the monomials which have a κ-class with m−1 indices or fewer are equal
to zero in Rg−1(Mg,n)/V . Consider a relation Ωg−1+m

g,n+1 (a1, . . . , an, b1, . . . , bm). This relation, after
the pushforward to Mg,n, gives many terms with no κ-classes and also with κ-classes with at
most m − 1 indices, and also some terms with κ-classes with m indices. The latter terms are
therefore equal to zero in Rg−1(Mg,n)/V ; namely, we have

0 =
∑

06di6ai
16ej6bj−1

( n∏
i=1

Qdi(ai)ψ
di
i

)( m∏
j=1

Qej+1(bj)

)
κe1,...,em (3.2)

for
∑n

i=1 di +
∑m

j=1 ej = g − 1. Equation (3.2) is valid for each choice of the primary fields ai
and bj such that

∑n
i=1 ai +

∑m
j=1 bj = 2g − 2 +m.

Choosing a monomial ψd11 · · ·ψdnn κe1,...,em , we can choose the primary fields to be a1 = d1 +
g− 1, ai = di for i = 2, . . . , n, and bj = ej + 1 for j = 1, . . . ,m. Again, this relation expresses our
monomial as a linear combination of similar monomials with strictly higher exponent of ψ1. By
downward induction on this exponent, all monomials with m κ-indices vanish in Rg−1(Mg,n)/V
as well.

Thus Rg−1(Mg,n)/V = 0. In other words, any monomial which has a κ-class as a factor can
be expressed as a linear combination of monomials in ψ-classes.

An immediate consequence of this proposition for n = 1 is the result of Looijenga.
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Corollary 3.2 ([Loo95]). For all g > 2, we have Rg−1(Mg,1) = Qψg−11 .

3.2 Reduction to n generators

In this subsection, we prove the following proposition.

Proposition 3.3. For n > 2 and g > 2, every monomial of degree g−1 in ψ-classes and at most
one κ1-class can be expressed as a linear combination of the n classes

ψg−11 , ψg−21 ψ2 , . . . , ψ
g−2
1 ψn

with rational coefficients.

Together with the previous subsection this gives a new proof of the following statement.

Theorem 3.4 ([BSZ16]). For n > 2 and g > 2, we have dimQR
g−1(Mg,n) 6 n.

Remark 3.5. Note that the possible κ1-class is added in Proposition 3.3 for a technical reason;
it seems to be completely unnecessary in light of Proposition 3.1. In fact, when we include κ1,
we consider systems of generators approximately twice as large, but this allows us to obtain
a much larger system of tautological relations. We do not know of any argument that would
allow us to obtain the sufficient number of relations if we consider only monomials of ψ-classes
as generators.

We reduce the number of generators by pushing forward enough relations via the map

π
(2)
∗ : Rg+1(Mg,n+2)→ Rg−1(Mg,n) ,

where π(2) is the forgetful morphism for the last two marked points (we abuse notation a little

bit here, restricting the map π(2) to Mrt[n]
g,n+2 →Mg,n). For n > 2, let us consider the following

vector of primary fields:

~a :=
(
a1 = 2g − 3

2 −A, a2, . . . , an, an+1 = 3
2 , an+2 = −1

2

)
, (3.3)

where ai ∈ Z>0 for i = 2, . . . , n and A =
∑n

i=2 ai 6 g − 2. We consider the following monomials
in Rg−1(Mg,n):

y := ψg−2−A1

n∏
i=2

ψaii κ1 and x` := ψg−2−A1

n∏
i=2

ψai+δi`i , ` = 2, . . . , n .

Lemma 3.6. The tautological relation π
(2)
∗ Ωg+1

g,n+2(~a), where ~a is defined in equation (3.3), has
the following form:

y ·
n∏
i=2

Qai(ai)Q2

(
3
2

)(
Qg−1−A

(
2g − 3

2 −A
)
−Qg−1−A(2g − 2−A)

)
−

n∑
`=2

x` ·
n∏
i=2

Qai+2δi`

(
ai + 3

2δi`
)(
Qg−1−A

(
2g − 3

2 −A
)
−Qg−1−A(2g − 2−A)

)
= terms divisible by ψg−1−A1 . (3.4)

Proof. In order to prove this lemma, we have to analyze all strata in Mrt[n]
g,n+2. The list of strata

is given in Figure 1. Each stratum should be decorated in all possible ways by the R-matrices
with ψ-classes as described in Section 2.
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There are several useful observations that simplify the computation. The leaf labeled by ai,
for i = 2, . . . , n, is equipped with ψdii Qdi(ai). This implies di 6 ai. Since Q>2

(
3
2

)
= 0 and

Q>0

(
−1

2

)
= 0, we conclude that the exponent of ψn+1 is at most 2 and that of ψn+2 is equal

to 0. Note that we can obtain a monomial with κ1-class in the pushforward only if we have ψ2
n+1

in the original decorated graph.

Similar observations are also valid for the exponents of the ψ-classes at the nodes. Note that
there are no ψ-classes on the genus 0 components in any strata except for the case of the dual
graph vi, where we must have a ψ-class at one of the four points (three marked points and the
node) of the genus 0 component; otherwise, the pushforward is equal to zero. So, for instance, we
have ψd at the genus g branch of the node on the dual graph ii with coefficient −Qd+1

(
aj − 1

2

)
,

so in this case we have d 6 aj − 1. If we have ψd at the genus g branch of the node on the dual
graph viii, then the product of the coefficients that we have on the edges of this graph is equal
to Q1

(
aj − 1

2

)
Qd+1

(
aj − 1

2 + 3
2 − 1

)
, so in this case we have d 6 aj − 1. And so on; one more

example of a detailed analysis of the graphs vi–ix is given in Lemma 4.3 in the next section.

We see that we have severe restrictions on the possible powers of ψ-classes at all points but
the one labeled by 1, where the exponent is bounded from below, also after the pushforward.
Then it is easy to see by the analysis of the graph contributions as above that the exponent of
ψ1 is at least g − 2−A. Let us list all the terms whose pushforwards to Mg,n contain the terms

with ψg−2−A1 :

• One of the classes in Mrt[n]
g,n+2 corresponding to graph i is ψg−1−A1

∏n
i=2 ψ

ai
i ψ

2
n+1 with coef-

ficient
∏n
i=2Qai(ai)Q2

(
3
2

)
Qg−1−A

(
2g − 3

2 − A
)
. Its pushforward contains the monomial y

and the terms divisible by ψg−1−A1 .

• Consider graph ii for j = 1. Let πn+2 : Mg,n+2 → Mg,n+1 be the forgetful morphism

for the (n + 2)nd point. Up to irrelevant terms, one of the classes corresponding to this

graph is
∏n
i=2 ψ

ai
i ψ

2
n+1D1,n+2(πn+2)

∗(ψg−2−A1

)
with coefficient (−1)

∏n
i=2Qai(ai)Q2

(
3
2

)
·

Qg−1−A(2g − 2−A). Its pushforward is equal to the monomial y.

• Let πn+1 : Mg,n+2 →Mg,n+1 be the forgetful morphism for the (n+ 1)st point. One of the

classes corresponding to graph iii for j = ` is
∏
i 6=1,` ψ

ai
i ψ

g−1−A
1 D`,n+1(πn+1)

∗(ψa`+1
`

)
with

coefficient (−1)
∏
i 6=1,`Qai(ai)Qa`+2

(
a` + 3

2

)
Qg−1−A

(
2g − 3

2 − A
)
. The pushforward of this

class contains the monomial x` and the terms divisible by ψg−1−A1 .

