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Abstract. We perform a key step towards the proof of Zvonkine’s conjectural r-
ELSV formula that relates Hurwitz numbers with completed (r + 1)-cycles to the
geometry of the moduli spaces of the r-spin structures on curves: we prove the quasi-
polynomiality property prescribed by Zvonkine’s conjecture. Moreover, we propose
an orbifold generalization of Zvonkine’s conjecture and prove the quasi-polynomiality
property in this case as well. In addition to that, we study the (0, 1)- and (0, 2)-
functions in this generalized case and we show that these unstable cases are correctly
reproduced by the spectral curve initial data.
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1. Introduction

1.1. A recollection on the ELSV formula. The celebrated Ekedahl–Lando–Shapiro–
Vainshtein formula [ELSV01] connects single Hurwitz numbers to the intersection theory
of the moduli spaces of curves. One of the possible interpretations of this formula comes
from the theory of topological recursion [EO07]. Eynard proves in [Eyn11] that the
ELSV formula is equivalent to the statement that the generating n-point functions of
single Hurwitz numbers are expansions of the correlation forms obtained via topological
recursion from the data of a particular spectral curve, which is in this case CP1 equipped
with

(1) x(z) = log z − z, y(z) = z, B(z1, z2) = dz1dz2/(z1 − z2)2.
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The latter statement was known as the Bouchard–Mariño conjecture [BM08], and there
are several earlier proofs of this conjecture that use the ELSV formula, but do not
provide the equivalence statement, see [EMS11, MZ10].

Let us discuss the precise mathematical content of the Bouchard–Mariño conjecture.
Let Fg,n :=

∑
µ1,...,µn

hg,~µ exp(
∑n

i=1 µixi) be the n-point generating function of the genus

g single Hurwitz numbers. Recall x, y, and B defined in equation (1). We have:

(1) The 1-form dF0,1 is the expansion of the 1-form y dx(z) in the variable exp(x)
near the point exp(x) = 0.

(2) The symmetric 2-form [d1 ⊗ d2]F0,2 is the expansion of the 2-form B(z1, z2) −
dex1dex2/(ex1 − ex2)2 in the variables exp(x1), exp(x2) near the point exp(x1) =
exp(x2) = 0.

(3) The symmetric n-forms [d1⊗· · ·⊗dn]Fg,n, 2g−2+n > 0, can be represented as the
expansions in exp(x1), . . . , exp(xn) near the point exp(x1) = · · · = exp(xn) = 0
of symmetric n-differentials ωg,n(z1, . . . , zn) that are globally defined on (CP1)×n.

(4) These symmetric differentials ωg,n satisfy the topological recursion for the initial
data (1).

The first two statements can be checked by hand. The third statement follows from
the shape of the ELSV formula. The ELSV formula implies that the coefficients of the
n-point function hg,~µ are equal to a certain explicit combinatorial factor which is not
polynomial in the entries µi, times a polynomial in the µi. This property is often called
quasi-polynomiality. The fourth statement is proved via analysis of the combinatorics
of the cut-and-join equation for Hurwitz numbers in [EMS11, MZ10]. Alternatively,
in [Eyn11] the fourth statement is shown to be equivalent to the ELSV formula under
assumption of the first three statements.

The third statement above has a purely combinatorial interpretation and for a long
time it was an open question whether it can be proved without reference to the ELSV
formula. Two different proofs are now available, see [DKO+15, KLS16]. Once the
third statement is proved independently, one can use the results in [EMS11, MZ10]
to prove the fourth statement, and then the equivalence of Eynard provides a new,
purely combinatorial, proof of the ELSV formula [DKO+15] (though the third statement
requires some discussion of the analytic properties of the n-point functions).

1.2. The q-orbifold Hurwitz numbers. The full story above can be repeated in the
case of q-orbifold Hurwitz numbers, q ≥ 1, which is a special case of double Hurwitz
numbers, where one of the special fibers has monodromy consisting only of q-cycles.
The orbifold analog of the ELSV formula is the Johnson–Pandharipande–Tseng for-
mula [JPT11]. The topological recursion data in this case is CP1 equipped with

(2) x(z) = log z − zq, y(z) = zq, B(z1, z2) = dz1dz2/(z1 − z2)2.

As in the usual Hurwitz case, one can use the JPT formula to derive the quasi-poly-
nomiality of the n-point functions and then use the cut-and-join equation to prove the
topological recursion [BHLM14, DLN12]. In particular, in these papers the (0, 1)- and
(0, 2)-functions for q-orbifold Hurwitz numbers are related to the expansions of y dx(z)
and B(z1, z2) defined in equation (2). The equivalence of the topological recursion and
the JPT formula is proved in [LPSZ16]. An independent proof of the quasi-polynomiality
property is given in [DLPS15, KLS16], which gives a new, purely combinatorial, proof
for the JPT formula [DLPS15].

1.3. The r-spin Hurwitz numbers. There is another generalization of Hurwitz num-
bers [SSZ12] natural both from the point of view of the representation theory of the
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symmetric group [KO94] and the Gromov–Witten theory of the projective line [OP06a],
where the typical singularity has the monodromy type of a completed (r+1)-cycle. These
numbers are called the r-spin Hurwitz numbers, and this name is inspired by an ELSV-
type formula, called the r-ELSV formula, conjectured by Zvonkine in 2006 [Zvo06]. This
conjecture relates the r-spin Hurwitz numbers to the intersection numbers on the moduli
spaces of r-spin structures, see [Zvo06, SSZ15].

In this case the intersection number formula is only conjectural, and no alternative
proof of the quasi-polynomiality is known. It is proved in [SSZ15] that the conjectural
r-ELSV formula is equivalent to the topological recursion on CP1 for the following initial
data:

(3) x(z) = log z − zr, y(z) = z, B(z1, z2) = dz1dz2/(z1 − z2)2.

It is also proved in [MSS13] that the differential of the (0, 1)-function for r-spin Hurwitz
numbers is indeed the expansion of y dx(z) in the variable exp(x) near exp(x) = 0,
where x and y are defined in equation (3).

The results of this paper include, as a special case, the proof that the 2-differential
obtained from the (0, 2)-function of the r-spin Hurwitz numbers is given by the ex-
pansion of B(z1, z2) − dex1dex2/(ex1 − ex2)2 in the variables exp(x1), exp(x2) near the
point exp(x1) = exp(x2) = 0, where x and B are defined in equation (3), as well as the
quasi-polynomiality statement for the (g, n)-functions for 2g − 2 + n > 0.

1.4. The q-orbifold r-spin Hurwitz numbers. It is natural to combine the two gen-
eralizations of the concept of Hurwitz number: the monodromy of one special fiber
consists of q-cycles, and the monodromy of the typical singularity is given by the com-
pleted (r+1)-cycle. This way we get q-orbifold r-spin Hurwitz numbers [MSS13]. There
is not much known about this generalization. There is only a quantum curve for this
case that is proved in [MSS13]. Note, however, that according to the logic outlined
in [ALS16], this leads to a guess of the spectral curve for this case, and the spectral
curve implies an ELSV-type formula for this type of Hurwitz numbers as well.

The conjectural spectral curve in this case is CP1 with the following initial data:

(4) x(z) = log z − zqr, y(z) = zq, B(z1, z2) = dz1dz2/(z1 − z2)2.

The result of [MSS13] implies that the differential of the (0, 1)-function is the expansion
of y dx(z) in exp(x) near the point exp(x) = 0, where x and y are defined in equation (4).

The main result of this paper is the quasi-polynomiality statement for the q-orbifold
r-spin Hurwitz numbers and the proof that the 2-differential obtained from the (0, 2)-
function of the q-orbifold r-spin Hurwitz numbers is given by the expansion of B(z1, z2)−
dex1dex2/(ex1−ex2)2 in the variables exp(x1), exp(x2) near the point exp(x1) = exp(x2) =
0, where x and B are defined in equation (4). We also prove the statement of [MSS13]
about the (0, 1)-function in a new way.

