We perform a key step towards the proof of Zvonkine’s conjectural r-ELSV formula that relates Hurwitz numbers with completed (r + 1)-cycles to the geometry of the moduli spaces of the r-spin structures on curves: we prove the quasi-polynomiality property prescribed by Zvonkine’s conjecture. Moreover, we propose an orbifold generalization of Zvonkine’s conjecture and prove the quasi-polynomiality property in this case as well. In addition to that, we study the (0, 1)- and (0, 2)-functions in this generalized case, and we show that these unstable cases are correctly reproduced by the spectral curve initial data.

Kramer, R., Lewanski, D., Popolitov, A., Shadrin, S. (2019). Towards an orbifold generalization of Zvonkine’s R-ELSV formula. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 372(6), 4447-4469 [10.1090/tran/7793].

Towards an orbifold generalization of Zvonkine’s R-ELSV formula

Kramer R.;
2019

Abstract

We perform a key step towards the proof of Zvonkine’s conjectural r-ELSV formula that relates Hurwitz numbers with completed (r + 1)-cycles to the geometry of the moduli spaces of the r-spin structures on curves: we prove the quasi-polynomiality property prescribed by Zvonkine’s conjecture. Moreover, we propose an orbifold generalization of Zvonkine’s conjecture and prove the quasi-polynomiality property in this case as well. In addition to that, we study the (0, 1)- and (0, 2)-functions in this generalized case, and we show that these unstable cases are correctly reproduced by the spectral curve initial data.
Articolo in rivista - Articolo scientifico
Hurwitz numbers, moduli spaces of curves, topological recursion
English
2019
372
6
4447
4469
reserved
Kramer, R., Lewanski, D., Popolitov, A., Shadrin, S. (2019). Towards an orbifold generalization of Zvonkine’s R-ELSV formula. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 372(6), 4447-4469 [10.1090/tran/7793].
File in questo prodotto:
File Dimensione Formato  
Kramer-2019-Trans Amer Math Soc-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 329.56 kB
Formato Adobe PDF
329.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/511202
Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
Social impact