• Consider graph v for j = ` and k = 1. One of the classes corresponding to this graph

is
∏
i 6=1,` ψ

ai
i D`,n+1(πn+1)

∗(ψa`+1
`

)
D1,n+2(πn+2)

∗(ψg−2−A1

)
with coefficient

∏
i 6=1,`Qai(ai) ·

Qa`+2

(
a` + 3

2

)
Qg−1−A(2g − 2−A). Its pushforward is equal to the monomial x`.

Collecting all these terms together, we obtain the left-hand side of equation (3.4). Then, it is
easy to verify case by case that under the pushforward, all other graphs and all other possible
decorations on these four graphs produce only monomials divisible by ψg−1−A1 .

Let aj > 0 for j = 2, . . . , n. Consider a vector of primary fields ~a (j) obtained from ~a by
adding 1

2 to a1 and subtracting 1
2 from aj , that is,

~a (j) :=
(
2g − 1−A, a2, . . . , aj−1, aj − 1

2 , aj+1, . . . , an,
3
2 ,−

1
2

)
.
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Lemma 3.7. The tautological relation π
(2)
∗ Ωg+1

g,n+2(~a
(j)) has the following form:

y ·
n∏
i=2

Qai
(
ai − 1

2δij
)
Q2

(
3
2

)(
Qg−1−A(2g − 1−A)−Qg−1−A

(
2g − 3

2 −A
))

−
n∑
`=2
` 6=j

x` ·
n∏
i=2

Qai+2δi`

(
ai + 3

2δi` −
1
2δij

)(
Qg−1−A(2g − 1−A)−Qg−1−A

(
2g − 3

2 −A
))

= terms divisible by ψg−1−A1 .

Proof. The proof of this lemma repeats the proof of Lemma 3.6. It is only important to note
that the terms that could produce the monomial xj contribute trivially since they have a factor
of Qaj+2

(
aj − 1

2 + 3
2

)
= 0 in their coefficients.

Remark 3.8. Note that we have the condition aj > 0. Indeed, if aj = 0, we can still try to
use ~a(j) as a possible vector of primary fields. But in this case, it can contain monomials with
lower powers of ψ1, and hence those relations cannot be used for our induction argument in
increasing powers of ψ1. To see this, consider graph ii. The coefficient that we have in this case
for the degree d of the ψ-class on the genus g branch of the node is equal to Qd+1

(
−1

2 −
1
2

)
.

Since −1 is not a zero of any polynomial Q>0, the degree d can be arbitrarily high, and therefore
there is no restriction from below on the degree of ψ1.

Let us distinguish now between zero and non-zero primary fields. Up to relabeling the marked
points, we can assume

a2 = a3 = · · · = as = 0 and ai > 1 , i = s+ 1, . . . , n .

Note that, by the definition of the Q-polynomials, the coefficient of y is not 0 in all relations in
Lemmata 3.6 and 3.7. Dividing these relations by the coefficient of y, we obtain the n − s + 1
linearly independent relations

Rel0 : y −
n∑
l=2

Qal+2(al + 3/2)

Qal(al)Q2(3/2)
xl = terms divisible by ψg−1−A1 ,

Relj : y −
n∑
l=2

Qal+2(al + 3/2)

Qal(al)Q2(3/2)
(1− δj,l)xl = terms divisible by ψg−1−A1

for j = s+ 1, . . . , n. Rescaling the generators by rational non-zero coefficients

x̃l := −Qal+2(al + 3/2)

Qal(al)Q2(3/2)
xl , l = 2, . . . , n ,

we can represent the relations in the following matrix:

M :=

y x̃2 · · · x̃s x̃s+1 x̃s+2 x̃s+3 · · · x̃n
Rel0 1 1 · · · 1 1 1 1 · · · 1
Rels+1 1 1 · · · 1 0 1 1 · · · 1
Rels+2 1 1 · · · 1 1 0 1 · · · 1
Rels+3 1 1 · · · 1 1 1 0 · · · 1
...

...
...

. . .
...

...
...

...
. . .

...
Reln 1 1 · · · 1 1 1 1 · · · 0
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Let us take linear combinations of the above relations: R̃elj := Rel0 − Relj for j = s+ 1, . . . , n,

and R̃el0 := Rel0 −
∑n

j=s+1 R̃elj . We obtain

y x̃2 . . . x̃s x̃s+1 x̃s+2 x̃s+3 . . . x̃n

R̃el0 1 1 · · · 1 0 0 0 · · · 0

R̃els+1 0 0 · · · 0 1 0 0 · · · 0

R̃els+2 0 0 · · · 0 0 1 0 · · · 0

R̃els+3 0 0 · · · 0 0 0 1 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

R̃eln 0 0 · · · 0 0 0 0 · · · 1

The relation R̃elj expresses the monomial ψg−2−A1

∏n
i=2 ψ

ai+δij
i as a linear combination of the

generators with higher powers of ψ1. The relation R̃el0 expresses the monomial ψg−2−A1

∏n
i=2 ψ

ai
i κ1

as a linear combination of the monomials ψg−2−A1

∏n
i=2 ψ

ai+δij
i , for j = 2, . . . , s, and generators

with higher powers of ψ1. In case no primary field ai is equal to 0 (that is, s = 1), any of the
monomials y, x2, . . . , xn can be expressed in terms of the generators with strictly higher power
of ψ1.

3.2.1 Reduction algorithm. Consider a monomial ψ
g−1−

∑
di

1 ψd22 · · ·ψdnn . Let dM be the maxi-

mal element in the list of the di with the lowest index. If dM > 2, compute the relations R̃elj for
the following vector of primary fields:(

2g − 3
2 −

∑n
i=2 di, d2, . . . , dM−1, dM − 1, dM+1, . . . , dn, dn+1 = 3

2 , dn+2 = −1
2

)
.

Since dM − 1 > 1, we can use the relation R̃elM to express the monomial ψ
g−1−

∑
di

1 ψd22 · · ·ψdnn
as a linear combination of monomials with higher powers of ψ1.

We are left to treat the vectors ~d with di = 0 or 1 for i = 2, . . . , n. They correspond to the
vertices of a unitary (n− 1)-hypercube with non-negative coordinates. Let s be the number of di
equal to 0, so the remaining (n− 1− s) di are equal to 1, for s = 0, . . . , n− 1. Let us distinguish
between the different cases in s.

s = n− 1: In this case, we have ψg−11 , a generator.

s = n− 2: In this case, we have the remaining n− 1 generators ψg−21 ψi for i = 2, . . . , n.