This allows us to generalize the conjecture of Zvonkine, in the following way. We
conjecture that the q-orbifold r-spin Hurwitz numbers satisfy the topological recursion
of the initial data given in equation (4). By the results of [Eyn14, DOSS14] this im-
mediately implies a conjectural ELSV-type formula for these Hurwitz numbers. The
particular computation for the initial data (4) is performed in [LPSZ16], where the
correlation differentials for this spectral curve are presented in terms of the Chiodo
classes [Chi08]. This allows us to obtain a very precise description of the conjectural
ELSV-type formula for the q-orbifold r-spin Hurwitz numbers, which reduces in the case
q = 1 to the original conjecture of Zvonkine.
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1.5. Organization of the paper. In section 2 we give some necessary background on
the semi-infinite wedge formalism. In section 3 we use the semi-infinite wedge formalism
in order to define the q-orbifold r-spin Hurwitz numbers and to present them as the
vacuum expectations of the so-called A-operators. In section 4 we prove the quasi-
polynomiality property for the q-orbifold r-spin Hurwitz numbers. In section 5 we
consider the unstable correlation differentials for the conjectural spectral curve and
reproduce the 1- and 2-point functions for the q-orbifold r-spin Hurwitz numbers in
genus 0. In section 6 we describe precisely a conjectural ELSV-type formula for the
q-orbifold r-spin Hurwitz numbers that generalizes the conjecture of Zvonkine for r-spin
Hurwitz numbers.

1.6. Acknowledgements. The authors were supported by the Netherlands Organiza-
tion for Scientific Research. S. S. is grateful to D. Zvonkine for the numerous helpful
discussions of his 2006 conjecture. The authors are grateful to P. Dunin-Barkowski and
to the anonymous referees for very useful remarks.

2. Semi-infinite wedge formalism

This section introduces the notions of the semi-infinite wedge formalism, which we
will use throughout this article. For a more complete introduction, see e.g. [Joh15]. We
will write Z′ := Z + 1

2
for the set of half-integers.

The main tool in this article will be the following algebra:

Definition 2.1. The Lie algebra A∞ is the C-vector space of matrices (Ai,j)i,j∈Z′ with
only finitely many non-zero diagonals (that is, Ai,j is not equal to zero only for finitely
many possible values of i− j), together with the commutator bracket.

In this algebra, we will consider the following elements:

(1) The standard (Schauder) basis of this algebra is the set {Ei,j | i, j ∈ Z′} such
that (Ei,j)k,l = δi,kδj,l;

(2) The diagonal elements Fn :=
∑

k∈Z′ k
nEk,k. In particular, C := F0 is the charge

operator and E := F1 is the energy operator. An element A has energy e ∈ Z if
[A,E] = eA;

(3) For any non-zero integer n, the energy n element αn :=
∑

k∈Z′ Ek−n,k.

We will construct a certain projective representation of this algebra, called the semi-
infinite wedge space.

Definition 2.2. Let V be the vector space spanned by Z′: V =
⊕

i∈Z′ Ci, where the i

are a basis. We define the semi-infinite wedge space V :=
∧∞

2 V to be the span of all
one-sided infinite wedge products

(5) i1 ∧ i2 ∧ · · · ,
with ik ∈ Z′, k ≥ 1, such that there exists a constant c ∈ Z for which ik + k − 1

2
= c for

large k, modulo the relations

i1 ∧ · · · ∧ ik ∧ ik+1 ∧ · · · = −i1 ∧ · · · ∧ ik+1 ∧ ik ∧ · · · .
The constant c is called the charge.

A basis of V is given by all elements of the form (5) with the sequence (ik) decreasing.

Remark 2.3. Notice that A∞ has a natural representation on V , but this cannot easily
be extended to V , as one would have to deal with infinite sums.
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Definition 2.4. For a partition λ, define

vλ := λ1 −
1

2
∧ λ2 −

3

2
∧ · · · .

In particular, define the vacuum |0〉 := v∅ and let the covacuum 〈0| be its dual in V∗.
Define V0 to be the charge-zero subspace of V . Then V0 =

⊕
n∈N

⊕
λ`nCvλ.

Definition 2.5. For an endomorphism P of V0, define its vacuum expectation value or
disconnected correlator to be

〈P〉• := 〈0|P|0〉.
Definition 2.6. Define a projective representation of A∞ on V0 as follows: for i 6= j or
i = j > 0, Ei,j checks whether vλ contains j as a factor and replaces it by i if it does. If
i = j < 0, Ei,ivλ = −vλ if vλ does not contain j. In all other cases it gives zero.

Equivalently, this gives a representation of the central extension Ã∞ = A∞ ⊕ C Id,
with commutation between basis elements

(6) [Ea,b, Ec,d] = δb,cEa,d − δa,dEc,b + δb,cδa,d(δb>0 − δd>0) Id .

With these definitions, it is easy to see that C is identically zero on V0 and Evλ = |λ|vλ.
Therefore, any positive-energy operator annihilates the vacuum. Similarly, so do all Fr.

Using this commutation rule, it is useful to compute:

Lemma 2.7.[∑
l∈Z′

glEl−a,l,
∑
k∈Z′

fkEk−b,k

]
=
∑
l∈Z′

(gl−bfl − glfl−a)El−(a+b),l

+ δa+b,0δa>0(g1/2f1/2−a + · · ·+ ga−1/2f−1/2)

+ δa+b,0δb>0(g1/2−bf1/2 + · · ·+ g−1/2fb−1/2).

In particular, with gl = fk = 1, it is possible to recover the usual commutation formula

[αa, αb] = aδa+b,0.

3. A-operators

In this section, we will define the q-orbifold r-spin Hurwitz numbers as vacuum ex-
pectations of certain operators. We will then rewrite this expression to isolate the non-
polynomial behaviour and get a formula for the supposed polynomial part as a vacuum
expectation of a product of A-operators. This line of thought originates from Okounkov
and Pandharipande [OP06b] and has also been used in e.g. [Joh09, DLPS15, KLS16] to
prove quasi-polynomiality of several different kinds of Hurwitz numbers.

We will write µ = a[µ]a + 〈µ〉a for the integral division of an integer µ by a natural
number a. If a = qr, we may omit the subscript.

Definition 3.1. The disconnected q-orbifold r-spin Hurwitz numbers are

(7) h•,q,rg;~µ :=

〈(αq
q

) |µ|
q 1( |µ|

q

)
!

F br+1

b!(r + 1)b

l(~µ)∏
i=1

α−µi
µi

〉•
,

where, by Riemann-Hurwitz, the number of (r + 1)-completed cycles is

(8) b =
2g − 2 + l(µ) + |µ|

q

r
.

The connected q-orbifold r-spin Hurwitz numbers h◦,q,rg;~µ are defined via the inclusion-
exclusion formula from the disconnected ones.
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Remark 3.2. It is proved in [OP06a] that this formula can be interpreted as follows:
we count covers of P1, reading from 0 to ∞. At the point 0, we have ramification
profile µ, corresponding to the product of α’s on the right. The point ∞ has orbifold
ramification, profile [q, q, . . . , q], corresponding to the α’s on the left, divided by the extra

symmetry factor
( |µ|
q

)
!. In the middle, the ramification profiles are completed r+1-cycles,

corresponding to the Fr+1. These are formal linear combinations of ramification profiles,
with ‘leading term’ (most ramified) [r + 1, 1, . . . , 1].

Definition 3.3. The generating series of q-orbifold r-spin Hurwitz numbers is defined
as

H•,q,r(~µ, u) :=
∞∑
g=0

h•,q,rg;~µ u
rb =

〈
e
αq
q eu

r Fr+1
r+1

l(~µ)∏
i=1

α−µi
µi

〉•
.

Note that the vacuum expectation is non-trivial only for an operator of energy zero,
which implies that the only term from the series eαq/q that contributes to this vacuum
expectation is (αq/q)

|µ|/q/(|µ|/q)!, as in equation (7).
The free energies are defined as

F q,r
g,n(x1, . . . , xn) :=

∞∑
µ1,...,µn=1

h◦,q,rg;~µ e
∑n
i=1 µixi

We now introduce A-operators to capture the supposed quasi-polynomial behaviour
of the q-orbifold r-spin Hurwitz numbers in the Fock space formalism.

Definition 3.4 (A-operators).

Aq,r〈µ〉(µ, u) :=
1

µ

∑
s∈Z

(urµ)s

([µ] + 1)s

[ ∑
l∈Z+1/2

∞∑
t=0

∆t
q

qtt!

(
(l + µ)r+1 − lr+1

µ(r + 1)

)s+[µ]

El+µ−qt,l

+ δ〈µ〉q ,0

q∑
j=1

∆
[µ]q−1
q

q[µ]q [µ]q!

(
(l+µ)r+1 − lr+1

µ(r+1)

)s+[µ]∣∣∣∣
l=1/2−j

Id

]
,

where ∆q is the q-backward difference operator acting on functions of l, i.e. (∆qf)(l) =
f(l)− f(l − q), and by ([µ] + 1)s we denote the Pochhammer symbol, that is,

([µ] + 1)s :=

{
([µ] + 1) · · · ([µ] + s) s ≥ 0(
[µ]([µ]− 1) · · · ([µ] + s+ 1)

)−1
s ≤ 0.

.