1 6 s 6 n− 3: This case can be treated as the case s = 0 for some smaller n discussed below.
Let us argue by induction on n. For n 6 3, the case 1 6 s 6 n − 3 does not appear. Let us

assume n > 4. We have at least one zero, so let us assume dj = 0. Let π
(1)
j be the morphism

that forgets the jth marked point. If the monomial ψg−n+s1 ψd22 · · · ψ̂j · · ·ψdnn is expressed as a
linear combination of generators in Rg−1(Mg,n−1) (the space where the point with the label j

is forgotten), then the pull-back of this relation via π
(1)
j expresses ψg−n+s1 ψd22 · · · ψ̂j · · ·ψdnn as a

linear combination of the pull-backs of the n− 1 generators of Rg−1(Mg,n−1), ψ
g−1
1 and ψg−21 ψi,

where i 6= 1, j. To conclude, we observe that
(
π
(1)
j

)∗
ψg−11 = ψg−11 and

(
π
(1)
j

)∗
ψg−21 ψi = ψg−21 ψi

for i 6= 1, j on the open moduli spaces. Note that the same reasoning does not work in the case
s = n− 2 since the argument for s = 0 below uses the assumption n > 3.
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3.2.2 The case s = 0. For n > 3, we show that the monomial ψg−n1

∏n
i=2 ψ

1
i can be expressed

in terms of the generators ψg−11 and ψg−21 ψi for i = 2, . . . , n, concluding this way the proof of
Proposition 3.3.

Now, let ~vk be the vector of primary fields

~vk :=

(
a1 = 2g − n+ 2 + k

2
, 1, . . . , 1︸ ︷︷ ︸

k

,
1

2
, . . .

1

2︸ ︷︷ ︸
n−1−k

, an+1 =
3

2
, an+2 = −1

2

)
.

Similarly as before, let

y := ψg−n−11

n∏
i=2

ψ1
i κ1 and x̃` := − Q3(5/2)

Q1(1)Q2(3/2)
ψg−n−11 ψ1

2 · · ·ψ2
` · · ·ψ1

n , ` = 2, . . . , n .

Consider the monomials

ψg−n1

n∏
i=2

ψi and ψg−n1

n∏
i=2

ψ1−δi`
i κ1 , ` = 2, . . . , n .

The relations we used in the cases s > 1 imply that the difference of any two of these monomials
is equal to a linear combination of the generators ψg−11 and ψg−21 ψi for i = 2, . . . , n. Let c0
(respectively, c1, c2) be the sum of the coefficients of these monomials in the pushforwards
of the relations Ωg+1

g,n+2(~v0) (respectively, Ωg+1
g,n+2(~v1), Ωg+1

g,n+2(~v2)), and let ĉi be the normalized
coefficients that we get when we divide the relations by the coefficient of y.

Now we can expand, in this special case, the system of linear relations collected in the matrix
M above. We have a new linear variable, z := ψg−n1

∏n
i=2 ψi, which is equal to ψg−n1

∏n
i=2 ψ

1−δi`
i κ1

up to generators, for ` = 2, . . . , n, and an extra linear relation Rel∗ corresponding to the vector
of primary fields ~v2. Since in this special case, in these relations all terms with the exponent
of ψ1 equal to g − 1 − A, where A = n − 1, are now identified with one another and collected
in the variable z, these relations express z, y, x2, . . . , xn in terms of the monomials proportional
to ψg−A1 . The matrix of this system of relations reads

z y x̃2 x̃3 x̃4 . . . x̃n
Rel0 ĉ0 1 1 1 1 . . . 1
Rel2 ĉ1 1 0 1 1 . . . 1
Rel3 ĉ1 1 1 0 1 . . . 1
Rel4 ĉ1 1 1 1 0 . . . 1

...
...

...
...

...
...

. . .
...

Reln ĉ1 1 1 1 1 . . . 0
Rel∗ ĉ2 1 0 0 1 . . . 1

This matrix is non-degenerate if and only if ĉ2−2ĉ1+ ĉ0 6= 0. We prove this non-degeneracy in
Proposition 4.1 in the next section. This completes the proof of Proposition 3.3 and, as a corollary,
Theorem 3.4.

4. Non-degeneracy of the matrix

In this section, we compute the sum of the coefficients of the monomials ψg−n1

∏n
i=2 ψi and

ψg−n1

(∏n
i=2 ψ

1−δi`
i

)
κ1 for ` = 2, . . . , n for the three particular sequences of the primary fields.
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Let us recall the notation. We denote these sums of coefficients by

c0 for the primary fields g − 1− n, 12 , . . . ,
1
2 ;

c1 for the primary fields g − 3
2 − n, 1,

1
2 , . . . ,

1
2 ;

c2 for the primary fields g − 2− n, 1, 1, 12 , . . . ,
1
2 .

We denote the sequence of the primary fields by a1, . . . , an. The primary fields at the two points
that we forget are as usual an+1 = 3

2 and an+2 = −1
2 . For each ci, for i = 0, 1, 2, we denote by ĉi

the normalized coefficient, namely,

ĉi := ci ·
((
Qg+1−n(a1)−Qg+1−n

(
a1 − 1

2

)) n∏
i=2

Q1(ai)Q2

(
3
2

))−1
, (4.1)

where the sequence of primary fields is exactly the one used for the definition of the correspon-
ding ci.

The goal is to prove the following non-degeneracy statement.

Proposition 4.1. For any g and n satisfying 3 6 n 6 g − 1, we have ĉ0 − 2ĉ1 + ĉ2 6= 0.

We prove this proposition below, in Subsection 4.3, after we compute the coefficients c0, c1,
and c2 explicitly.

4.1 A general formula

First, we prove a general formula for any set of primary fields a2, . . . , an ∈
{
1
2 , 1
}

.

Lemma 4.2. Let all ai for i = 2, . . . , n be either 1
2 or 1. We have a1 = 2g− 3

2−
∑n

i=2 ai. A general

formula for the sum of the coefficients of the classes ψg−n1

∏n
i=2 ψi and ψg−n1

∏n
i=2 ψ

1−δi`
i κ1, for

` = 2, . . . , n, in the pushforward to Mg,n is given by

n∏
i=2

Q1(ai) ·

[
(2g − 2 + n)Q2

(
3
2

)
Qg−n(a1)

+ (2g − 2 + n)Q1

(
3
2

)(
Qg+1−n(a1)−Qg+1−n

(
a1 − 1

2

))
+Qg+2−n(a1)−Qg+2−n

(
a1 − 1

2

)
+Qg+2−n(a1 + 1)−Qg+2−n

(
a1 + 3

2

)
+
(
Q1

(
3
2

)
−Q1(1)

)
Qg+1−n(a1)

+
n∑
`=2

(
Q2

(
3
2

)(
Q1(a`)−Q1

(
a` − 1

2

)))
Qg−n(a1)

Q1(a`)

+

n∑
`=2

(
Q3(a` + 1)−Q3

(
a` + 3

2

))
Qg−n(a1)

Q1(a`)

+

n∑
`=2

(
Q2

(
3
2

)
Q0(a`)−Q2

(
a` + 3

2

))(
Qg+1−n(a1)−Qg+1−n

(
a1 − 1

2

))
Q1(a`)

 . (4.2)

Proof. The proof of this lemma is based on the analysis of all possible strata in Mg,n+2 equip-
ped with all possible monomials of ψ-classes that can potentially contribute non-trivially to
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ψg−n1

∏n
i=2 ψi and ψg−n1

∏n
i=2 ψ

1−δi`
i κ1, for ` = 2, . . . , n, under the pushforward. Note that we do

not have to consider κ-classes on the strata in Mg,n+2 since the choice r = 1
2 guarantees that

there are no terms with κ-classes in the Pandharipande–Pixton–Zvonkine relations.

Recall that we denote by DI , for I ⊂ {1, . . . , n+2}, the divisor inMg,n+2 whose generic point
is represented by a two-component curve, with components of genus g and 0 connected through
a node, such that all points with labels in I lie on the component of genus 0 and all other points
lie on the component of genus g. In this case, we denote by ψ0 the ψ-class corresponding to the
node on the genus 0 component.

We denote by π′ : Mg,n+2 →Mg,n+1 the map forgetting the marked point labeled by n+ 2,
by π′′ : Mg,n+1 →Mg,n the map forgetting the marked point labeled by n + 1, and by π their

composition π = π′′ ◦ π′. Note that π′∗
(∏n+1

i=1 ψ
di
i

)
=
∑

j : dj>0

∏n+1
i=1 ψ

di−δij
i , so, since in order to

compute π∗ we always first apply π′∗, below we typically mention the degree of which ψ-class is
reduced. We do the same for π′′∗ in the relevant cases.

Let us now go through the full list of possible non-trivial contributions:

• The pushforward of the class ψg−n1

∏n
i=2 ψ

1
i ψ

2
n+1 contains ψg−n1

∏n
i=2 ψ

1
i with coefficient (2g−

2 +n)
∏n
i=2Q1(ai)Qg−n(a1)Q2

(
3
2

)
. This explains the first line of equation (4.2). It also con-

tains the terms ψg−n1

∏n
i=2ψ

1−δi`
i κ1, for ` = 2, . . ., n, with coefficient

∏n
i=2Q1(ai)Qg−n(a1) ·

Q2

(
3
2

)
.

• The pushforward of the class ψg−n1

∏n
i=2 ψ

1−δi`
i D`,n+2ψ

2
n+1 also gives the term

ψg−n1

∏n
i=2 ψ

1−δi`
i κ1, with coefficient −

∏n
i=2Q1

(
ai − δi`/2

)
Qg−n(a1)Q2

(
3
2

)
. The sum over `

of this and the previous coefficient is equal to the sixth line of equation (4.2).

• The pushforward of the class ψg+1−n
1

∏n+1
i=2 ψ

1
i , where at the first step the map π′∗ decreases

the degree of ψ1, gives ψg−n1

∏n
i=1ψ

1
i with coefficient (2g−2+n)

∏n
i=2Q1(ai)Qg+1−n(a1)Q1

(
3
2

)
.

• The pushforward of the class (π′)∗(ψg−n1 )
∏n+1
i=2 ψ

1
iD1,n+2 gives ψg−n1

∏n
i=2 ψ

1
i with coefficient

−(2g−2+n)
∏n
i=2Q1(ai)Qg+1−n

(
a1− 1

2

)
Q1

(
3
2

)
. The sum of this and the previous coefficient

is equal to the second line of equation (4.2).

• The pushforward of the class ψg+2−n
1

∏n
i=2 ψ

1
i , where both π′∗ and π′′∗ decrease the degree

of ψ1, gives ψg−n1

∏n
i=2 ψ

1
i with coefficient

∏n
i=1Q1(ai)Qg+2−n(a1).

• The pushforward of the class (π′)∗(ψg+1−n
1 )

∏n
i=2 ψ

1
iD1,n+2, where the map π′′∗ decreases the

degree of ψ1, gives ψg−n1

∏n
i=2 ψ

1
i with coefficient −

∏n
i=2Q1(ai)Qg+2−n

(
a1 − 1

2

)
. The sum

of this and the previous coefficient is equal to the third line of equation (4.2).

• The pushforward of the class (π′′)∗(ψg+1−n
1 )

∏n
i=2 ψ

1
iD1,n+1, where at the first step the

map π′∗ decreases the degree of (π′′)∗ψ1, gives ψg−n1

∏n
i=2 ψ

1
i with coefficient −

∏n
i=2Q1(ai) ·

Qg+2−n
(
a1 + 3

2

)
.

• Consider the following seven cases together: π∗(ψg−n1 )
∏n
i=2 ψ

1
iD1,n+1,n+2(ψ0 +ψ1 +ψn+1 +

ψn+2) and π∗(ψg−n1 )
∏n
i=2 ψ

1
iD1,n+1,n+2(D1,n+1+D1,n+2+Dn+1,n+2). By Lemma 4.3 below,

the total sum of their pushforwards is equal to ψg−n1

∏n
i=2 ψi with coefficient

∏n
i=2Q1(ai) ·

Qg+2−n
(
a1− 1

2 + 3
2

)
. The sum of this and the previous coefficient is equal to the fourth line

in equation (4.2).

• The pushforward of the class ψg−n1

∏n
i=2 ψ

1−δi`
i D`,n+1(π

′′)∗ψ1
` , where at the first step the map

π′∗ decreases the degree of (π′′)∗ψ`, gives ψg−n1

∏n
i=2 ψ

1
i with coefficient −

∏n
i=2Q1+2δi`

(
ai +

3δi`/2
)
Qg−n(a1).
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• Consider the following seven cases together: ψg−n1

∏n
i=2 ψ

1−δi`
i D`,n+1,n+2π

∗ψ1
` (ψ0 + ψ` +

ψn+1 +ψn+2) and ψg−n1

∏n
i=2 ψ

1−δi`
i D`,n+1,n+2(D1,n+1 +D1,n+2 +Dn+1,n+2)π

∗ψ1
` . By Lem-

ma 4.3 below, the total sum of their pushforwards is equal to ψg−n1

∏n
i=1 ψi with coefficient∏n

i=1Q1+2δi`(ai+δi`)Qg−n(a1). Note that this coefficient is always equal to 0, since Q3(2) =

Q3

(
3
2

)
= 0, but we included this term here and in equation (4.2) in any case in order to make

the whole formula more transparent and homogeneous. The sum of this and the previous

coefficient is equal to the seventh line in equation (4.2).

• The pushforward of the class ψg+1−n
1

∏n
i=2 ψ

1
i ψ

1
n+1, where, first, the map π′∗ decreases the

degree of ψn+1, so it becomes 0, and then the map π′′∗ decreases the degree of ψ1, giving

ψg−n1

∏n
i=2 ψ

1
i with coefficient

∏n
i=2Q1(ai)Qg+1−n(a1)Q1

(
3
2

)
.

• The pushforward of the class ψg+1−n
1

∏n
i=2 ψ

1
iDn+1,n+2, where the map π′′∗ decreases the

degree of ψ1, gives ψg−n1

∏n
i=2 ψ

1
i with coefficient −

∏n
i=2Q1(ai) ·Qg+1−n(a1)Q1

(
3
2−

1
2

)
. The

sum of this and the previous coefficient is equal to the fifth line of equation (4.2).

• The pushforward of the class ψg+1−n
1

∏n
i=2 ψ

1−δi`
i ψ2

n+1, where at the first step the map

π′∗ decreases the degree of ψ1, gives ψg−n1

∏n
i=2 ψ

1−δi`
i κ1 with coefficient

∏n
i=2Q1−δi`(ai) ·

Qg+1−n(a1)Q2

(
3
2

)
.

• The pushforward of the class (π′)∗(ψg−n1 )
∏n
i=2 ψ

1−δi`
i D1,n+2ψ

2
n+1 gives the term

ψg−n1

∏n
i=2 ψ

1−δi`
i · κ1 with coefficient −

∏n
i=2Q1−δi`(ai)Qg+1−n

(
a1 − 1

2

)
Q2

(
3
2

)
.