Remark 3.5. In this definition, u is a formal variable, while µ – at this point – is a
positive integer. That is, for fixed µ,

Aq,r〈µ〉(µ, u) ∈ A∞JuK.

Indeed, for fixed [µ] and fixed power of u, t is bounded from above by r(s+ [µ]), so only
finitely many diagonals are non-zero.

These operators do indeed capture the conjectured polynomial behaviour, as is seen
by comparing the following proposition with Theorem 4.2 proved in the next section.

Proposition 3.6.

(9) H•,q,r(~µ, u) =

l(~µ)∏
i=1

(urµi)
[µi]

[µi]!

〈 l(~µ)∏
i=1

Aq,r〈µi〉(µi, u)

〉•
.
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Proof. Since both Fr+1 and αq annihilate the vacuum, their exponents act as the identity
operator on the vacuum. Hence we can write

H•,q,r(~µ, u) =

〈 l(~µ)∏
i=1

e
αq
q e

urFr+1
r+1

α−µi
µi

e−
urFr+1
r+1 e−

αq
q

〉•
.

Lemma 3.7. The conjugation with exponents of F reads

Oµ(u) := eu
r Fr+1
r+1 α−µ e

−ur Fr+1
r+1 =

∑
l∈Z+1/2

∞∑
s=0

(urµ)s

s!

(
(l + µ)r+1 − lr+1

µ(r + 1)

)s
El+µ,l.

Proof. As Ad(eX) = eadX , where ad and Ad are the adjoint action of a Lie algebra
on itself and the associated Lie group on the Lie algebra, by adX(Y ) := [X, Y ] and
Ad(eX)(Y ) := eXY e−X for any X and Y , we have

eu
r Fr+1
r+1 α−µ e

−ur Fr+1
r+1 =

∞∑
s=0

urs

(r + 1)ss!
adsFr+1

α−µ.

Applying lemma 2.7 with a = 0 and gl = lr+1, we see that every application of the
operator adFr+1 produces an extra factor ((l + µ)r+1 − lr+1). Multiplying and dividing
by µs yields the result. �

Lemma 3.8. The conjugation with exponents of αq is given as follows:

1

µ
e
αq
q Oµ(u)e−

αq
q =

∑
l∈Z+1/2

∞∑
s=0

(urµ)s

µ s!

∞∑
t=0

∆t
q

qtt!

(
(l+µ)r+1 − lr+1

µ(r+1)

)s
El+µ−qt,l

+ δ〈µ〉q ,0

∞∑
s=0

(urµ)s

µ s!

q∑
j=1

∆
[µ]q−1
q

q[µ]q [µ]q!

(
(l+µ)r+1 − lr+1

µ(r+1)

)s∣∣∣∣
l=1/2−j

Id .

Proof. Apply Ad(eX) = eadX as before and lemma 2.7 with a = q. The component of
the identity can only occur if the total energy is zero, i.e. if µ = qt. �

Re-indexing s 7→ s+ [µ] we get the equation for the A-operators, where we use that,
for s < −[µ], the Pochhammer symbol vanishes, so we can extend the sum over all
integers. �

3.1. The inverse of the A-operators. Following the ideas of [KLS16], we would
like to calculate the inverses of the A-operators, viewed as elements of End(V )JuK.
This calculation starts with the observation that α−1

µ = α−µ as elements of End(V ).
Conjugating this identity yields the following lemmata.

Lemma 3.9.

Oµ(u)−1 = eu
r Fr+1
r+1 αµe

−ur Fr+1
r+1 =

∑
l∈Z+1/2

∞∑
s=0

(urµ)s

s!

(
(l − µ)r+1 − lr+1

µ(r + 1)

)s
El−µ,l.

Proof. This is completely analogous to the proof of lemma 3.7, only changing the sign
of µ in appropriate places. �

Lemma 3.10.

µe
αq
q Oµ(u)−1e−

αq
q =

∑
l∈Z+1/2

∞∑
s=0

µ(urµ)s

s!

∑
t=0

∆t
q

qtt!

(
(l − µ)r+1 − lr+1

µ(r + 1)

)s
El−µ−qt,l
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Proof. This is completely analogous to the proof of lemma 3.8, bearing in mind that
the coefficient of the identity is zero, as both operators in the repeated adjunction have
positive energy. �

In defining the A-operators, we extracted the coefficient

(urµ)[µ]

[µ]!
.

Hence, the inverse of the A-operators should include this factor. Therefore we get

Lemma 3.11.

(10) Aq,r〈µ〉(µ, u)−1 =
∑

l∈Z+1/2

∞∑
s=0

µ(urµ)s+[µ]

s![µ]!

∞∑
t=0

∆t
q

qtt!

(
(l − µ)r+1 − lr+1

µ(r + 1)

)s
El−µ−qt,l

4. Polynomiality

Definition 4.1. An expression defined on a subset S ⊂ C is polynomial if there exists
a polynomial p, defined on C, that agrees with this expression on S. We then use p as
a definition of this expression at all other x ∈ C.

The goal of this section is to prove the following statement.

Theorem 4.2 (Quasi-polynomiality). For 2g − 2 + `(~µ) > 0, the q-orbifold r-spin
Hurwitz numbers can be expressed in the following way:

h◦,q,rg,~µ =

l(~µ)∏
i=1

µ
[µi]
i

[µi]!
P〈~µ〉(µ1, . . . , µl(~µ)),

where P are symmetric polynomials in the variables µ1, . . . , µl(~µ) whose coefficients de-
pend on the parameters 〈µ1〉, . . . , 〈µl(~µ)〉.

Remark 4.3. We prove that the degree of P has a bound that does not depend on the
entries of the partition ~µ. The actual computation of the degree in this case is difficult,
and it is not necessary for the purpose of topological recursion. However, these numbers
are expected to satisfy an ELSV-type formula (see conjecture 6.1). The conjecture would
imply that the degree is equal to 3g − 3 + n.

Remark 4.4. Note that since we allow the coefficients of the polynomials P〈~µ〉 to depend
on 〈~µ〉, we can equivalently consider them as polynomials in [µ1], . . . , [µn], n := l(~µ).
The latter way is more convenient in the proof.

Comparing the statement of theorem 4.2 to equation (9), it is clear that the poly-
nomials P must be the connected correlators of the A-operators, defined via inclusion-
exclusion from the disconnected versions. To prove this theorem, we will therefore first
consider the disconnected correlators, and show that the coefficient of a fixed power of
u is a symmetric rational function in the µi, with only prescribed simple poles. The
residues at these poles are explicitly related to the inverse A-operators, and cancel in
the inclusion-exclusion formula, proving quasi-polynomiality.

First we need some technical lemmata, analysing the dependence on µ of single terms
in the sums of the A-operators.

Lemma 4.5. The coefficients of the polynomial in l,
∆x+m
q

qx+m(x+m)!
lp+x, are themselves

polynomial in x for any p and m. More precisely, the coefficient cpm,a(x) of la has degree
2p− a− 2m.



TOWARDS AN ORBIFOLD GENERALIZATION OF ZVONKINE’S r-ELSV FORMULA 9

Proof. There is a version of the Leibniz rule for the backwards difference operator:

∆q(fg)(l) = (∆qf)(l)g(l) + f(l − q)(∆qg)(l).

Repeated application of this rule gives the following:

∆x+m
q

qx+m(x+m)!
lp+x =

∑
i0+···+ix+m=p−m

(l − q(x+m))ix+m · · · (l − q · 0)i0

= hp−m(l − q(x+m), · · · , l)

=

p−m∑
a=0

(
p+ x

a

)
hp−m−a

(
− q, . . . ,−q(x+m)

)
la

=

p−m∑
a=0

(
p+ x

a

){
x+ p− a
x+m

}
(−q)p−m−ala,

where by hr we denote the complete symmetric polynomial of degree r defined by∑
r∈Z

hr(X1, . . . , Xt)u
r =

∞∏
i=1

1

(1−Xiu)
,

and by
{
i
t

}
, i, t ≥ 0, we denote the Stirling numbers of the second kind defined as the

coefficients of the expansion

T i =
∞∑
t=0

{
i

t

}
(T − t+ 1)t.

The last equality relies on [KLS16, lemma 3.4] and the following relation between Stirling
numbers and symmetric functions{

n+ k

k

}
= hn(X1, . . . , Xk)

∣∣∣∣∣
Xi=i

, for k ≥ 1.

Hence, the coefficient of la is given by

cpm,a(x) = (−q)p−m−a
(
p+ x

a

){
x+ p− a
x+m

}
.

This binomial coefficient can be written as
1

a!
(x+ p) · · · (x+ p− a+ 1),

which is a polynomial in x of degree a.
The Stirling number, on the other hand, requires a more subtle proof. Define ft(x) ={
x+t
x

}
. We prove ft is a polynomial of degree 2t inductively on t, starting with f0(x) ≡ 1.

For the induction step, recall the recursion relation for Stirling numbers, which can
be written as follows:

(11)

{
x+ t

x

}
−
{
x− 1 + t

x− 1

}
= x

{
x− 1 + t

x

}
.

In other notation, (∆1ft)(x) = xft−1(x). By induction, ∆1ft is polynomial of degree
2t− 1, hence ft itself can be written as a polynomial of degree 2t. The Stirling number
we require is given by fp−a−m(x+m), which is of degree 2(p− a−m). Adding degrees
yields the result. �
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Remark 4.6. Note that the equation ∆1f = 0 has non-polynomial solutions, e.g. f(x) =
sin(2πx). However, we only prove that the functions in question can be represented as
polynomials, not that there is no other analytic continuation.

Lemma 4.7. The polynomial ft(x) :=
{
x+t
x

}
has zeroes at 0,−1, . . . ,−t if t ≥ 1.

Proof. Let us argue by induction on t. Let us prove the case t = 1: we have to prove
that f1(0) = 0 and f1(−1) = 0. The first equality is implied by the more general fact

(12) ft(0) = 0 for t ≥ 1,

which is a basic fact in the theory of Stirling numbers, and can for instance be proved
by recalling the formula {

n

k

}
=

1

k!

k∑
r=0

(−1)k−r
(
k

r

)
rn,

valid for k = 0, . . . , n and n ≥ 0. The second equality can be obtained by conveniently
rewriting the recursion for Stirling numbers (11) as

ft(x) = ft(x+ 1)− (x+ 1)ft−1(x+ 1).

In case (x, t) = (−1, 1), the recursion implies f1(−1) = f1(0) − (−1 + 1)f0(0) = 0. Let
us work out also the case for t = 2 for clarity, by using the recursion above:

f2(0) = 0 by (12)

f2(−1) = f2(0)− 0 · f1(0) = 0

f2(−2) = f2(−1)− (−1)f1(−1) = 0

Let us now assume the statement for all t = 1, 2, . . . , t′−1, and let us prove the statement
for t = t′. Let us compute in this order the values ft′(0), ft′(−1), . . . , ft′(−t′). The first
value is zero by (12). Each other value is zero by means of the recursion

ft′(x
′) = ft′(x

′ + 1)− (x′ + 1)ft′−1(x′ + 1).

In fact, the first term ft′(x
′+ 1) is equal to the previous value in the list, and hence has

been already computed to be zero, the second term ft′−1(x′+ 1) is zero by induction on
t. This proves the lemma. �

Corollary 4.8. The polynomials cpm,a(x) have zeroes at −p,−p+ 1, . . . ,−m.

Proof. By lemma 4.5,

cpm,a(x) =
(−q)p−m−a

a!
(x+ p) · · · (x+ p− a+ 1)fp−a−m(x+m).

This expression manifestly has zeroes at −p,−p + 1, . . . ,−p + a − 1. By the previous
lemma, it also has zeroes at x+m = 0,−1, . . . ,−(p− a−m), so at x = −m, . . . ,−p+
a. �

Lemma 4.9. For fixed r, i, s, 〈µ〉 ∈ Z≥0 the expression

∆
i+[µ]q
q

qi+[µ]q(i+ [µ]q)!

(
(l + µ)r+1 − lr+1

µ(r + 1)

)s+[µ]

is polynomial in [µ] (in the sense of definition 4.1), of degree 2rs− 2i− 2〈[µ]q〉r.

Proof. Expanding explicitly using Newton’s binomial formula,

Qr
µ(l) :=

(l + µ)r+1 − lr+1

µ(r + 1)
=

r∑
i=0

(
r + 1

i+ 1

)
µilr−i

(r + 1)
.
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Let us now consider the coefficient in front of lr([µ]qr+s)−a for some particular values of
“offset” a:[

lr([µ]+s)−0
]
Qr
µ(l)[µ]+s = 1;[

lr([µ]+s)−1
]
Qr
µ(l)[µ]+s =

(
[µ]+s

1

)(
r+1

2

)
µ

(r+1)
;

[
lr([µ]+s)−2

]
Qr
µ(l)[µ]+s =

(
[µ]+s

1

)(
r+1

3

)
µ2

(r+1)
+

(
[µ]+s

2

)(
r+1

2

)2
µ2

(r+1)2
;

...

[
lr([µ]+s)−a]Qr

µ(l)[µ]+s =
∑
λ`a

(
[µ]+s

{λTi −λTi+1}i≥1

)( `(λ)∏
i=1

1

r + 1

(
r+1

λi+1

))
µa,

where the multinomial coefficient is(
[µ]+s

{λTi −λTi+1}i≥1

)
:=

([µ]+s)!

([µ]+s−`(λ))!
∏

i≥1(λTi −λTi+1)!
.

Clearly, this is a polynomial in [µ] of degree 2a – one a comes from µa and the other
from the multinomial coefficient in the summand corresponding to the partition [1a].

Furthermore, it has zeroes at [µ] ∈ Z≥0 for which r([µ] + s) − a < 0 (i.e. when
we want to extract a coefficient in front of the negative power of l). This is because
the contributions of partitions λ with more than [µ] + s parts are zero thanks to the
multinomial coefficient and partitions with `(λ) ≤ [µ] + s will have at least one part for
which the corresponding binomial coefficient will be zero.

Let us denote

Polya,s,r([µ]) =
[
lr([µ]+s)−a]Qr

µ(l)[µ]+s

Using lemma 4.5, denoting i′ = i + 〈[µ]q〉r for brevity and noting [µ]q = r[µ] + 〈[µ]q〉r,
we have

∆
i′+r[µ]
q

qi′+r[µ](i′ + r[µ])!
Qr
µ(l)s+[µ] =

∆
i′+r[µ]
q

qi′+r[µ](i′ + r[µ])!

r([µ]+s)∑
a=0

Polya,s,r([µ])lr([µ]+s)−a

=

r[µ]+rs∑
a=0

rs−i′−a∑
k=0

lkcrs−ai′,k (r[µ]) Polya,s,r([µ])

=
rs−i′∑
a=0

rs−i′−a∑
k=0

lkcrs−ai′,k (r[µ]) Polya,s,r([µ]),

where crucially in the last equality, we can choose the upper summation limit of the
first sum to be independent of [µ]. We can do this, because:

• for a > rs− i′ the coefficients crs−ai′,k (r[µ]) are zero;
• for a particular value of [µ] ∈ Z≥0 it could happen that r([µ] + s) < rs− i′. But

we know that for a > r([µ] + s), Polya,s,r([µ]) = 0. So, adding these zero terms
does not change the sum.

We see that we have arrived at a manifestly polynomial expression, which completes the
proof.

The degree follows as the degree of Polya,s,r([µ]) is 2a and that of crs−ai′,k is 2(rs− a)−
k − 2i′. �
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These lemmata can be applied to prove the rationality of the disconnected correlators
of A-operators.

Proposition 4.10. For fixed power of u and fixed [µ2], . . . , [µn], and 〈~µ〉,〈 l(~µ)∏
i=1

Aq,r〈µi〉(µi, u)

〉•
is a rational function in the variable [µ1], with only simple poles at negative integers and
at [µ1] = −〈µ1〉/qr.

Proof. Let us make some observations about the following expression, where we write
µ = µ1, 〈 ∑

l∈Z+1/2
s∈Z

(urµ)s

µ([µ] + 1)s

∑
t=0

∆t
q

qtt!
Qr
µ(l)s+[µ]El+µ−qt,l

l(~µ)∏
j=2

Aq,r〈µi〉(µi, u)

〉•
First of all, the energy of the operators on the left should be positive, meaning that
µ− qt < 0. On the other side, the exponent of the finite difference operator cannot be
greater than the degree of the polynomial to which it is applied, implying t ≤ r(s+ [µ]).
Combining these two restrictions, one obtains that rs + r[µ] ≥ [µ]q = r[µ] + 〈[µ]q〉r.
Solving for s gives s ≥ 〈[µ]q〉r

r
≥ 0.

Moreover, the correlator is zero unless the sum of the energies is zero, which means

(13) (µ− qt) +

l(~µ)∑
j=2

µj − qtj = 0.