• The pushforward of the class ψg+1−n
1

∏n
i=2 ψ

1−δi`
i D`,n+1(π

′′)∗ψ1
` , where at the first step the

map π′∗ decreases the degree of ψ1, gives ψg−n1

∏n
i=2 ψ

1
i with coefficient −

∏n
i=2Q1−δi`(ai) ·

Qg+1−n(a1)Q2

(
a` + 3

2

)
.

• The pushforward of the class (π′)∗(ψg−n1 )
∏n
i=2 ψ

1−δi`
i D`,n+1(π

′′)∗ψ1
`D1,n+2 gives

ψg−n1

∏n
i=2 ψ

1
i with coefficient

∏n
i=2Q1−δi`(ai)Qg+1−n

(
a1 − 1

2

)
Q2

(
a` + 3

2

)
. The sum

over ` of this and the previous three coefficients is equal to the eighth line in equation (4.2).

Thus, we have explained how we obtain all terms in (4.2). Note that since Q>1

(
−1

2

)
= 0, we

can never have a non-trivial degree of ψn+2 in our formulae. For the same reason, the degrees
of ψ2, . . . , ψn are bounded from above by 1 and the degree of ψn+1 is bounded from above by 2.
With this type of reasoning, it is easy to see by direct inspection that all other classes of degree
g+ 1 do not contain any of the monomials ψg−n1

∏n
i=2 ψi and ψg−n1

∏n
i=2 ψ

1−δi`
i κ1 for ` = 2, . . . , n

with non-trivial coefficients in their pushforwards toMg,n. For instance, for an arbitrary a`, the

class (π′′)∗(ψg−n1 )
∏n
i=2 ψ

1−δi`
i D`,n+2(π

′)∗ψ1
`D1,n+1 gives as result ψg−n1

∏n
i=2 ψ

1
i with coefficient∏n

i=2Q1−δi`(ai)Qg+1−n
(
a1 + 3

2

)
Q2

(
a`− 1

2

)
. But since a` is either 1

2 or 1 and Q2(0) = Q2

(
1
2

)
= 0,

this coefficient is equal to 0.

Lemma 4.3. Let the points 1, n+ 1, and n+ 2 have arbitrary primary fields α, β, and γ. Then
the pushforward of the part of the class given by

n∏
i=2

ψdii

[
D1,n+1,n+2π

∗ψd11 (ψ0 + ψ1 + ψn+1 + ψn+2)

+D1,n+1,n+2(D1,n+1 +D1,n+2 +Dn+1,n+2)π
∗ψd11

]
is equal to

∏n
i=1 ψ

di
i with coefficient

∏n
i=2Qdi(ai)Qd1+2(α+ β + γ).

Proof. Indeed, the Givental formula for the deformed r-spin class (for a general r) in this case
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implies that these seven summands have the following coefficients, up to a common factor:

ψ0 :
(
R−1d1+2

)α+β+γ−d1−2
α+β+γ

−
(
R−1d1+1

)α+β+γ−d1−2
α+β+γ−1

(
R−11

)r−2−(α+β+γ)
r−1−(α+β+γ) ,

ψ1 : −
(
R−1d1+1

)α+β+γ−d1−2
α+β+γ−1

(
R−11

)α−1
α

,

ψn+1 : −
(
R−1d1+1

)α+β+γ−d1−2
α+β+γ−1

(
R−11

)β−1
β

,

ψn+2 : −
(
R−1d1+1

)α+β+γ−d1−2
α+β+γ−1

(
R−11

)γ−1
γ

,

D1,n+1 :
(
R−1d1+1

)α+β+γ−d1−2
α+β+γ−1

(
R−11

)α+β−1
α+β

,

D1,n+2 :
(
R−1d1+1

)α+β+γ−d1−2
α+β+γ−1

(
R−11

)α+γ−1
α+γ

,

Dn+1,n+2 :
(
R−1d1+1

)α+β+γ−d1−2
α+β+γ−1

(
R−11

)γ+β−1
γ+β

(in addition to a common factor on the right-hand side we also omit the common factor

π∗
(
ψd11
)∏n

i=2 ψ
di
i D1,n+1,n+2 on the left-hand side of this table).

After the substitution r = 1
2 , the first term above,

(
R−1d1+2

)α+β+γ−d1−2
α+β+γ

, gives us the factor

Qd1+2(α+ β+ γ), and times the common factor of
∏n
i=2Qdi(ai), it is exactly the result we state

in the lemma. We have to show that the other seven terms sum up to zero. Indeed, the other
seven terms, after substitution r = 1

2 , are proportional to

Q1

(
−1

2 − α− β − γ
)

+Q1(α) +Q1(β) +Q1(γ)−Q1(α+ β)−Q1(α+ γ)−Q1(γ + β) .

Note that Q1

(
−1

2 − x
)

= Q1(x), so the expression above is proportional to

(
1
2 + α+ β + γ

)
(α+ β + γ) +

(
1
2 + α

)
(α) +

(
1
2 + β

)
(β) +

(
1
2 + γ

)
(γ)

−
(
1
2 + α+ β

)
(α+ β)−

(
1
2 + α+ γ

)
(α+ γ)−

(
1
2 + β + γ

)
(β + γ) = 0 .

4.2 Special cases of the general formula

In this section, we use Lemma 4.2 in order to derive the formulae for c0, c1, and c2. Since all
our expressions are homogeneous (the sum of the indices of the polynomials Q is always equal
to g + 1), we define Q̄m = (−2)mQm, for m > 0, to simplify notation.

We can substitute the values Q̄1

(
3
2

)
= 3, Q̄1(1) = 3

2 , Q̄1

(
1
2

)
= 1

2 , Q̄1(0) = 0, Q̄2

(
5
2

)
= 45

4 ,
Q̄2(2) = 15

4 , Q̄2

(
3
2

)
= 3

4 , Q̄3

(
5
2

)
= 15

8 , Q̄3(2) = 0 in equation (4.2). This gives use the following
coefficients of Q̄g−n(a1), Q̄g+1−n(a1), and Q̄g+1−n

(
a1 − 1

2

)
, where we omit the global factor∏n

i=2 Q̄1(ai):

in c0 :
(
3
2g −

9
4 + 3

2n
)
Q̄g−n(a1) +

(
6g + 3

2 − 3n
)
Q̄g+1−n(a1) +

(
− 6g + 0 + 3n

)
Q̄g+1−n

(
a1 − 1

2

)
,

in c1 :
(
3
2g −

15
4 + 3

2n
)
Q̄g−n(a1) +

(
6g + 1

2 − 3n
)
Q̄g+1−n(a1) +

(
− 6g + 1 + 3n

)
Q̄g+1−n

(
a1 − 1

2

)
,

in c2 :
(
3
2g −

21
4 + 3

2n
)
Q̄g−n(a1) +

(
6g − 1

2 − 3n
)
Q̄g+1−n(a1) +

(
− 6g + 2 + 3n

)
Q̄g+1−n

(
a1 − 1

2

)
.