Since the other µj are fixed, it is clear that −i := [µ]q − t does not depend on µ. We
can rewrite the expression as

(14)

〈 ∑
l∈Z+1/2
s≥0

(urµ)s

µ([µ] + 1)s

N∑
i=0

∆
i+[µ]q
q

qi+[µ]q(i+ [µ]q)!
Qr
µ(l)s+[µ]El+〈µ〉q−qi,l

l(~µ)∏
j=2

A〈µi〉(µi, u)

〉•
,

where N does not depend on µ. Fixing the power of u reduces the s-sum to a finite
sum, as for the other A-operators the power of u is bouned from below by −[µi]. Now,
the first fraction is clearly a rational function in [µ] while the second is polynomial by
lemma 4.9. Hence, the entire correlator is a finite sum of rational functions, so it is
rational itself.

The only possible poles can come from the Pochhammer symbol in the denominator,

or the factor 1
µ
, and hence are at −s, 1− s, . . . ,−1 and at [µ] = − 〈µ〉

qr
. �

To prove the connected correlator is a polynomial, we should therefore analyse these
poles. As they are simple, we need only calculate the residues, which we do in the
following proposition.

Lemma 4.11. The residue of the A-operators at negative integers is, up to a linear
multiplicative constant and terms proportional to Id, equal to the inverse of the operator
with a negative argument. More precisely,

Res
ν=−m

Aq,rη (νqr+η, u) =
ur

mqr−η
Aq,r−η(mqr−η, u)−1 if η 6= 0;(15)

Res
ν=−m

Aq,r0 (νqr, u) =
1

mq2r2
Aq,r0 (mqr, u)−1 if η = 0.(16)
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Here the residue is taken term-wise in the power series in u, and the factor ur means a
shift of terms.

Remark 4.12. Note that the first formula is slightly different from the one in [KLS16,
Lemma 5.12] in the case r = 1. This is because in that paper, an extra conjugation with

u
F1
r was performed, resulting in different A-operators.

Proof. Let us prove equations (15) and (16) together. The only contributing terms have
s ≥ m, so we calculate (assuming µ = qrν + η)

Res
ν=−m

Aq,rη (µ, u) =
∑

l∈Z+1/2
s≥m

(urµ)s(ν+m)

µ(ν+1)s

∞∑
t=0

∆t
q

qtt!

(
(l + µ)r+1 − lr+1

µ(r + 1)

)s+ν
El+µ−qt,l

∣∣∣∣
ν=−m

=
∑

l∈Z+1/2
s≥m

(urµ)s

µ(1−m)m−1(s−m)!

∞∑
t=0

∆t
q

qtt!

(
(l + µ)r+1 − lr+1

µ(r + 1)

)s−m
El+µ−qt,l

=
∑

l∈Z+1/2
s≥m

(urµ)s(−1)m−1

µ(m−1)!(s−m)!

∞∑
t=0

∆t
q

qtt!

(
(l + µ)r+1 − lr+1

µ(r + 1)

)s−m
El+µ−qt,l.

Here we kept writing µ for −mqr + η. As this is negative, however, it makes sense to
rename it µ = −λ. Substituting and shifting the s-summation, we get

Res
ν=−m

Aq,rη (µ, u) =
∑

l∈Z+1/2
s≥m

(−urλ)s(−1)m−1

−λ(m−1)!(s−m)!

∞∑
t=0

∆t
q

qtt!

(
(l − λ)r+1 − lr+1

−λ(r + 1)

)s−m
El−λ−qt,l

=
∑

l∈Z+1/2
s≥m

(urλ)s

λ(m−1)!(s−m)!

∞∑
t=0

∆t
q

qtt!

(
(l − λ)r+1 − lr+1

λ(r + 1)

)s−m
El−λ−qt,l

=
∑

l∈Z+1/2
s≥0

(urλ)s+m

λ(m−1)!s!

∞∑
t=0

∆t
q

qtt!

(
(l − λ)r+1 − lr+1

λ(r + 1)

)s
El−λ−qt,l.

Because λ = mqr − η, we have m = [λ] + 1− δη,0 and η = −〈λ〉. Recalling equation
(10), we obtain the result. �

Proof of theorem 4.2. First, consider the case n ≥ 2. The Hurwitz numbers are sym-
metric in their arguments, hence the P must be as well. By the same argument as for
[KLS16, theorem 5.2], it suffices to prove polynomiality in the first argument.

Lemma 4.11 implies that we can express the residues in [µ1] of the disconnected
correlator as follows:

Res
[µ1]=−m

〈 n∏
i=1

A〈µi〉(µi, u)

〉•
= c(m, 〈µ1〉)

〈
A−〈µ1〉(mqr − 〈µ1〉, u)−1

n∏
i=2

A〈µi〉(µi, u)

〉•
.

where c(m, 〈µ1〉) is the coefficient in lemma 4.11. Recalling equations (7) and (9) and
realizing that the inverse A-operator is given by the same conjugations as the normal
A-operator, but starting from αµ instead of α−µ, we can see that this reduces to

(17) Res
[µ1]=−m

〈 n∏
i=1

A〈µi〉(µi, u)

〉•
= C

〈
e
αq
q eu

r Fr+1
r+1 αmqr−〈µ1〉

n∏
i=2

α−µi
µi

〉•
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for some specific coefficient C that depends only on m, 〈µ1〉, and the µi.
Because [αk, αl] = kδk+l,0, and αmqr−〈µ1〉 annihilates the vacuum, this residue is zero

unless one of the µi equals mqr − 〈µ1〉 for i ≥ 2.
Now return to the connected correlator. It can be calculated from the disconnected

one by the inclusion-exclusion principle, so in particular it is a finite sum of products
of disconnected correlators. Hence the connected correlator is also a rational function
in [µ1], and all possible poles must be inherited from the disconnected correlators. So
let us assume µi = mqr − 〈µ1〉 for some i ≥ 2. Then we get a contribution from (17),
but this is either manifestly equal to zero for n = 2 and a positive exponent of u, or
canceled exactly by the term coming from

Res
[µ1]=−m

〈
A〈µ1〉(µ1, u)A−〈µ1〉(mqr − 〈µ1〉, u)

〉•〈 ∏
2≤j≤n
j 6=i

A〈µj〉(µj, u)

〉•

= C

〈
e
αq
q eu

r Fr+1
r+1 αmqr−〈µ1〉α−(mqr−〈µ1〉)

〉•〈
e
αq
q e

urFr+1
r+1

∏
2≤j≤n
j 6=i

α−µj
µj

〉•
,

where the same C occurs, for n ≥ 3.

For the pole at [µ1] = − 〈µ1〉
qr

, the only contributing term in equation (14) has s = 0,
so we get〈 ∑

l∈Z+1/2

1

µ1

N∑
i=0

∆
i+[µ1]q
q

qi+[µ1]q(i+ [µ1]q)!
Qr
µ1

(l)[µ1]El+〈µ1〉q−qi,l

l(~µ)∏
j=2

A〈µi〉(µi, u)

〉•
.

From the proof of lemma 4.9, we can clearly see that Polya,0,r([µ1]) is divisible by µ1 if
a > 0, so we need a = 0 there. This implies we have only

c0
i′,k(r[µ1]) = (−q)−k−i′

(
r[µ1]

k

){
r[µ1]− k
r[µ1] + i′

}
,

so we clearly need k = i′ = 0, and thus i = 0 and 〈[µ1]q〉r = 0. As the first A-
operator acts on the covacuum, we still need qi − 〈µ1〉q ≥ 0, so 〈µ1〉q = 0. As now
〈µ1〉 = 〈µ1〉q + q〈[µ1]q〉r = 0, we get that this term cancels against the same term from〈

A0(µ1, u)

〉•〈 `(~µ)∏
i=2

A〈µi〉(µi, u)

〉•
.

Hence, the connected correlator has no residues, which proves it is polynomial in [µ1].
Therefore, it is also a polynomial in µ1, see remark 4.4. This completes the proof of the
polynomiality in [µ1].

To be able to conclude that the connected correlator is polynomial in all [µ1] . . . [µn],
n ≥ 2, we must show that the degree in [µ1] of the connected correlator does not depend
on [µ2] . . . [µn].

Since a connected correlator is a finite sum over products of disconnected correla-
tors, given by the inclusion-exclusion formula, and the number of summands does not
depend on [µ2] . . . [µn], the estimate on the degree of the connected correlator follows
from estimates on degrees of disconnected correlators. The degree of the disconnected
correlator, which is a rational function in [µ1] by proposition 4.10, is defined as the
leading exponent in the limit [µ1]→ +∞.

Let us consider summands in the disconnected correlator (14) corresponding to a
particular choice of sj ≥ −[µj], for 2 ≤ j ≤ n. The contribution of genus g covers is
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extracted by taking the coefficient in front of u2g−2+n+ 1
q

∑n
i=1〈µi〉, so we have

s =
2g − 2 + n

r
+

1

rq

n∑
i=1

〈µi〉 −
n∑
j=2

sj

First of all, the factor
µs1

µ1([µ1]+1)s
contributes −1 to the degree. Then, by lemma 4.9 the

degree of

∆
i+[µ1]q
q

qi+[µ1]q(i+ [µ1]q)!
Qr
µ1

(l)s+[µ1](18)

is 2rs− 2i− 2〈[µ1]q〉. It looks like the sum over i in (14) goes from zero, so the highest
degree of these polynomials depends on [µ2] . . . [µn] (through s and estimates for sj),
but we are to obtain a finer estimate on the lower limit of summation.

We have

tj ≤ r(sj + [µj]) for 2 ≤ j ≤ n,

since exponents of difference operators cannot be greater than the exponent of the
polynomials to which they are applied. Combined with the condition (13) that the sum
of the energies should be zero, this gives

i ≥ 1

q

(
〈µ1〉q +

n∑
j=2

〈µj〉
)
− r

n∑
j=2

sj,

which means that the degree of (18) is bounded from above by

2(2g − 2 + n) +
2

q

n∑
i=1

〈µi〉 − 2〈[µ1]q〉r −
2

q

(
〈µ1〉q +

n∑
j=2

〈µj〉
)

= 2(2g − 2 + n),

which does not depend on [µ2] . . . [µn].
Thus, the degree of the disconnected correlator does not depend on [µ2] . . . [µn], and

hence the degree of the connected correlator does not depend on [µ2] . . . [µn] either. This
completes the proof of theorem 4.2 in the case n ≥ 2.

Now consider the case of n = 1. It is a special case since it occurs only for 〈µ〉q = 0,
that is, µ = q[µ]q = qr[µ] + q〈[µ]q〉r, the connected correlator in this case is equal to
the disconnected one, and we compute the vacuum expectation of the Id-part of the
A-operator. Under the additional conditions 2g − 2 + n > 0 (that is, g ≥ 1) and
r|2g − 1 + 〈[µ]q〉r, we have to prove that

µ
2g−1+〈[µ]q〉r

r

µ2([µ] + 1) 2g−1+〈[µ]q〉r
r

∆
[µ]q−1
q

q[µ]q−1([µ]q − 1)!

(
Qr
µ(l)
)[µ]+

2g−1+〈[µ]q〉r
r

is polynomial in [µ]. Equivalently, we have to show that the following polynomial in [µ]
(polynomiality follows from lemma 4.9)

(19)
∆

[µ]q−1
q

q[µ]q−1([µ]q − 1)!

(
Qr
µ(l)
)[µ]+

2g−1+〈[µ]q〉r
r

has zeros at [µ] = −1, . . . ,−2g−1+〈[µ]q〉r
r

and at [µ] = − 〈[µ]q〉r
r

. To this end we use the

notation in the proof of lemma 4.9, assuming s = 2g−1+〈[µ]q〉r
r

.

For the case [µ] = − 〈[µ]q〉r
r

, we have Polya,s,r([µ]) = 0 for a > 0. Thus the poly-

nomial (19) vanishes at [µ] = − 〈[µ]q〉r
r

if and only if
∆

[µ]q−1
q

q[µ]q−1([µ]q−1)!
l[µ]q−1+2g vanishes at

[µ]q = 0, which is indeed the case according to corollary 4.8.
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Consider the case of [µ] = −i, 1 ≤ i ≤ 2g−1+〈[µ]q〉r
r

. The structure of the polyno-
mial (19) as expanded in the proof of lemma 4.9 implies that it is sufficient to show that

the polynomials
∆

[µ]q−1
q

q[µ]q−1([µ]q−1)!
lr[µ]+j, ri ≤ j ≤ 2g − 1 + 〈[µ]q〉r, vanish at [µ] = −i. The

latter statement follows immediately from corollary 4.8. . �

5. Computations for unstable correlation functions

In this section we prove that the unstable correlation differentials for the spectral
curve

(20)

{
ex = ze−z

qr

y = zq

coincide with the expression derived from the A-operators. The unstable (0, 1)-energy
was already derived in [MSS13] using the semi-infinite wedge formalism, we derive it
here again to test our A-operators. The computation for the unstable (0, 2)-energy is a
new result and fixes the ambiguity for the coordinate z on the spectral curve.

5.1. The case (g, n) = (0, 1). In this section we check that the spectral curve re-
produces the correlation differential for (g, n) = (0, 1) obtained from the A-operators.
Explicitly, we show:

(21) dF q,r
0,1 (x) = y dx.

Clearly, when dealing with a single A-operator inside the correlator, only the coefficient
of the identity operator contributes, since 〈Ei,j〉 = 0. Hence, by definition 3.4 and
equation (9), we compute, using that connected and disconnected correlators are equal
in this case:

F q,r
0,1 (ex) :=

∞∑
µ=1

[u−1+µ
q ].H◦,q,r(µ, u)exµ

=
∞∑
µ=1

µ[µ]

[µ]!
[u

µ
q
−1]

∞∑
s=0

δ〈µ〉q ,0

µ

ur([µ]+s)µs

([µ] + 1)s

q∑
j=1

∆
[µ]q−1
q

q[µ]q [µ]q!
Qr
µ(l)[µ]+s

∣∣∣∣
l= 1

2
−j
exµ

=
∞∑
m=1

∞∑
s=0

[um−1]
ur([m]r+s)(mq)s+[m]r−1

([m]r + s)!

q∑
j=1

∆m−1
q

qmm!
Qr
mq(l)

[m]r+s

∣∣∣∣
l= 1

2
−j
exmq

=
∞∑
n=0

(
q(nr + 1)

)n−1

n!

q∑
j=1

∆nr
q

qnr+1(rn+ 1)!
Qr

(nr+1)q(l)
n

∣∣∣∣
l= 1

2
−j
ex(nr+1)q

=
∞∑
n=0

(
q(nr + 1)

)n−1

n!

q∑
j=1

1

q(rn+ 1)

∣∣∣∣
l= 1

2
−j
ex(nr+1)q

= q
∞∑
n=0

(
q(nr + 1)

)n−2

n!
ex(nr+1)q,

where the third line follows by setting µ = mq, the fourth line by setting m = nr + 1

and s = 0, and the fifth line because ∆d

qdd!
on a monic polynomial of degree d gives 1.

As shown in [MSS13], we have:

dF q,r
0,1 (x) =

(
W (−qrexqr)
−qr

)1/r

dx,
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where W is the Lambert curve W (z) := −
∑∞

n=1
nn−1

n!
(−z)n. The properties of the

Lambert curve (see [MSS13] for details) imply that the spectral curve (20) does satisfy
equation (21), which can be shown by explicitly computing (ze−z

qr
)qr = eqrx.

5.2. The case (g, n) = (0, 2). In this section we prove that the (0, 2)-correlation differ-
ential coincides with difference of the usual Bergman kernel B on the genus zero spectral
curve and dex1dex2/(ex1 − ex2)2.

Let us first compute the (0, 2)-energy from the A-operators.

Lemma 5.1.

F q,r
0,2 (ex1 , ex2) =

∞∑
µ1,µ2=1
qr|µ1+µ2
qr|µ1

µ
[µ1]
1

[µ1]!

µ
[µ2]
2

[µ2]!

eµ1x1+µ2x2

(µ1 + µ2)
+ qr

∞∑
µ1,µ2=1
qr|µ1+µ2
qr-µ1

µ
[µ1]
1

[µ1]!

µ
[µ2]
2

[µ2]!

eµ1x1+µ2x2

(µ1 + µ2)

Proof. Let us write µ := µ1 + µ2.
By definition 3.4, we have that

(22) F q,r
0,2 (ex1 , ex2) =

∞∑
µ1,µ2=1

1

µ1µ2

[
u
µ
q
]〈
Ã(µ1, u)Ã(µ2, u)

〉◦
eµ1x1+µ2x2 ,

where

Ã(µi, u) =
∑

li∈Z+1/2

∞∑
si=0

(urµi)
si

si!

∑
ti=0

∆ti
q

qtiti!
Qr
µi

(li)
si Eli+µi−qti,li .

Note that the coefficient of the identity operator in Ã does not appear – indeed we are
now interested in connected correlators and, in the case of 2-points correlators, we have
the simple relation 〈A1A2〉◦ = 〈A1A2〉• − 〈A1〉〈A2〉. The contributions of the identity
operators coincide precisely with the last summand.

Let us now make some observation about equation (22). Analysing the energy and
the coefficient of u, we find

µ = q(t1 + t2) = qr(s1 + s2) and µ2 > qt2 ≥ 0.