(4.3)

Note that the primary field a1 has a different value in these three cases.
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Furthermore, we are going to use that

Q̄g+2−n(a1)− Q̄g+2−n
(
a1 − 1

2

)
=

(a1)
(
a1 − 1

2

)
· · · (a1 − g − 1 + n)

(g + 1− n)!
, (4.4)

Q̄g+2−n(a1 + 1)− Q̄g+2−n
(
a1 + 3

2

)
=
−
(
a1 + 3

2

)
(a1 + 1) · · ·

(
a1 − g + 1

2 + n
)

(g + 1− n)!
. (4.5)

Let us combine these terms with the terms with Q̄g+1−n computed above. In the case of c0,
the primary field a1 is equal to 2g − 1− n/2. Then the sum of (4.3), (4.4), and (4.5) is equal to
the following expression:

(2g − 1− 1
2n) · · · (g − 2 + 1

2n)

(g + 1− n)!
−
(
2g − 1− 1

2n
)
Q̄g+1−n

(
2g − 3

2 −
1
2n
)

−
(
4g + 1− 5

2n
)
Q̄g+1−n

(
2g − 3

2 −
1
2n
)

+
(
4g + 1− 5

2n
)
Q̄g+1−n

(
2g − 1− 1

2n
)

+
(
2g + 1

2 −
1
2n
)
Q̄g+1−n

(
2g − 1− 1

2n
)
−
(
2g + 1

2 −
1
2n
)
· · ·
(
g − 1

2 + 1
2n
)

(g + 1− n)!

= −
(
2g − 1− 1

2n
)(2g − 3

2 −
1
2n
)
· · ·
(
g − 3

2 + 1
2n
)

(g − n)!

+
(
4g + 1− 5

2n
)(2g − 1− 1

2n
)
· · ·
(
g − 1 + 1

2n
)

(g − n)!

−
(
2g + 1

2 −
1
2n
)(2g − 1

2 −
1
2n
)
· · ·
(
g − 1

2 + 1
2n
)

(g − n)!

=
(
3g + 5

2 − 3n
)(2g − 1− 1

2n
)
· · ·
(
g − 1 + 1

2n
)

(g − n)!

−
(
2g + 1

2 −
1
2n
)(2g − 1

2 −
1
2n
)
· · ·
(
g − 1

2 + 1
2n
)

(g − n)!
.

We can perform the same computation for c1 and c2. Recall in all three cases the term with Q̄g−n
and the overall coefficients

∏n
i=2 Q̄1(ai) in (4.2). We obtain the following expressions.

Corollary 4.4. We have

c0 = Q̄1

(
1
2

)n−1 [(3
2g −

9
4 + 3

2n
)(2g − 1

2 −
1
2n
)
· · ·
(
g − 0 + 1

2n
)

(g − n)!

−
(
2g + 1

2 −
1
2n
)(2g − 1

2 −
1
2n
)
· · ·
(
g − 1

2 + 1
2n
)

(g − n)!

+
(
3g + 5

2 − 3n
)(2g − 1− 1

2n
)
· · ·
(
g − 1 + 1

2n
)

(g − n)!

]
,

c1 = Q̄1

(
1
2

)n−2
Q̄1(1)

[(
3
2g −

15
4 + 3

2n
)(2g − 1− 1

2n
)
· · ·
(
g − 1

2 + 1
2n
)

(g − n)!

−
(
2g + 0− 1

2n
)(2g − 1− 1

2n
)
· · ·
(
g − 1 + 1

2n
)

(g − n)!

+
(
3g + 5

2 − 3n
)(2g − 3

2 −
1
2n
)
· · ·
(
g − 3

2 + 1
2n
)

(g − n)!

]
,
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c2 = Q̄1

(
1
2

)n−3
Q̄1(1)2

[(
3
2g −

21
4 + 3

2n
)(2g − 3

2 −
1
2n
)
· · ·
(
g − 1 + 1

2n
)

(g − n)!

−
(
2g − 1

2 −
1
2n
)(2g − 3

2 −
1
2n
)
· · ·
(
g − 3

2 + 1
2n
)

(g − n)!

+
(
3g + 5

2 − 3n
)(2g − 2− 1

2n
)
· · ·
(
g − 2 + 1

2n
)

(g − n)!

]
.

4.3 Proof of the non-degeneracy

In this subsection, we prove Proposition 4.1. First, observe that Q̄g+1−n(a1) − Q̄g+1−n
(
a1 −

1
2

)
is equal to (a1)(a1 − 1

2) · · · (a1 − g + n)/
(
(g − n)!

)
. We substitute a1 = 2g − 1 + 1

2n for c0
(respectively, 2g − 3

2 + 1
2n for c1 and 2g − 2 + 1

2n for c2) and combine the result of Corollary 4.4
and equation (4.1) in order to obtain the following formulae:

3
4 ĉ0 =

(
3
2g −

9
4 + 3

2n
) (

2g − 1
2 −

1
2n
)(

g − 1
2 + 1

2n
)(
g − 1 + 1

2n
) − (2g + 1

2 −
1
2n
)(2g − 1

2 −
1
2n
)(

g − 1 + 1
2n
) +

(
3g + 5

2 − 3n
)
,

3
4 ĉ1 =

(
3
2g −

15
4 + 3

2n
) (

2g − 1− 1
2n
)(

g − 1 + 1
2n
)(
g − 3

2 + 1
2n
) − (2g + 0− 1

2n
)(2g − 1− 1

2n
)(

g − 3
2 + 1

2n
) +

(
3g + 5

2 − 3n
)
,

3
4 ĉ2 =

(
3
2g −

21
4 + 3

2n
) (

2g − 3
2 −

1
2n
)(

g − 3
2 + 1

2n
)(
g − 2 + 1

2n
) − (2g − 1

2 −
1
2n
)(2g − 3

2 −
1
2n
)(

g − 2 + 1
2n
) +

(
3g + 5

2 − 3n
)
.

By an explicit computation, we obtain

3
4(ĉ0 − 2ĉ1 + ĉ2) =

S(g, n)(
g − 1

2 + 1
2n
)(
g − 1 + 1

2n
)(
g − 3

2 + 1
2n
)(
g − 2 + 1

2n
) ,

where

S(g, n) = −g + 11
8 n−

9
4g

2 + 9
8gn−

1
2g

3 + 3
4g

2n− 1
4n

3 .

We want to prove that this polynomial is never equal to zero in the integer points (g, n) satisfying
3 6 n 6 g− 1. We can make a change of variable n = b+ 3, g = a+ b+ 4; then we want to prove
that S(a + b + 4, b + 3) never vanishes for any integer a, b > 0. This is indeed the case since all
non-zero coefficients of the polynomial

S(a+ b+ 4, b+ 3) = −201
8 −

173
8 a−

21
2 b− 6a2 − 39

8 ab−
9
8b

2 − 1
2a

3 − 3
4a

2b

are negative, including the constant term. This completes the proof of Proposition 4.1.

5. The vanishing of R>g(Mg,n)

In this section, we will give a new proof of the following theorem.

Theorem 5.1 ([Loo95, Ion02]). The tautological ring ofMg,n vanishes in degrees g and higher;
that is, R>g(Mg,n) = 0.

This theorem and Theorem 3.4 together constitute the generalized socle conjecture, as the
bound dimRg−1(Mg,n) > n can be proved relatively simply; see, for example, [BSZ16]. This
conjecture is a generalization of one of Faber’s three conjectures on the tautological ring ofMg;
see [Fab99] for the original conjectures and [BSZ16] for the generalization.

The proof consists of three steps: in steps 1 and 2, we show that the pure ψ- and κ-classes
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vanish, respectively, and in step 3 we reduce the mixed monomials to the pure cases. The first
two steps will be proved in separate lemmata.

Lemma 5.2. Let g > 0 and n > 1. Any monomial in ψ-classes of degree at least max(g, 1)
vanishes on Mg,n.