Moreover, the only term that can contribute in the correlator is the coefficient of the
identity operator, produced by the commutation relation of E-operators described by
formula (6). Hence we compute that F q,r

0,2 (ex1 , ex2) is equal to

∞∑
µ1,µ2=1

∑
s1+s2= µ

qr

∑
t1+t2=µ

q

0≤qt2<µ2

µ2−qt2−1/2∑
l=1/2

µs1−1
1 µs2−1

2

s1!s2!

∆t1
q

qt1t1!
Qr
µ1

(l)s1
∆t2
q

qt2t2!
Qr
µ2

(l − µ2 + t2)s2eµ1x1+µ2x2 .

Let us now observe that the sum of the degrees of the two difference operators equals the
sum of the degrees of the polynomials to which they are applied. By lemma 4.5, whenever
the power of the difference operator is greater than the degree of the polynomial, the
result equals zero. Hence the only nonvanishing terms should satisfy t1 = rs1 and
t2 = rs2. We proved that F q,r

0,2 (ex1 , ex2) equals∑
µ1,µ2=1

∑
s1,s2=0

s1+s2=µ/qr

(µ2 − qrs2)
µs1−1

1 µs2−1
2

s1!s2!
eµ1x1+µ2x2δqrs2<µ2

We distinguish now two cases: the case in which the µi are divisible by qr and the case
in which the remainders are non-zero.
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5.2.1. Case µ1 = qrν1. In this case µ2 = qrν2 and the Kronecker delta gives s2 =
0, . . . , ν2 − 1, which implies s1 = ν1 + 1, . . . , ν1 + ν2. We split (µ2 − qrs2) in two terms,
and remove the summand for s1 = ν1 + ν2 from the sum. Writing s for s1, we get that
the coefficient of eqrν1x1+qrν2x2 is given by

(qr)ν1+ν2−1

[
ν1+ν2−1∑
s=ν1+1

(
νs−1

1 νν1+ν2−s
2

s!(ν1 + ν2 − s)!
− νs−1

1 νν1+ν2−s−1
2

s!(ν1 + ν2 − s− 1)!

)
+

νν1+ν2−1
1

(ν1 + ν2)!

]
.

Multiplying and dividing by (ν1 + ν2)! and collecting binomial coefficients we get

(qr)ν1+ν2−1

(ν1 + ν2)!

[
ν1+ν2−1∑
s=ν1+1

((
ν1+ν2

s

)
νs−1

1 νν1+ν2−s2 − (ν1+ν2)

(
ν1+ν2−1

s

)
νs−1

1 ν
ν1+ν2−(s+1)
2

)

+ νν1+ν2−1
1

]
.

Distributing the factor (ν1 + ν2 and simplifying binomial coefficients, we get

(qr)ν1+ν2−1

(ν1 + ν2)!

[
ν1+ν2−1∑
s=ν1+1

((
ν1+ν2−1

s−1

)
νs−1

1 νν1+ν2−s
2 −

(
ν1+ν2−1

s

)
νs1ν

ν1+ν2−s−1
2

)
+νν1+ν2−1

1

]
.

This is a telescoping sum, of which the only surviving term is

(qr)ν1+ν2

qr(ν1 + ν2)

νν11

ν1!

νν2−1
2

(ν2 − 1)!
=

1

µ1 + µ2

µ
[µ1]
1

[µ1]!

µ
[µ2]
2

[µ2]!
.

5.2.2. Case µ1 = qrν1 + i, with 0 < i < qr. In this case µ2 = qrν2 + (qr − i) and the
Kronecker delta gives s2 = 0, . . . , ν2, which implies s1 = ν1 + 1, . . . , ν1 + ν2 + 1. We split
(µ2 − qrs2) in two terms, and remove the summand for s1 = ν1 + ν2 + 1 from the sum.
Writing s for s1, the coefficient of eµ1x1+µ2x2 equals

ν1+ν2∑
s=ν1+1

[µs−1
1

s!

µν1+ν2−s+1
2

(ν1 + ν2 − s+ 1)!
− qrµ

s−1
1

s!

µν1+ν2−s
2

(ν1 + ν2 − s)!

]
+

µν1+ν2
1

(ν1 + ν2 + 1)!
.

The rest of the proof is completely analogous to the first case. The only remaining term
is

qr

µ1 + µ2

µ
[µ1]
1

[µ1]!

µ
[µ2]
2

[µ2]!
.

Summing up the first case and the second case for i = 1, . . . , qr−1 yields the statement.
This concludes the proof of the lemma. �

We are now armed to prove the main result of this section.

Theorem 5.2.
dz1dz2

(z1 − z2)2
=

dex1dex2

(ex1 − ex2)2
+ d1d2F

q,r
0,2 (ex1 , ex2)

Proof. It is enough to show that the Euler operator

E :=
d

dx1

+
d

dx2

=
z1

1− qrzqr1

d

dz1

+
z2

1− qrzqr2

d

dz2

applied to both sides of

log(z1 − z2) = log(ex1 − ex2) + F q,r
0,2 (ex1 , ex2)
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gives equal expressions up to at most functions of a single variable ex1C(ex1) and
ex2C(ex2). Let us compute the left hand side first:

E log(z1 − z2) =

(
z1

1− qrzqr1

− z2

1− qrzqr2

)
1

z1 − z2

= 1 +
1

(1− qrzqr1 )(1− qrzqr2 )

(
qr(zqr1 + zqr−1

1 z2 + · · ·+ zqr1 )− (qr)2zqr1 z
qr
2

)

= 1 +
d

dx1

d

dx2

(
qr

(
zqr1 log(z2)

qr
+
zqr−1

1 z2

qr − 1
+

zqr−2
1 z2

2

2(qr − 2)
+ · · ·+ log(z1)zqr2

qr

)
− zqr1 z

qr
2

)

= 1 +
d

dx1

d

dx2

(
zqr1 x2 + x1z

qr
2 + qr

(
zqr−1

1 z2

qr − 1
+

zqr−2
1 z2

2

2(qr − 2)
+ · · ·+ z1z

qr−1
2

qr − 1

)
+ zqr1 z

qr
2

)

= 1 +
∑
k≥1
qr|k

k[k]

[k]!
ekx1 +

∑
l≥1
qr|l

l[l]

[l]!
elx2 + qr

∞∑
µ1,µ2

qr|µ1+µ2
qr-µ1

µ
[µ1]
1

[µ1]!

µ
[µ2]
2

[µ2]!
eµ1x1+µ2x2 +

∞∑
µ1,µ2

qr|µ1+µ2
qr|µ1

µ
[µ1]
1

[µ1]!

µ
[µ2]
2

[µ2]!
eµ1x1+µ2x2 ,

where in the last equality we used the fact

d

dx

(
zi

i

)
=

∞∑
µ:qr|µ−i

µ[µ]

[µ]!
eµx for i = 1, . . . , qr − 1,

d

dx
zqr =

∞∑
µ:qr|µ

µ[µ]

[µ]!
eµx,

which was proved in [SSZ15, Lemma 4.6]—substitute qr for r there. By lemma 5.1, the
right hand side reads:

E
(

log(ex1 − ex2) + F q,r
0,2 (ex1 , ex2)

)
=

1 + qr
∞∑

µ1,µ2
qr|µ1+µ2
qr-µ1i

µ
[µ1]
1

[µ1]!

µ
[µ2]
2

[µ2]!
eµ1x1+µ2x2 +

∞∑
µ1,µ2

qr|µ1+µ2
qr|µ1

µ
[µ1]
1

[µ1]!

µ
[µ2]
2

[µ2]!
eµ1x1+µ2x2

This concludes the proof of the theorem. �

6. A generalization of Zvonkine’s conjecture

In this section we use the result of [LPSZ16] in order to give a precise formulation of
the orbifold version of Zvonkine’s r-ELSV formula. Recall that we write µ = qr[µ]+ 〈µ〉
for integral division of µ by qr.
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Conjecture 6.1. We propose the following formula for the q-orbifold r-spin Hurwitz
numbers:

h◦,q,rg,µ1,...,µn
=

∫
Mg,n

Cg,n

(
rq, q; qr − 〈µ1〉 , . . . , qr − 〈µn〉

)∏n
j=1(1− µi

qr
ψi)

× r2g−2+n(qr)
(2g−2+n)q+

∑n
j=1 µj

qr ×
n∏
j=1

(µj
qr

)[µj ]

[µj]!
.

Here the class Cg,n (rq, q; qr − 〈µ1〉 , . . . , qr − 〈µn〉) is the Chiodo class [Chi08]. We
use the same notation as in [LPSZ16], and we recall briefly its definition following the
exposition there.