Remark 5.3. This lemma was originally conjectured by Getzler in [Get98].

Proof. For g = 0, this is well known; see, for example, [Zvo12, Proposition 2.13]. So let us assume
g > 1.

We will prove that any monomial in ψ-classes of degree g vanishes. This clearly implies that
any monomial of higher degree vanishes as well.

For this, look again at Ωg, but now on Mg,n. When restricted to the open part Mg,n, the
only contributing graph is the one with one vertex of genus g, as the other graphs correspond to
boundary divisors, by definition. Hence, the equation for the cohomological field theory reduces
to

Ωg
g,n(a1, . . . , an)

∣∣
Mg,n

=

{
−1

2

∏n
i=1

(∑
mi>0Qmi(ai)ψ

mi
i

)
if
∑n

i=1 ai = 2g − 1 ,

0 else .

We will prove the vanishing of all monomials using downward induction on the exponent d1 of ψ1,
starting with the case d1 = g + 1. This case trivially gives a zero, as this power cannot occur in
a monomial of total degree g.

Now, assuming that all monomials with exponent of ψ1 larger than d1 vanish, consider the
monomial ψd11 · · ·ψdnn for any di summing up to g. For the relation, choose ai = di for all i 6= 1 and
a1 = 2g − 1−

∑n
i=2 ai. This means Qmi(ai) = 0 unless mi 6 di or i = 1, so the only monomials

with non-zero coefficients have exponent of ψi at most di for i 6= 1. Because the total degree is
fixed, the only surviving monomial with exponent of ψ1 equal to d1 is the one we started with,
and this relation expresses it in monomials with strictly larger exponent of ψ1. By the induction
hypothesis, this monomial must be zero.

Remark 5.4. Note that this argument breaks down for degrees lower than g, as the class does
not vanish there. Therefore, to get relations in those degrees, one must push forward relations in
higher degrees along forgetful maps on the compactified moduli space, which contain non-trivial
contributions from boundary strata.

Lemma 5.5. Any multi-index κ-class of degree at least g vanishes on Mg,n.

Proof. Fix a degree d > g, and consider the pure (multi-index) κ-classes in this degree. Without
loss of generality, we can assume the number of indices to be equal to d: this is certainly an upper
bound, and adding an extra index zero only multiplies the class by a non-zero factor, using the
dilaton equation on the definition of multi-index κ-classes.

We will consider Ωg
g,n+d. In order to get a relation in Rd(Mg,n), we should multiply by a class σ

of degree 2d−g, push forward toMg,n, and then restrict toMg,n. As we can now assume d > g,

we have 2d− g > d, and we can therefore choose σ =
∏d
j=1 ψ

fj+1
n+j with each fj > 0. By choosing

such a σ, we ensure that after pushforward and restriction to the open moduli space, none of
the contributions from boundary divisors on Mg,n+d survive and only the term with one vertex
contributes.

We will use downward induction on the first index of the κ-class. The base case is a first
index larger than d, and hence another index being negative, giving a trivial zero.
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Now, assume that all κ-classes with first index larger than e1 are zero. Fix a class κe1,...,ed
of degree d =

∑d
j=1 ej , choose a set of non-negative integers {aj , fj | 2 6 j 6 d} such that

aj + fj = ej , and set a1 = 2g − 1−
∑d

j=2 aj and f1 = 0. We will consider

πd∗
(
σ · Ωg

g,n+d(0, . . . , 0, a1, . . . , ad)
)∣∣
Mg,n

= πd∗

(
d∏
j=1

ψ
fj+1
n+j · −

1

2

d∏
j=1

∑
mj>0

Qmj (aj)ψ
mj

n+j

)∣∣∣∣
Mg,n

= −1

2

∑
mj>0
16j6d

(
d∏
j=1

Qmj (aj)

)
κf1+m1,...,fd+md

,

which vanishes. By our choice of aj , for the product of Q-polynomials to be non-zero, we need
mj 6 aj for j 6= 1. Furthermore, by our choice of fj , this shows that fj + mj 6 ej for j 6= 1.
Because we look at a fixed degree d, this means f1 + m1 > e1, with equality only occurring for
mj = fj , with j 6= 1, and hence for the κ-class we started with. Hence this relation expresses our
chosen class κe1,...,ed in terms of κ-classes with strictly higher first index, which we already know
vanish.

Remark 5.6. Note that we cannot use the vanishing of the ψ-monomials in higher degrees and
push these relations forward, as the κ-classes are defined by pushing forward ψ-classes on the
compactified moduli space and then restricting to the open part, and not the other way around.

We are now ready to prove the theorem.

Proof of Theorem 5.1. For general monomial ψ-κ-classes, that is, classes of the form µ =
ψd1i · · ·ψdnn · κe1,...,ek , we will use induction on the total degree d =

∑n
i=1 di +

∑k
j=1 ej . If all di

are 0, we are in the case of Lemma 5.5, so we can assume that at least one of them is non-zero,
that is, µ = ν · ψi for some i.

In degree d = g, we get that the degree of ν is g − 1. By Proposition 3.1, we know that ν is
a polynomial in ψ-classes. Therefore, so is µ = ν · ψi. By Lemma 5.2, we know that µ vanishes.

For the induction step, we know by induction that ν is zero, hence µ is too. This finishes the
proof of Theorem 5.1.

Because the proof of this theorem only uses the case x = 0 from Subsection 2.2, see also
Subsection 2.4, and only fixes non-negative integer primary fields, all the relations are actually
explicit on all of Mg,n. Hence, we get the following.

Proposition 5.7. The Pandharipande–Pixton–Zvonkine relations for r = 1
2 give an algorithm

for computing explicit tautological boundary formulae in the Chow ring for any tautological class
on Mg,n of codimension at least g. In particular, the intersection numbers of ψ-classes on Mg,n

can be computed with these relations for any g > 0 and n > 1 such that 2g − 2 + n > 0.

Remark 5.8. The first part of the statement is very similar to [CGJZ16, Theorem 5], which gave
a reduction algorithm based on Pixton’s double ramification cycle. It confirms an expectation
on page 7 of [BJP15], that “(. . . )Pixton’s relations are expected to uniquely determine the
descendent theory, but the implication is not yet proven”.

Note that the intersection numbers in ψ- and κ-classes can be expressed as intersection
numbers of only ψ-classes by pulling back along forgetful maps; see [Zvo12, Corollary 3.23]. By
Proposition 5.7, all these intersection numbers can then be computed using the PPZ relations.
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Proof of Proposition 5.7. The first sentence follows by the comment above the proposition. For
the second sentence, we will reduce polynomials in ψ-classes to smaller and smaller boundary
strata using our explicit relation. This will be done in the form of an induction on dimMg,n =
3g − 3 + n, the 0-dimensional case M0,3 being obvious.

For any g1+g2 = g and I1tI2 = {1, . . . , n} such that 2gi+|Ii|−1 > 0, write ρg1,g2I1,I2
: Mg1,|I1|+1×

Mg2,|I2|+1 →Mg,n for the attaching map, and Dg1,g2
I1,I2

for the divisor (ρg1,g2I1,I2
)∗(1). Similarly, write

σ : Mg−1,n+2 →Mg,n for the gluing map, and δirr for σ∗(1). Then these divisors together form
the entire boundary of Mg,n, and ρ∗(ψi) = ψi and σ∗(ψi) = ψi for any choice of indices.