Let Mqr,r

g,n be the space of qr-th roots S⊗qr ∼= ω⊗qlog (
∑n

i=1 (〈µi〉 − qr)xi), ωlog :=

ω(
∑n

i=1 xi), on the curves (C, x1, . . . , xn) ∈ Mg,n. Note that the degree of the sheaf

ω⊗qlog (
∑n

i=1 (〈µi〉 − qr)xi) is equal to q(2g− 2 + n) +
∑n

i=1 〈µn〉 − nqr and is divisible by
qr (this follows from the Riemann-Hurwitz formula, that is, from the fact that b given
by equation (8) is integer).

We denote by π : C →Mqr,r

g,n the universal curve overMqr,r

g,n , with universal qr-th root

line bundle S → C, and by ε : Mqr,r

g,n → Mg,n the projection to the moduli space of
curves. We define

Cg,n

(
rq, q; qr − 〈µ1〉 , . . . , qr − 〈µn〉

)
:= ε∗

(
c
(
R1π∗S

)
/c
(
R0π∗S

))
.

This definition can be made very explicit, namely, there is an expression of the Chiodo
classes in tautological classes via the Givental graphs. We refer to [JPPZ16, Lew17] for
a further discussion of the Chiodo classes.

In the special case q = 1 this conjecture is reduced to Zvonkine’s 2006 conjec-
ture [Zvo06]. In the case r = 1 it is proved in [LPSZ16] that this conjecture is equiva-
lent to the Johnson-Pandharipande-Tseng formula first derived in [JPT11]. In the case
q = r = 1 this conjecture reduces to the ELSV formula first derived in [ELSV01].

References

[ALS16] Alexander Alexandrov, Danilo Lewanski, and Sergey Shadrin. Ramifications of Hurwitz
theory, KP integrability and quantum curves. J. High Energy Phys., 5(2016):1–31, 2016.

[BHLM14] Vincent Bouchard, Daniel Hernández Serrano, Xiaojun Liu, and Motohico Mulase. Mirror
symmetry for orbifold Hurwitz numbers. J. Differential Geom., 98(3):375–423, 2014.

[BM08] Vincent Bouchard and Marcos Mariño. Hurwitz numbers, matrix models and enumerative
geometry. In From Hodge theory to integrability and TQFT tt*-geometry, volume 78 of Proc.
Sympos. Pure Math., pages 263–283. Amer. Math. Soc., Providence, RI, 2008.

[Chi08] Alessandro Chiodo. Towards an enumerative geometry of the moduli space of twisted curves
and rth roots. Compos. Math., 144(6):1461–1496, 2008.

[DKO+15] Petr Dunin-Barkowski, Maxim Kazarian, Nicolas Orantin, Sergey Shadrin, and Loek Spitz.
Polynomiality of Hurwitz numbers, Bouchard-Mariño conjecture, and a new proof of the
ELSV formula. Adv. Math., 279:67–103, 2015.

[DLN12] Norman Do, Oliver Leigh, and Paul Norbury. Orbifold Hurwitz numbers and Eynard-
Orantin invariants. ArXiv e-prints, dec 2012.

[DLPS15] Petr Dunin-Barkowski, Danilo Lewanski, Alexander Popolitov, and Sergey Shadrin. Poly-
nomiality of orbifold Hurwitz numbers, spectral curve, and a new proof of the Johnson-
Pandharipande-Tseng formula. J. Lond. Math. Soc. (2), 92(3):547–565, 2015.

[DOSS14] Petr Dunin-Barkowski, Nicolas Orantin, Sergey Shadrin, and Loek Spitz. Identification of
the Givental formula with the spectral curve topological recursion procedure. Comm. Math.
Phys., 328(2):669–700, 2014.

[ELSV01] Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein. Hurwitz numbers
and intersections on moduli spaces of curves. Invent. Math., 146(2):297–327, 2001.



TOWARDS AN ORBIFOLD GENERALIZATION OF ZVONKINE’S r-ELSV FORMULA 21

[EMS11] Bertrand Eynard, Motohico Mulase, and Bradley Safnuk. The Laplace transform of the
cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers. Publ. Res.
Inst. Math. Sci., 47(2):629–670, 2011.

[EO07] Bertrand Eynard and Nicolas Orantin. Invariants of algebraic curves and topological ex-
pansion. Commun. Number Theory Phys., 1(2):347–452, 2007.

[Eyn11] Bertrand Eynard. Intersection numbers of spectral curves. ArXiv e-prints, apr 2011.
[Eyn14] Bertrand Eynard. Invariants of spectral curves and intersection theory of moduli spaces of

complex curves. Commun. Number Theory Phys., 8(3):541–588, 2014.
[Joh09] Paul D. Johnson. Equivariant Gromov-Witten theory of one dimensional stacks. arXiv,

math.AG, 2009.
[Joh15] Paul D. Johnson. Double Hurwitz numbers via the infinite wedge. Transactions of the Amer-

ican Mathematical Society, 367(9):6415–6440, 2015.
[JPPZ16] Felix Janda, Rahul Pandharipande, Aaron Pixton, and Dimitri Zvonkine. Double ramifica-

tion cycles on the moduli spaces of curves. ArXiv e-prints, feb 2016.
[JPT11] Paul Johnson, Rahul Pandharipande, and Hsian-Hua Tseng. Abelian Hurwitz-Hodge inte-

grals. Michigan Math. J., 60(1):171–198, 2011.
[KLS16] Reinier Kramer, Danilo Lewanski, and Sergey Shadrin. Quasi-polynomiality of monotone

orbifold Hurwitz numbers and Grothendieck’s dessins d’enfants. ArXiv e-prints, oct 2016.
[KO94] Sergei Kerov and Grigori Olshanski. Polynomial functions on the set of Young diagrams.

C. R. Acad. Sci. Paris Sér. I Math., 319(2):121–126, 1994.
[Lew17] Danilo Lewanski. On ELSV-type formulae, Hurwitz numbers and topological recursion.

Preprint, 2017.
[LPSZ16] Danilo Lewanski, Alexandr Popolitov, Sergey Shadrin, and Dimitri Zvonkine. Chiodo for-

mulas for the r-th roots and topological recursion. Letters in Mathematical Physics, nov
2016.

[MSS13] Motohico Mulase, Sergey Shadrin, and Loek Spitz. The spectral curve and the Schrödinger
equation of double Hurwitz numbers and higher spin structures. Commun. Number Theory
Phys., 7(1):125–143, 2013.

[MZ10] Motohico Mulase and Naizhen Zhang. Polynomial recursion formula for linear Hodge inte-
grals. Commun. Number Theory Phys., 4(2):267–293, 2010.

[OP06a] Andrei Okounkov and Rahul Pandharipande. Gromov-Witten theory, Hurwitz theory, and
completed cycles. Ann. of Math. (2), 163(2):517–560, 2006.

[OP06b] Andrei Okounkov and Rahul Pandharipande. The equivariant Gromov-Witten theory of P1.
Annals of Mathematics. Second Series, 163(2):561–605, 2006.

[SSZ12] Sergey Shadrin, Loek Spitz, and Dimitri Zvonkine. On double Hurwitz numbers with com-
pleted cycles. J. Lond. Math. Soc. (2), 86(2):407–432, 2012.

[SSZ15] Sergey Shadrin, Loek Spitz, and Dimitri Zvonkine. Equivalence of ELSV and Bouchard-
Mariño conjectures for r-spin Hurwitz numbers. Math. Ann., 361(3-4):611–645, 2015.

[Zvo06] Dimitri Zvonkine. A preliminary text on the r-ELSV formula. Preprint, 2006.

R. K.: Korteweg-de Vries Institute for Mathematics, University of Amsterdam,
Postbus 94248, 1090 GE Amsterdam, The Netherlands

Email address: R.Kramer@uva.nl

D. L.: Max Planck Institute for Mathematik, Vivatsgasse 7, 53111 Bonn, Germany.
Email address: ilgrillodani@mpim-bonn.mpg.del

A. P.: Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden;
Institute for Information Transmission Problems, Moscow 127994, Russia; and ITEP,
Moscow 117218, Russia

Email address: popolit@gmail.com

S. S.: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Post-
bus 94248, 1090 GE Amsterdam, The Netherlands

Email address: S.Shadrin@uva.nl


	1. Introduction
	1.1. A recollection on the ELSV formula
	1.2. The q-orbifold Hurwitz numbers
	1.3. The r-spin Hurwitz numbers
	1.4. The q-orbifold r-spin Hurwitz numbers
	1.5. Organization of the paper
	1.6. Acknowledgements

	2. Semi-infinite wedge formalism
	3. A-operators
	3.1. The inverse of the A-operators

	4. Polynomiality
	5. Computations for unstable correlation functions
	5.1. The case (g,n)=(0,1) 
	5.2. The case (g,n)=(0,2)

	6. A generalization of Zvonkine's conjecture
	References