Now, let g and n be such that 3g−3+n > 0, and choose a polynomial p(ψ) ∈ R3g−3+n(Mg,n).
Using stability, we see that 3g − 3 + n > g − 1, so by Lemma 5.2, this class is zero on Mg,n.
Since the proof only uses relations without κ-classes, it can be given explicitly as a sum of the
boundary divisors given above multiplied with other ψ-polynomials. By the projection formula,
we have∫

Mg,n

n∏
i=1

ψdii D
g1,g2
I1,I2

(ψ′)d
′
(ψ′′)d

′′
=

∫
Mg1,|I1|+1

(∏
i∈I1

ψdii

)
ψd
′
n+1 ·

∫
Mg2,|I2|+1

(∏
i∈I2

ψdii

)
ψd
′′
n+2 ,∫

Mg,n

n∏
i=1

ψdii δirr(ψ
′)d
′
(ψ′′)d

′′
=

∫
Mg−1,n+2

( n∏
i=1

ψdii

)
ψd
′
n+1ψ

d′′
n+2 ,

where ψ′ and ψ′′ are the classes on the half-edges of the unique edge in the dual graphs of the
divisors.

All spaces on the right-hand side have a strictly lower dimension, so by induction we can
compute those numbers via the PPZ relations.

According to [CGJZ16, Section 3.5], Proposition 5.7 implies the following theorem.

Corollary 5.9 ([GV05, Theorem ?], improved in [FP05]). Any codimension d tautological
class can be expressed in terms of tautological classes supported on curves with at least d− g+ 1
rational components.

6. Dimensional bound for R6g−2(Mg,n)

Similarly to [PPZ16, Theorem 6], our method also gives a bound for the dimension of the lower-
degree tautological classes. For the statement of this proposition, recall that p(n) denotes the
number of partitions of n and p(n, k) denotes the number of partitions of n of length at most k.

Proposition 6.1. We have

dimRd(Mg,n) 6
d∑

k=0

(
n+ k − 1

k

)
p(d− k, g − 1− d) .

Remark 6.2. If we use the natural interpretation of
(
k−1
k

)
as δk,0, this does indeed recover [PPZ16,

Theorem 6] in the case n = 0.

Proof. We will exhibit an explicit spanning set of this cardinality, consisting of ψ-κ-classes,
namely monomials in ψ-classes multiplied with a multi-index κ-class.

First, a less strict first bound can be obtained as follows: any ψ-κ-class is a product of
factors ψ, of total degree k, and factors κ, of total degree d − k. There are

(
n+k−1

k

)
different

724



Tautological ring via PPZ relations

monomials of degree k in n variables, and furthermore there are as many different multi-index
κ-classes of degree d− k as there are partitions of d− k, so p(d− k). This gives the first bound

dimRd(Mg,n) 6
d∑

k=0

(
n+ k − 1

k

)
p(d− k) ,

which is already close to the statement of the proposition.

To get the actual bound, we will show that any ψ-κ-class with at least g − d κ-indices can
be expressed in ψ-κ-classes with strictly fewer κ-indices. Following the logic of the previous
paragraph, this proves the bound.

This reduction step is analogous to the proof of Lemma 5.5. Suppose that we have a class
µ = ψd11 · · ·ψdnn κe1,...,em with m > g − d. Choose non-negative integers {fi, ai}n+mi=1 such that the
following hold:

f1 = 0 ,
n+m∑
i=1

fi = d− g +m, ai + fi = di for 2 6 i 6 n ,

an+j + fn+j = ej + 1 for 1 6 j 6 m, a1 = 2g − 1−
m∑
j=2

aj .

Let σ =
∏n+m
i=2 ψfii , and consider the class

πm∗
(
σ · Ωg

g,n+m(a1, . . . , an+m)
)∣∣
Mg,n

.

By the second condition on our chosen numbers, which fixes the degree of σ, this expression gives
a relation in Rd(Mg,n).

There are no ψ-κ-classes with more than m κ-indices in this relation, and the coefficient of
any ψ-κ-class with exactly m indices can only come from the open part of Mg,n+m, as each
forgotten point must carry at least two ψ-classes, which would give too high degrees on any
rational component. Therefore, the coefficient of ψp11 · · ·ψ

pn
n κq1,...,qm must be

∏n
i=1Qpi−fi(ai) ·∏m

j=1Qqj−fn+j+1(an+j). This is only non-zero if pi 6 fi + ai = di for all i 6= 1 and qj 6
fn+j + an + j − 1 = ej for all j. This implies p1 > d1, with equality only if pi = di and qj = ej
for all i, j. Hence, this relation expresses the class µ as a linear combination of ψ-κ-classes with
fewer than m κ-indices and ψ-κ-classes with strictly higher exponent of ψ1. By induction on first
the exponent of ψ1 and then the number of κ-indices, all these classes can be reduced.

Remark 6.3. This argument breaks down for m < g − d, as the class σ would have to have
a negative degree: our class only vanishes in degree at least g, and to get at most m-index
κ-classes, we can only push forward m times, so the lowest degree relation would be in Rg−m.

The condition that partitions have length at most g−1−d seems dual to Graber and Vakil’s
Theorem ?, Corollary 5.9; see [GV05, Theorem 1.1].
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jecture, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 4, 621–658; https://doi.org/10.
24033/asens.2130.

Get98 E. Getzler, Topological recursion relations in genus 2, Integrable Systems and Algebraic
Geometry (Kobe/Kyoto, 1997) (World Sci. Publ., River Edge, NJ, 1998), 73–106.

Giv01a A. B. Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians,
Mosc. Math. J. 1 (2001), no. 4, 551–568; http://www.ams.org/distribution/mmj/

vol1-4-2001/gwi.pdf.

Giv01b , Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 2001 (2001),
no. 23, 1265–1286; https://doi.org/10.1155/S1073792801000605.

Giv03 , An−1 singularities and nKdV hierarchies, Mosc. Math. J. 3 (2003), no. 2, 475–505;
http://www.ams.org/distribution/mmj/vol3-2-2003/givental.pdf.

GV05 T. Graber and R. Vakil, Relative virtual localization and vanishing of tautological classes
on moduli spaces of curves, Duke Math. J. 130 (2005), no. 1, 1–37; https://doi.org/10.
1215/S0012-7094-05-13011-3.

Ion02 E.-N. Ionel, Topological recursive relations in H2g(Mg,n), Invent. Math. 148 (2002), no. 3,
627–658; https://doi.org/10.1007/s002220100205.

Jan14 F. Janda, Comparing tautological relations from the equivariant Gromov–Witten theory of
projective spaces and spin structures, 2014, arXiv:1407.4778.

Jan15a , Relations in the tautological ring and Frobenius manifolds near the discriminant,
2015, arXiv:1505.03419.

Jan15b , Relations on Mg,n via equivariant Gromov–Witten theory of P1, 2015,
arXiv:1509.08421.

Loo95 E. Looijenga, On the tautological ring of Mg, Invent. Math. 121 (1995), no. 2, 411–419;
https://doi.org/10.1007/BF01884306.

Mum83 D. Mumford, Towards an enumerative geometry of the moduli space of curves, in Arithmetic
and Geometry, Vol. II, Progr. Math., vol. 36 (Birkhäuser Boston, Boston, MA, 1983), 271–
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